Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
/*
 * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining 
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be 
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "inner.h"

static void
in_cbc_init(br_sslrec_in_cbc_context *cc,
	const br_block_cbcdec_class *bc_impl,
	const void *bc_key, size_t bc_key_len,
	const br_hash_class *dig_impl,
	const void *mac_key, size_t mac_key_len, size_t mac_out_len,
	const void *iv)
{
	cc->vtable = &br_sslrec_in_cbc_vtable;
	cc->seq = 0;
	bc_impl->init(&cc->bc.vtable, bc_key, bc_key_len);
	br_hmac_key_init(&cc->mac, dig_impl, mac_key, mac_key_len);
	cc->mac_len = mac_out_len;
	if (iv == NULL) {
		memset(cc->iv, 0, sizeof cc->iv);
		cc->explicit_IV = 1;
	} else {
		memcpy(cc->iv, iv, bc_impl->block_size);
		cc->explicit_IV = 0;
	}
}

static int
cbc_check_length(const br_sslrec_in_cbc_context *cc, size_t rlen)
{
	/*
	 * Plaintext size: at most 16384 bytes
	 * Padding: at most 256 bytes
	 * MAC: mac_len extra bytes
	 * TLS 1.1+: each record has an explicit IV
	 *
	 * Minimum length includes at least one byte of padding, and the
	 * MAC.
	 *
	 * Total length must be a multiple of the block size.
	 */
	size_t blen;
	size_t min_len, max_len;

	blen = cc->bc.vtable->block_size;
	min_len = (blen + cc->mac_len) & ~(blen - 1);
	max_len = (16384 + 256 + cc->mac_len) & ~(blen - 1);
	if (cc->explicit_IV) {
		min_len += blen;
		max_len += blen;
	}
	return min_len <= rlen && rlen <= max_len;
}

/*
 * Rotate array buf[] of length 'len' to the left (towards low indices)
 * by 'num' bytes if ctl is 1; otherwise, leave it unchanged. This is
 * constant-time. 'num' MUST be lower than 'len'. 'len' MUST be lower
 * than or equal to 64.
 */
static void
cond_rotate(uint32_t ctl, unsigned char *buf, size_t len, size_t num)
{
	unsigned char tmp[64];
	size_t u, v;

	for (u = 0, v = num; u < len; u ++) {
		tmp[u] = MUX(ctl, buf[v], buf[u]);
		if (++ v == len) {
			v = 0;
		}
	}
	memcpy(buf, tmp, len);
}

static unsigned char *
cbc_decrypt(br_sslrec_in_cbc_context *cc,
	int record_type, unsigned version, void *data, size_t *data_len)
{
	/*
	 * We represent all lengths on 32-bit integers, because:
	 * -- SSL record lengths always fit in 32 bits;
	 * -- our constant-time primitives operate on 32-bit integers.
	 */
	unsigned char *buf;
	uint32_t u, v, len, blen, min_len, max_len;
	uint32_t good, pad_len, rot_count, len_withmac, len_nomac;
	unsigned char tmp1[64], tmp2[64];
	int i;
	br_hmac_context hc;

	buf = data;
	len = *data_len;
	blen = cc->bc.vtable->block_size;

	/*
	 * Decrypt data, and skip the explicit IV (if applicable). Note
	 * that the total length is supposed to have been verified by
	 * the caller. If there is an explicit IV, then we actually
	 * "decrypt" it using the implicit IV (from previous record),
	 * which is useless but harmless.
	 */
	cc->bc.vtable->run(&cc->bc.vtable, cc->iv, data, len);
	if (cc->explicit_IV) {
		buf += blen;
		len -= blen;
	}

	/*
	 * Compute minimum and maximum length of plaintext + MAC. These
	 * lengths can be inferred from the outside: they are not secret.
	 */
	min_len = (cc->mac_len + 256 < len) ? len - 256 : cc->mac_len;
	max_len = len - 1;

	/*
	 * Use the last decrypted byte to compute the actual payload
	 * length. Take care not to underflow (we use unsigned types).
	 */
	pad_len = buf[max_len];
	good = LE(pad_len, (uint32_t)(max_len - min_len));
	len = MUX(good, (uint32_t)(max_len - pad_len), min_len);

	/*
	 * Check padding contents: all padding bytes must be equal to
	 * the value of pad_len.
	 */
	for (u = min_len; u < max_len; u ++) {
		good &= LT(u, len) | EQ(buf[u], pad_len);
	}

	/*
	 * Extract the MAC value. This is done in one pass, but results
	 * in a "rotated" MAC value depending on where it actually
	 * occurs. The 'rot_count' value is set to the offset of the
	 * first MAC byte within tmp1[].
	 *
	 * min_len and max_len are also adjusted to the minimum and
	 * maximum lengths of the plaintext alone (without the MAC).
	 */
	len_withmac = (uint32_t)len;
	len_nomac = len_withmac - cc->mac_len;
	min_len -= cc->mac_len;
	rot_count = 0;
	memset(tmp1, 0, cc->mac_len);
	v = 0;
	for (u = min_len; u < max_len; u ++) {
		tmp1[v] |= MUX(GE(u, len_nomac) & LT(u, len_withmac),
			buf[u], 0x00);
		rot_count = MUX(EQ(u, len_nomac), v, rot_count);
		if (++ v == cc->mac_len) {
			v = 0;
		}
	}
	max_len -= cc->mac_len;

	/*
	 * Rotate back the MAC value. The loop below does the constant-time
	 * rotation in time n*log n for a MAC output of length n. We assume
	 * that the MAC output length is no more than 64 bytes, so the
	 * rotation count fits on 6 bits.
	 */
	for (i = 5; i >= 0; i --) {
		uint32_t rc;

		rc = (uint32_t)1 << i;
		cond_rotate(rot_count >> i, tmp1, cc->mac_len, rc);
		rot_count &= ~rc;
	}

	/*
	 * Recompute the HMAC value. The input is the concatenation of
	 * the sequence number (8 bytes), the record header (5 bytes),
	 * and the payload.
	 *
	 * At that point, min_len is the minimum plaintext length, but
	 * max_len still includes the MAC length.
	 */
	br_enc64be(tmp2, cc->seq ++);
	tmp2[8] = (unsigned char)record_type;
	br_enc16be(tmp2 + 9, version);
	br_enc16be(tmp2 + 11, len_nomac);
	br_hmac_init(&hc, &cc->mac, cc->mac_len);
	br_hmac_update(&hc, tmp2, 13);
	br_hmac_outCT(&hc, buf, len_nomac, min_len, max_len, tmp2);

	/*
	 * Compare the extracted and recomputed MAC values.
	 */
	for (u = 0; u < cc->mac_len; u ++) {
		good &= EQ0(tmp1[u] ^ tmp2[u]);
	}

	/*
	 * Check that the plaintext length is valid. The previous
	 * check was on the encrypted length, but the padding may have
	 * turned shorter than expected.
	 *
	 * Once this final test is done, the critical "constant-time"
	 * section ends and we can make conditional jumps again.
	 */
	good &= LE(len_nomac, 16384);

	if (!good) {
		return 0;
	}
	*data_len = len_nomac;
	return buf;
}

/* see bearssl_ssl.h */
const br_sslrec_in_cbc_class br_sslrec_in_cbc_vtable = {
	{
		sizeof(br_sslrec_in_cbc_context),
		(int (*)(const br_sslrec_in_class *const *, size_t))
			&cbc_check_length,
		(unsigned char *(*)(const br_sslrec_in_class **,
			int, unsigned, void *, size_t *))
			&cbc_decrypt
	},
	(void (*)(const br_sslrec_in_cbc_class **,
		const br_block_cbcdec_class *, const void *, size_t,
		const br_hash_class *, const void *, size_t, size_t,
		const void *))
		&in_cbc_init
};

/*
 * For CBC output:
 *
 * -- With TLS 1.1+, there is an explicit IV. Generation method uses
 * HMAC, computed over the current sequence number, and the current MAC
 * key. The resulting value is truncated to the size of a block, and
 * added at the head of the plaintext; it will get encrypted along with
 * the data. This custom generation mechanism is "safe" under the
 * assumption that HMAC behaves like a random oracle; since the MAC for
 * a record is computed over the concatenation of the sequence number,
 * the record header and the plaintext, the HMAC-for-IV will not collide
 * with the normal HMAC.
 *
 * -- With TLS 1.0, for application data, we want to enforce a 1/n-1
 * split, as a countermeasure against chosen-plaintext attacks. We thus
 * need to leave some room in the buffer for that extra record.
 */

static void
out_cbc_init(br_sslrec_out_cbc_context *cc,
	const br_block_cbcenc_class *bc_impl,
	const void *bc_key, size_t bc_key_len,
	const br_hash_class *dig_impl,
	const void *mac_key, size_t mac_key_len, size_t mac_out_len,
	const void *iv)
{
	cc->vtable = &br_sslrec_out_cbc_vtable;
	cc->seq = 0;
	bc_impl->init(&cc->bc.vtable, bc_key, bc_key_len);
	br_hmac_key_init(&cc->mac, dig_impl, mac_key, mac_key_len);
	cc->mac_len = mac_out_len;
	if (iv == NULL) {
		memset(cc->iv, 0, sizeof cc->iv);
		cc->explicit_IV = 1;
	} else {
		memcpy(cc->iv, iv, bc_impl->block_size);
		cc->explicit_IV = 0;
	}
}

static void
cbc_max_plaintext(const br_sslrec_out_cbc_context *cc,
	size_t *start, size_t *end)
{
	size_t blen, len;

	blen = cc->bc.vtable->block_size;
	if (cc->explicit_IV) {
		*start += blen;
	} else {
		*start += 4 + ((cc->mac_len + blen + 1) & ~(blen - 1));
	}
	len = (*end - *start) & ~(blen - 1);
	len -= 1 + cc->mac_len;
	if (len > 16384) {
		len = 16384;
	}
	*end = *start + len;
}

static unsigned char *
cbc_encrypt(br_sslrec_out_cbc_context *cc,
	int record_type, unsigned version, void *data, size_t *data_len)
{
	unsigned char *buf, *rbuf;
	size_t len, blen, plen;
	unsigned char tmp[13];
	br_hmac_context hc;

	buf = data;
	len = *data_len;
	blen = cc->bc.vtable->block_size;

	/*
	 * If using TLS 1.0, with more than one byte of plaintext, and
	 * the record is application data, then we need to compute
	 * a "split". We do not perform the split on other record types
	 * because it turned out that some existing, deployed
	 * implementations of SSL/TLS do not tolerate the splitting of
	 * some message types (in particular the Finished message).
	 *
	 * If using TLS 1.1+, then there is an explicit IV. We produce
	 * that IV by adding an extra initial plaintext block, whose
	 * value is computed with HMAC over the record sequence number.
	 */
	if (cc->explicit_IV) {
		/*
		 * We use here the fact that all the HMAC variants we
		 * support can produce at least 16 bytes, while all the
		 * block ciphers we support have blocks of no more than
		 * 16 bytes. Thus, we can always truncate the HMAC output
		 * down to the block size.
		 */
		br_enc64be(tmp, cc->seq);
		br_hmac_init(&hc, &cc->mac, blen);
		br_hmac_update(&hc, tmp, 8);
		br_hmac_out(&hc, buf - blen);
		rbuf = buf - blen - 5;
	} else {
		if (len > 1 && record_type == BR_SSL_APPLICATION_DATA) {
			/*
			 * To do the split, we use a recursive invocation;
			 * since we only give one byte to the inner call,
			 * the recursion stops there.
			 *
			 * We need to compute the exact size of the extra
			 * record, so that the two resulting records end up
			 * being sequential in RAM.
			 *
			 * We use here the fact that cbc_max_plaintext()
			 * adjusted the start offset to leave room for the
			 * initial fragment.
			 */
			size_t xlen;

			rbuf = buf - 4
				- ((cc->mac_len + blen + 1) & ~(blen - 1));
			rbuf[0] = buf[0];
			xlen = 1;
			rbuf = cbc_encrypt(cc, record_type,
				version, rbuf, &xlen);
			buf ++;
			len --;
		} else {
			rbuf = buf - 5;
		}
	}

	/*
	 * Compute MAC.
	 */
	br_enc64be(tmp, cc->seq ++);
	tmp[8] = record_type;
	br_enc16be(tmp + 9, version);
	br_enc16be(tmp + 11, len);
	br_hmac_init(&hc, &cc->mac, cc->mac_len);
	br_hmac_update(&hc, tmp, 13);
	br_hmac_update(&hc, buf, len);
	br_hmac_out(&hc, buf + len);
	len += cc->mac_len;

	/*
	 * Add padding.
	 */
	plen = blen - (len & (blen - 1));
	memset(buf + len, (unsigned)plen - 1, plen);
	len += plen;

	/*
	 * If an explicit IV is used, the corresponding extra block was
	 * already put in place earlier; we just have to account for it
	 * here.
	 */
	if (cc->explicit_IV) {
		buf -= blen;
		len += blen;
	}

	/*
	 * Encrypt the whole thing. If there is an explicit IV, we also
	 * encrypt it, which is fine (encryption of a uniformly random
	 * block is still a uniformly random block).
	 */
	cc->bc.vtable->run(&cc->bc.vtable, cc->iv, buf, len);

	/*
	 * Add the header and return.
	 */
	buf[-5] = record_type;
	br_enc16be(buf - 4, version);
	br_enc16be(buf - 2, len);
	*data_len = (size_t)((buf + len) - rbuf);
	return rbuf;
}

/* see bearssl_ssl.h */
const br_sslrec_out_cbc_class br_sslrec_out_cbc_vtable = {
	{
		sizeof(br_sslrec_out_cbc_context),
		(void (*)(const br_sslrec_out_class *const *,
			size_t *, size_t *))
			&cbc_max_plaintext,
		(unsigned char *(*)(const br_sslrec_out_class **,
			int, unsigned, void *, size_t *))
			&cbc_encrypt
	},
	(void (*)(const br_sslrec_out_cbc_class **,
		const br_block_cbcenc_class *, const void *, size_t,
		const br_hash_class *, const void *, size_t, size_t,
		const void *))
		&out_cbc_init
};