Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
//===- lib/ReaderWriter/MachO/CompactUnwindPass.cpp -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file A pass to convert MachO's __compact_unwind sections into the final
/// __unwind_info format used during runtime. See
/// mach-o/compact_unwind_encoding.h for more details on the formats involved.
///
//===----------------------------------------------------------------------===//

#include "ArchHandler.h"
#include "File.h"
#include "MachONormalizedFileBinaryUtils.h"
#include "MachOPasses.h"
#include "lld/Common/LLVM.h"
#include "lld/Core/DefinedAtom.h"
#include "lld/Core/File.h"
#include "lld/Core/Reference.h"
#include "lld/Core/Simple.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"

#define DEBUG_TYPE "macho-compact-unwind"

namespace lld {
namespace mach_o {

namespace {
struct CompactUnwindEntry {
  const Atom *rangeStart;
  const Atom *personalityFunction;
  const Atom *lsdaLocation;
  const Atom *ehFrame;

  uint32_t rangeLength;

  // There are 3 types of compact unwind entry, distinguished by the encoding
  // value: 0 indicates a function with no unwind info;
  // _archHandler.dwarfCompactUnwindType() indicates that the entry defers to
  // __eh_frame, and that the ehFrame entry will be valid; any other value is a
  // real compact unwind entry -- personalityFunction will be set and
  // lsdaLocation may be.
  uint32_t encoding;

  CompactUnwindEntry(const DefinedAtom *function)
      : rangeStart(function), personalityFunction(nullptr),
        lsdaLocation(nullptr), ehFrame(nullptr), rangeLength(function->size()),
        encoding(0) {}

  CompactUnwindEntry()
      : rangeStart(nullptr), personalityFunction(nullptr),
        lsdaLocation(nullptr), ehFrame(nullptr), rangeLength(0), encoding(0) {}
};

struct UnwindInfoPage {
  ArrayRef<CompactUnwindEntry> entries;
};
}

class UnwindInfoAtom : public SimpleDefinedAtom {
public:
  UnwindInfoAtom(ArchHandler &archHandler, const File &file, bool isBig,
                 std::vector<const Atom *> &personalities,
                 std::vector<uint32_t> &commonEncodings,
                 std::vector<UnwindInfoPage> &pages, uint32_t numLSDAs)
      : SimpleDefinedAtom(file), _archHandler(archHandler),
        _commonEncodingsOffset(7 * sizeof(uint32_t)),
        _personalityArrayOffset(_commonEncodingsOffset +
                                commonEncodings.size() * sizeof(uint32_t)),
        _topLevelIndexOffset(_personalityArrayOffset +
                             personalities.size() * sizeof(uint32_t)),
        _lsdaIndexOffset(_topLevelIndexOffset +
                         3 * (pages.size() + 1) * sizeof(uint32_t)),
        _firstPageOffset(_lsdaIndexOffset + 2 * numLSDAs * sizeof(uint32_t)),
        _isBig(isBig) {

    addHeader(commonEncodings.size(), personalities.size(), pages.size());
    addCommonEncodings(commonEncodings);
    addPersonalityFunctions(personalities);
    addTopLevelIndexes(pages);
    addLSDAIndexes(pages, numLSDAs);
    addSecondLevelPages(pages);
  }

  ~UnwindInfoAtom() override = default;

  ContentType contentType() const override {
    return DefinedAtom::typeProcessedUnwindInfo;
  }

  Alignment alignment() const override { return 4; }

  uint64_t size() const override { return _contents.size(); }

  ContentPermissions permissions() const override {
    return DefinedAtom::permR__;
  }

  ArrayRef<uint8_t> rawContent() const override { return _contents; }

  void addHeader(uint32_t numCommon, uint32_t numPersonalities,
                 uint32_t numPages) {
    using normalized::write32;

    uint32_t headerSize = 7 * sizeof(uint32_t);
    _contents.resize(headerSize);

    uint8_t *headerEntries = _contents.data();
    // version
    write32(headerEntries, 1, _isBig);
    // commonEncodingsArraySectionOffset
    write32(headerEntries + sizeof(uint32_t), _commonEncodingsOffset, _isBig);
    // commonEncodingsArrayCount
    write32(headerEntries + 2 * sizeof(uint32_t), numCommon, _isBig);
    // personalityArraySectionOffset
    write32(headerEntries + 3 * sizeof(uint32_t), _personalityArrayOffset,
            _isBig);
    // personalityArrayCount
    write32(headerEntries + 4 * sizeof(uint32_t), numPersonalities, _isBig);
    // indexSectionOffset
    write32(headerEntries + 5 * sizeof(uint32_t), _topLevelIndexOffset, _isBig);
    // indexCount
    write32(headerEntries + 6 * sizeof(uint32_t), numPages + 1, _isBig);
  }

  /// Add the list of common encodings to the section; this is simply an array
  /// of uint32_t compact values. Size has already been specified in the header.
  void addCommonEncodings(std::vector<uint32_t> &commonEncodings) {
    using normalized::write32;

    _contents.resize(_commonEncodingsOffset +
                     commonEncodings.size() * sizeof(uint32_t));
    uint8_t *commonEncodingsArea =
        reinterpret_cast<uint8_t *>(_contents.data() + _commonEncodingsOffset);

    for (uint32_t encoding : commonEncodings) {
      write32(commonEncodingsArea, encoding, _isBig);
      commonEncodingsArea += sizeof(uint32_t);
    }
  }

  void addPersonalityFunctions(std::vector<const Atom *> personalities) {
    _contents.resize(_personalityArrayOffset +
                     personalities.size() * sizeof(uint32_t));

    for (unsigned i = 0; i < personalities.size(); ++i)
      addImageReferenceIndirect(_personalityArrayOffset + i * sizeof(uint32_t),
                                personalities[i]);
  }

  void addTopLevelIndexes(std::vector<UnwindInfoPage> &pages) {
    using normalized::write32;

    uint32_t numIndexes = pages.size() + 1;
    _contents.resize(_topLevelIndexOffset + numIndexes * 3 * sizeof(uint32_t));

    uint32_t pageLoc = _firstPageOffset;

    // The most difficult job here is calculating the LSDAs; everything else
    // follows fairly naturally, but we can't state where the first
    uint8_t *indexData = &_contents[_topLevelIndexOffset];
    uint32_t numLSDAs = 0;
    for (unsigned i = 0; i < pages.size(); ++i) {
      // functionOffset
      addImageReference(_topLevelIndexOffset + 3 * i * sizeof(uint32_t),
                        pages[i].entries[0].rangeStart);
      // secondLevelPagesSectionOffset
      write32(indexData + (3 * i + 1) * sizeof(uint32_t), pageLoc, _isBig);
      write32(indexData + (3 * i + 2) * sizeof(uint32_t),
              _lsdaIndexOffset + numLSDAs * 2 * sizeof(uint32_t), _isBig);

      for (auto &entry : pages[i].entries)
        if (entry.lsdaLocation)
          ++numLSDAs;
    }

    // Finally, write out the final sentinel index
    auto &finalEntry = pages[pages.size() - 1].entries.back();
    addImageReference(_topLevelIndexOffset +
                          3 * pages.size() * sizeof(uint32_t),
                      finalEntry.rangeStart, finalEntry.rangeLength);
    // secondLevelPagesSectionOffset => 0
    write32(indexData + (3 * pages.size() + 2) * sizeof(uint32_t),
            _lsdaIndexOffset + numLSDAs * 2 * sizeof(uint32_t), _isBig);
  }

  void addLSDAIndexes(std::vector<UnwindInfoPage> &pages, uint32_t numLSDAs) {
    _contents.resize(_lsdaIndexOffset + numLSDAs * 2 * sizeof(uint32_t));

    uint32_t curOffset = _lsdaIndexOffset;
    for (auto &page : pages) {
      for (auto &entry : page.entries) {
        if (!entry.lsdaLocation)
          continue;

        addImageReference(curOffset, entry.rangeStart);
        addImageReference(curOffset + sizeof(uint32_t), entry.lsdaLocation);
        curOffset += 2 * sizeof(uint32_t);
      }
    }
  }

  void addSecondLevelPages(std::vector<UnwindInfoPage> &pages) {
    for (auto &page : pages) {
      addRegularSecondLevelPage(page);
    }
  }

  void addRegularSecondLevelPage(const UnwindInfoPage &page) {
    uint32_t curPageOffset = _contents.size();
    const int16_t headerSize = sizeof(uint32_t) + 2 * sizeof(uint16_t);
    uint32_t curPageSize =
        headerSize + 2 * page.entries.size() * sizeof(uint32_t);
    _contents.resize(curPageOffset + curPageSize);

    using normalized::write32;
    using normalized::write16;
    // 2 => regular page
    write32(&_contents[curPageOffset], 2, _isBig);
    // offset of 1st entry
    write16(&_contents[curPageOffset + 4], headerSize, _isBig);
    write16(&_contents[curPageOffset + 6], page.entries.size(), _isBig);

    uint32_t pagePos = curPageOffset + headerSize;
    for (auto &entry : page.entries) {
      addImageReference(pagePos, entry.rangeStart);

      write32(_contents.data() + pagePos + sizeof(uint32_t), entry.encoding,
              _isBig);
      if ((entry.encoding & 0x0f000000U) ==
          _archHandler.dwarfCompactUnwindType())
        addEhFrameReference(pagePos + sizeof(uint32_t), entry.ehFrame);

      pagePos += 2 * sizeof(uint32_t);
    }
  }

  void addEhFrameReference(uint32_t offset, const Atom *dest,
                           Reference::Addend addend = 0) {
    addReference(Reference::KindNamespace::mach_o, _archHandler.kindArch(),
                 _archHandler.unwindRefToEhFrameKind(), offset, dest, addend);
  }

  void addImageReference(uint32_t offset, const Atom *dest,
                         Reference::Addend addend = 0) {
    addReference(Reference::KindNamespace::mach_o, _archHandler.kindArch(),
                 _archHandler.imageOffsetKind(), offset, dest, addend);
  }

  void addImageReferenceIndirect(uint32_t offset, const Atom *dest) {
    addReference(Reference::KindNamespace::mach_o, _archHandler.kindArch(),
                 _archHandler.imageOffsetKindIndirect(), offset, dest, 0);
  }

private:
  mach_o::ArchHandler &_archHandler;
  std::vector<uint8_t> _contents;
  uint32_t _commonEncodingsOffset;
  uint32_t _personalityArrayOffset;
  uint32_t _topLevelIndexOffset;
  uint32_t _lsdaIndexOffset;
  uint32_t _firstPageOffset;
  bool _isBig;
};

/// Pass for instantiating and optimizing GOT slots.
///
class CompactUnwindPass : public Pass {
public:
  CompactUnwindPass(const MachOLinkingContext &context)
      : _ctx(context), _archHandler(_ctx.archHandler()),
        _file(*_ctx.make_file<MachOFile>("<mach-o Compact Unwind Pass>")),
        _isBig(MachOLinkingContext::isBigEndian(_ctx.arch())) {
    _file.setOrdinal(_ctx.getNextOrdinalAndIncrement());
  }

private:
  llvm::Error perform(SimpleFile &mergedFile) override {
    LLVM_DEBUG(llvm::dbgs() << "MachO Compact Unwind pass\n");

    std::map<const Atom *, CompactUnwindEntry> unwindLocs;
    std::map<const Atom *, const Atom *> dwarfFrames;
    std::vector<const Atom *> personalities;
    uint32_t numLSDAs = 0;

    // First collect all __compact_unwind and __eh_frame entries, addressable by
    // the function referred to.
    collectCompactUnwindEntries(mergedFile, unwindLocs, personalities,
                                numLSDAs);

    collectDwarfFrameEntries(mergedFile, dwarfFrames);

    // Skip rest of pass if no unwind info.
    if (unwindLocs.empty() && dwarfFrames.empty())
      return llvm::Error::success();

    // FIXME: if there are more than 4 personality functions then we need to
    // defer to DWARF info for the ones we don't put in the list. They should
    // also probably be sorted by frequency.
    assert(personalities.size() <= 4);

    // TODO: Find common encodings for use by compressed pages.
    std::vector<uint32_t> commonEncodings;

    // Now sort the entries by final address and fixup the compact encoding to
    // its final form (i.e. set personality function bits & create DWARF
    // references where needed).
    std::vector<CompactUnwindEntry> unwindInfos = createUnwindInfoEntries(
        mergedFile, unwindLocs, personalities, dwarfFrames);

    // Remove any unused eh-frame atoms.
    pruneUnusedEHFrames(mergedFile, unwindInfos, unwindLocs, dwarfFrames);

    // Finally, we can start creating pages based on these entries.

    LLVM_DEBUG(llvm::dbgs() << "  Splitting entries into pages\n");
    // FIXME: we split the entries into pages naively: lots of 4k pages followed
    // by a small one. ld64 tried to minimize space and align them to real 4k
    // boundaries. That might be worth doing, or perhaps we could perform some
    // minor balancing for expected number of lookups.
    std::vector<UnwindInfoPage> pages;
    auto remainingInfos = llvm::makeArrayRef(unwindInfos);
    do {
      pages.push_back(UnwindInfoPage());

      // FIXME: we only create regular pages at the moment. These can hold up to
      // 1021 entries according to the documentation.
      unsigned entriesInPage = std::min(1021U, (unsigned)remainingInfos.size());

      pages.back().entries = remainingInfos.slice(0, entriesInPage);
      remainingInfos = remainingInfos.slice(entriesInPage);

      LLVM_DEBUG(llvm::dbgs()
                 << "    Page from "
                 << pages.back().entries[0].rangeStart->name() << " to "
                 << pages.back().entries.back().rangeStart->name() << " + "
                 << llvm::format("0x%x",
                                 pages.back().entries.back().rangeLength)
                 << " has " << entriesInPage << " entries\n");
    } while (!remainingInfos.empty());

    auto *unwind = new (_file.allocator())
        UnwindInfoAtom(_archHandler, _file, _isBig, personalities,
                       commonEncodings, pages, numLSDAs);
    mergedFile.addAtom(*unwind);

    // Finally, remove all __compact_unwind atoms now that we've processed them.
    mergedFile.removeDefinedAtomsIf([](const DefinedAtom *atom) {
      return atom->contentType() == DefinedAtom::typeCompactUnwindInfo;
    });

    return llvm::Error::success();
  }

  void collectCompactUnwindEntries(
      const SimpleFile &mergedFile,
      std::map<const Atom *, CompactUnwindEntry> &unwindLocs,
      std::vector<const Atom *> &personalities, uint32_t &numLSDAs) {
    LLVM_DEBUG(llvm::dbgs() << "  Collecting __compact_unwind entries\n");

    for (const DefinedAtom *atom : mergedFile.defined()) {
      if (atom->contentType() != DefinedAtom::typeCompactUnwindInfo)
        continue;

      auto unwindEntry = extractCompactUnwindEntry(atom);
      unwindLocs.insert(std::make_pair(unwindEntry.rangeStart, unwindEntry));

      LLVM_DEBUG(llvm::dbgs() << "    Entry for "
                              << unwindEntry.rangeStart->name() << ", encoding="
                              << llvm::format("0x%08x", unwindEntry.encoding));
      if (unwindEntry.personalityFunction)
        LLVM_DEBUG(llvm::dbgs()
                   << ", personality="
                   << unwindEntry.personalityFunction->name()
                   << ", lsdaLoc=" << unwindEntry.lsdaLocation->name());
      LLVM_DEBUG(llvm::dbgs() << '\n');

      // Count number of LSDAs we see, since we need to know how big the index
      // will be while laying out the section.
      if (unwindEntry.lsdaLocation)
        ++numLSDAs;

      // Gather the personality functions now, so that they're in deterministic
      // order (derived from the DefinedAtom order).
      if (unwindEntry.personalityFunction &&
          !llvm::count(personalities, unwindEntry.personalityFunction))
        personalities.push_back(unwindEntry.personalityFunction);
    }
  }

  CompactUnwindEntry extractCompactUnwindEntry(const DefinedAtom *atom) {
    CompactUnwindEntry entry;

    for (const Reference *ref : *atom) {
      switch (ref->offsetInAtom()) {
      case 0:
        // FIXME: there could legitimately be functions with multiple encoding
        // entries. However, nothing produces them at the moment.
        assert(ref->addend() == 0 && "unexpected offset into function");
        entry.rangeStart = ref->target();
        break;
      case 0x10:
        assert(ref->addend() == 0 && "unexpected offset into personality fn");
        entry.personalityFunction = ref->target();
        break;
      case 0x18:
        assert(ref->addend() == 0 && "unexpected offset into LSDA atom");
        entry.lsdaLocation = ref->target();
        break;
      }
    }

    if (atom->rawContent().size() < 4 * sizeof(uint32_t))
      return entry;

    using normalized::read32;
    entry.rangeLength =
        read32(atom->rawContent().data() + 2 * sizeof(uint32_t), _isBig);
    entry.encoding =
        read32(atom->rawContent().data() + 3 * sizeof(uint32_t), _isBig);
    return entry;
  }

  void
  collectDwarfFrameEntries(const SimpleFile &mergedFile,
                           std::map<const Atom *, const Atom *> &dwarfFrames) {
    for (const DefinedAtom *ehFrameAtom : mergedFile.defined()) {
      if (ehFrameAtom->contentType() != DefinedAtom::typeCFI)
        continue;
      if (ArchHandler::isDwarfCIE(_isBig, ehFrameAtom))
        continue;

      if (const Atom *function = _archHandler.fdeTargetFunction(ehFrameAtom))
        dwarfFrames[function] = ehFrameAtom;
    }
  }

  /// Every atom defined in __TEXT,__text needs an entry in the final
  /// __unwind_info section (in order). These comes from two sources:
  ///   + Input __compact_unwind sections where possible (after adding the
  ///      personality function offset which is only known now).
  ///   + A synthesised reference to __eh_frame if there's no __compact_unwind
  ///     or too many personality functions to be accommodated.
  std::vector<CompactUnwindEntry> createUnwindInfoEntries(
      const SimpleFile &mergedFile,
      const std::map<const Atom *, CompactUnwindEntry> &unwindLocs,
      const std::vector<const Atom *> &personalities,
      const std::map<const Atom *, const Atom *> &dwarfFrames) {
    std::vector<CompactUnwindEntry> unwindInfos;

    LLVM_DEBUG(llvm::dbgs() << "  Creating __unwind_info entries\n");
    // The final order in the __unwind_info section must be derived from the
    // order of typeCode atoms, since that's how they'll be put into the object
    // file eventually (yuck!).
    for (const DefinedAtom *atom : mergedFile.defined()) {
      if (atom->contentType() != DefinedAtom::typeCode)
        continue;

      unwindInfos.push_back(finalizeUnwindInfoEntryForAtom(
          atom, unwindLocs, personalities, dwarfFrames));

      LLVM_DEBUG(llvm::dbgs()
                 << "    Entry for " << atom->name() << ", final encoding="
                 << llvm::format("0x%08x", unwindInfos.back().encoding)
                 << '\n');
    }

    return unwindInfos;
  }

  /// Remove unused EH frames.
  ///
  /// An EH frame is considered unused if there is a corresponding compact
  /// unwind atom that doesn't require the EH frame.
  void pruneUnusedEHFrames(
                   SimpleFile &mergedFile,
                   const std::vector<CompactUnwindEntry> &unwindInfos,
                   const std::map<const Atom *, CompactUnwindEntry> &unwindLocs,
                   const std::map<const Atom *, const Atom *> &dwarfFrames) {

    // Worklist of all 'used' FDEs.
    std::vector<const DefinedAtom *> usedDwarfWorklist;

    // We have to check two conditions when building the worklist:
    // (1) EH frames used by compact unwind entries.
    for (auto &entry : unwindInfos)
      if (entry.ehFrame)
        usedDwarfWorklist.push_back(cast<DefinedAtom>(entry.ehFrame));

    // (2) EH frames that reference functions with no corresponding compact
    //     unwind info.
    for (auto &entry : dwarfFrames)
      if (!unwindLocs.count(entry.first))
        usedDwarfWorklist.push_back(cast<DefinedAtom>(entry.second));

    // Add all transitively referenced CFI atoms by processing the worklist.
    std::set<const Atom *> usedDwarfFrames;
    while (!usedDwarfWorklist.empty()) {
      const DefinedAtom *cfiAtom = usedDwarfWorklist.back();
      usedDwarfWorklist.pop_back();
      usedDwarfFrames.insert(cfiAtom);
      for (const auto *ref : *cfiAtom) {
        const DefinedAtom *cfiTarget = dyn_cast<DefinedAtom>(ref->target());
        if (cfiTarget->contentType() == DefinedAtom::typeCFI)
          usedDwarfWorklist.push_back(cfiTarget);
      }
    }

    // Finally, delete all unreferenced CFI atoms.
    mergedFile.removeDefinedAtomsIf([&](const DefinedAtom *atom) {
      if ((atom->contentType() == DefinedAtom::typeCFI) &&
          !usedDwarfFrames.count(atom))
        return true;
      return false;
    });
  }

  CompactUnwindEntry finalizeUnwindInfoEntryForAtom(
      const DefinedAtom *function,
      const std::map<const Atom *, CompactUnwindEntry> &unwindLocs,
      const std::vector<const Atom *> &personalities,
      const std::map<const Atom *, const Atom *> &dwarfFrames) {
    auto unwindLoc = unwindLocs.find(function);

    CompactUnwindEntry entry;
    if (unwindLoc == unwindLocs.end()) {
      // Default entry has correct encoding (0 => no unwind), but we need to
      // synthesise the function.
      entry.rangeStart = function;
      entry.rangeLength = function->size();
    } else
      entry = unwindLoc->second;


    // If there's no __compact_unwind entry, or it explicitly says to use
    // __eh_frame, we need to try and fill in the correct DWARF atom.
    if (entry.encoding == _archHandler.dwarfCompactUnwindType() ||
        entry.encoding == 0) {
      auto dwarfFrame = dwarfFrames.find(function);
      if (dwarfFrame != dwarfFrames.end()) {
        entry.encoding = _archHandler.dwarfCompactUnwindType();
        entry.ehFrame = dwarfFrame->second;
      }
    }

    auto personality = llvm::find(personalities, entry.personalityFunction);
    uint32_t personalityIdx = personality == personalities.end()
                                  ? 0
                                  : personality - personalities.begin() + 1;

    // FIXME: We should also use DWARF when there isn't enough room for the
    // personality function in the compact encoding.
    assert(personalityIdx < 4 && "too many personality functions");

    entry.encoding |= personalityIdx << 28;

    if (entry.lsdaLocation)
      entry.encoding |= 1U << 30;

    return entry;
  }

  const MachOLinkingContext &_ctx;
  mach_o::ArchHandler &_archHandler;
  MachOFile &_file;
  bool _isBig;
};

void addCompactUnwindPass(PassManager &pm, const MachOLinkingContext &ctx) {
  assert(ctx.needsCompactUnwindPass());
  pm.add(std::make_unique<CompactUnwindPass>(ctx));
}

} // end namespace mach_o
} // end namespace lld