Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
//===- SafeStack.cpp - Safe Stack Insertion -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass splits the stack into the safe stack (kept as-is for LLVM backend)
// and the unsafe stack (explicitly allocated and managed through the runtime
// support library).
//
// http://clang.llvm.org/docs/SafeStack.html
//
//===----------------------------------------------------------------------===//

#include "SafeStackLayout.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/StackLifetime.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <string>
#include <utility>

using namespace llvm;
using namespace llvm::safestack;

#define DEBUG_TYPE "safe-stack"

namespace llvm {

STATISTIC(NumFunctions, "Total number of functions");
STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack");
STATISTIC(NumUnsafeStackRestorePointsFunctions,
          "Number of functions that use setjmp or exceptions");

STATISTIC(NumAllocas, "Total number of allocas");
STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas");
STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas");
STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments");
STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads");

} // namespace llvm

/// Use __safestack_pointer_address even if the platform has a faster way of
/// access safe stack pointer.
static cl::opt<bool>
    SafeStackUsePointerAddress("safestack-use-pointer-address",
                                  cl::init(false), cl::Hidden);

// Disabled by default due to PR32143.
static cl::opt<bool> ClColoring("safe-stack-coloring",
                                cl::desc("enable safe stack coloring"),
                                cl::Hidden, cl::init(false));

namespace {

/// Rewrite an SCEV expression for a memory access address to an expression that
/// represents offset from the given alloca.
///
/// The implementation simply replaces all mentions of the alloca with zero.
class AllocaOffsetRewriter : public SCEVRewriteVisitor<AllocaOffsetRewriter> {
  const Value *AllocaPtr;

public:
  AllocaOffsetRewriter(ScalarEvolution &SE, const Value *AllocaPtr)
      : SCEVRewriteVisitor(SE), AllocaPtr(AllocaPtr) {}

  const SCEV *visitUnknown(const SCEVUnknown *Expr) {
    if (Expr->getValue() == AllocaPtr)
      return SE.getZero(Expr->getType());
    return Expr;
  }
};

/// The SafeStack pass splits the stack of each function into the safe
/// stack, which is only accessed through memory safe dereferences (as
/// determined statically), and the unsafe stack, which contains all
/// local variables that are accessed in ways that we can't prove to
/// be safe.
class SafeStack {
  Function &F;
  const TargetLoweringBase &TL;
  const DataLayout &DL;
  ScalarEvolution &SE;

  Type *StackPtrTy;
  Type *IntPtrTy;
  Type *Int32Ty;
  Type *Int8Ty;

  Value *UnsafeStackPtr = nullptr;

  /// Unsafe stack alignment. Each stack frame must ensure that the stack is
  /// aligned to this value. We need to re-align the unsafe stack if the
  /// alignment of any object on the stack exceeds this value.
  ///
  /// 16 seems like a reasonable upper bound on the alignment of objects that we
  /// might expect to appear on the stack on most common targets.
  enum { StackAlignment = 16 };

  /// Return the value of the stack canary.
  Value *getStackGuard(IRBuilder<> &IRB, Function &F);

  /// Load stack guard from the frame and check if it has changed.
  void checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI,
                       AllocaInst *StackGuardSlot, Value *StackGuard);

  /// Find all static allocas, dynamic allocas, return instructions and
  /// stack restore points (exception unwind blocks and setjmp calls) in the
  /// given function and append them to the respective vectors.
  void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas,
                 SmallVectorImpl<AllocaInst *> &DynamicAllocas,
                 SmallVectorImpl<Argument *> &ByValArguments,
                 SmallVectorImpl<ReturnInst *> &Returns,
                 SmallVectorImpl<Instruction *> &StackRestorePoints);

  /// Calculate the allocation size of a given alloca. Returns 0 if the
  /// size can not be statically determined.
  uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI);

  /// Allocate space for all static allocas in \p StaticAllocas,
  /// replace allocas with pointers into the unsafe stack and generate code to
  /// restore the stack pointer before all return instructions in \p Returns.
  ///
  /// \returns A pointer to the top of the unsafe stack after all unsafe static
  /// allocas are allocated.
  Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F,
                                        ArrayRef<AllocaInst *> StaticAllocas,
                                        ArrayRef<Argument *> ByValArguments,
                                        ArrayRef<ReturnInst *> Returns,
                                        Instruction *BasePointer,
                                        AllocaInst *StackGuardSlot);

  /// Generate code to restore the stack after all stack restore points
  /// in \p StackRestorePoints.
  ///
  /// \returns A local variable in which to maintain the dynamic top of the
  /// unsafe stack if needed.
  AllocaInst *
  createStackRestorePoints(IRBuilder<> &IRB, Function &F,
                           ArrayRef<Instruction *> StackRestorePoints,
                           Value *StaticTop, bool NeedDynamicTop);

  /// Replace all allocas in \p DynamicAllocas with code to allocate
  /// space dynamically on the unsafe stack and store the dynamic unsafe stack
  /// top to \p DynamicTop if non-null.
  void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr,
                                       AllocaInst *DynamicTop,
                                       ArrayRef<AllocaInst *> DynamicAllocas);

  bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize);

  bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
                          const Value *AllocaPtr, uint64_t AllocaSize);
  bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr,
                    uint64_t AllocaSize);

  bool ShouldInlinePointerAddress(CallInst &CI);
  void TryInlinePointerAddress();

public:
  SafeStack(Function &F, const TargetLoweringBase &TL, const DataLayout &DL,
            ScalarEvolution &SE)
      : F(F), TL(TL), DL(DL), SE(SE),
        StackPtrTy(Type::getInt8PtrTy(F.getContext())),
        IntPtrTy(DL.getIntPtrType(F.getContext())),
        Int32Ty(Type::getInt32Ty(F.getContext())),
        Int8Ty(Type::getInt8Ty(F.getContext())) {}

  // Run the transformation on the associated function.
  // Returns whether the function was changed.
  bool run();
};

uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) {
  uint64_t Size = DL.getTypeAllocSize(AI->getAllocatedType());
  if (AI->isArrayAllocation()) {
    auto C = dyn_cast<ConstantInt>(AI->getArraySize());
    if (!C)
      return 0;
    Size *= C->getZExtValue();
  }
  return Size;
}

bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize,
                             const Value *AllocaPtr, uint64_t AllocaSize) {
  AllocaOffsetRewriter Rewriter(SE, AllocaPtr);
  const SCEV *Expr = Rewriter.visit(SE.getSCEV(Addr));

  uint64_t BitWidth = SE.getTypeSizeInBits(Expr->getType());
  ConstantRange AccessStartRange = SE.getUnsignedRange(Expr);
  ConstantRange SizeRange =
      ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize));
  ConstantRange AccessRange = AccessStartRange.add(SizeRange);
  ConstantRange AllocaRange =
      ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize));
  bool Safe = AllocaRange.contains(AccessRange);

  LLVM_DEBUG(
      dbgs() << "[SafeStack] "
             << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ")
             << *AllocaPtr << "\n"
             << "            Access " << *Addr << "\n"
             << "            SCEV " << *Expr
             << " U: " << SE.getUnsignedRange(Expr)
             << ", S: " << SE.getSignedRange(Expr) << "\n"
             << "            Range " << AccessRange << "\n"
             << "            AllocaRange " << AllocaRange << "\n"
             << "            " << (Safe ? "safe" : "unsafe") << "\n");

  return Safe;
}

bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
                                   const Value *AllocaPtr,
                                   uint64_t AllocaSize) {
  if (auto MTI = dyn_cast<MemTransferInst>(MI)) {
    if (MTI->getRawSource() != U && MTI->getRawDest() != U)
      return true;
  } else {
    if (MI->getRawDest() != U)
      return true;
  }

  const auto *Len = dyn_cast<ConstantInt>(MI->getLength());
  // Non-constant size => unsafe. FIXME: try SCEV getRange.
  if (!Len) return false;
  return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize);
}

/// Check whether a given allocation must be put on the safe
/// stack or not. The function analyzes all uses of AI and checks whether it is
/// only accessed in a memory safe way (as decided statically).
bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) {
  // Go through all uses of this alloca and check whether all accesses to the
  // allocated object are statically known to be memory safe and, hence, the
  // object can be placed on the safe stack.
  SmallPtrSet<const Value *, 16> Visited;
  SmallVector<const Value *, 8> WorkList;
  WorkList.push_back(AllocaPtr);

  // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc.
  while (!WorkList.empty()) {
    const Value *V = WorkList.pop_back_val();
    for (const Use &UI : V->uses()) {
      auto I = cast<const Instruction>(UI.getUser());
      assert(V == UI.get());

      switch (I->getOpcode()) {
      case Instruction::Load:
        if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getType()), AllocaPtr,
                          AllocaSize))
          return false;
        break;

      case Instruction::VAArg:
        // "va-arg" from a pointer is safe.
        break;
      case Instruction::Store:
        if (V == I->getOperand(0)) {
          // Stored the pointer - conservatively assume it may be unsafe.
          LLVM_DEBUG(dbgs()
                     << "[SafeStack] Unsafe alloca: " << *AllocaPtr
                     << "\n            store of address: " << *I << "\n");
          return false;
        }

        if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getOperand(0)->getType()),
                          AllocaPtr, AllocaSize))
          return false;
        break;

      case Instruction::Ret:
        // Information leak.
        return false;

      case Instruction::Call:
      case Instruction::Invoke: {
        const CallBase &CS = *cast<CallBase>(I);

        if (I->isLifetimeStartOrEnd())
          continue;

        if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
          if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) {
            LLVM_DEBUG(dbgs()
                       << "[SafeStack] Unsafe alloca: " << *AllocaPtr
                       << "\n            unsafe memintrinsic: " << *I << "\n");
            return false;
          }
          continue;
        }

        // LLVM 'nocapture' attribute is only set for arguments whose address
        // is not stored, passed around, or used in any other non-trivial way.
        // We assume that passing a pointer to an object as a 'nocapture
        // readnone' argument is safe.
        // FIXME: a more precise solution would require an interprocedural
        // analysis here, which would look at all uses of an argument inside
        // the function being called.
        auto B = CS.arg_begin(), E = CS.arg_end();
        for (auto A = B; A != E; ++A)
          if (A->get() == V)
            if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) ||
                                               CS.doesNotAccessMemory()))) {
              LLVM_DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
                                << "\n            unsafe call: " << *I << "\n");
              return false;
            }
        continue;
      }

      default:
        if (Visited.insert(I).second)
          WorkList.push_back(cast<const Instruction>(I));
      }
    }
  }

  // All uses of the alloca are safe, we can place it on the safe stack.
  return true;
}

Value *SafeStack::getStackGuard(IRBuilder<> &IRB, Function &F) {
  Value *StackGuardVar = TL.getIRStackGuard(IRB);
  if (!StackGuardVar)
    StackGuardVar =
        F.getParent()->getOrInsertGlobal("__stack_chk_guard", StackPtrTy);
  return IRB.CreateLoad(StackPtrTy, StackGuardVar, "StackGuard");
}

void SafeStack::findInsts(Function &F,
                          SmallVectorImpl<AllocaInst *> &StaticAllocas,
                          SmallVectorImpl<AllocaInst *> &DynamicAllocas,
                          SmallVectorImpl<Argument *> &ByValArguments,
                          SmallVectorImpl<ReturnInst *> &Returns,
                          SmallVectorImpl<Instruction *> &StackRestorePoints) {
  for (Instruction &I : instructions(&F)) {
    if (auto AI = dyn_cast<AllocaInst>(&I)) {
      ++NumAllocas;

      uint64_t Size = getStaticAllocaAllocationSize(AI);
      if (IsSafeStackAlloca(AI, Size))
        continue;

      if (AI->isStaticAlloca()) {
        ++NumUnsafeStaticAllocas;
        StaticAllocas.push_back(AI);
      } else {
        ++NumUnsafeDynamicAllocas;
        DynamicAllocas.push_back(AI);
      }
    } else if (auto RI = dyn_cast<ReturnInst>(&I)) {
      Returns.push_back(RI);
    } else if (auto CI = dyn_cast<CallInst>(&I)) {
      // setjmps require stack restore.
      if (CI->getCalledFunction() && CI->canReturnTwice())
        StackRestorePoints.push_back(CI);
    } else if (auto LP = dyn_cast<LandingPadInst>(&I)) {
      // Exception landing pads require stack restore.
      StackRestorePoints.push_back(LP);
    } else if (auto II = dyn_cast<IntrinsicInst>(&I)) {
      if (II->getIntrinsicID() == Intrinsic::gcroot)
        report_fatal_error(
            "gcroot intrinsic not compatible with safestack attribute");
    }
  }
  for (Argument &Arg : F.args()) {
    if (!Arg.hasByValAttr())
      continue;
    uint64_t Size =
        DL.getTypeStoreSize(Arg.getType()->getPointerElementType());
    if (IsSafeStackAlloca(&Arg, Size))
      continue;

    ++NumUnsafeByValArguments;
    ByValArguments.push_back(&Arg);
  }
}

AllocaInst *
SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F,
                                    ArrayRef<Instruction *> StackRestorePoints,
                                    Value *StaticTop, bool NeedDynamicTop) {
  assert(StaticTop && "The stack top isn't set.");

  if (StackRestorePoints.empty())
    return nullptr;

  // We need the current value of the shadow stack pointer to restore
  // after longjmp or exception catching.

  // FIXME: On some platforms this could be handled by the longjmp/exception
  // runtime itself.

  AllocaInst *DynamicTop = nullptr;
  if (NeedDynamicTop) {
    // If we also have dynamic alloca's, the stack pointer value changes
    // throughout the function. For now we store it in an alloca.
    DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr,
                                  "unsafe_stack_dynamic_ptr");
    IRB.CreateStore(StaticTop, DynamicTop);
  }

  // Restore current stack pointer after longjmp/exception catch.
  for (Instruction *I : StackRestorePoints) {
    ++NumUnsafeStackRestorePoints;

    IRB.SetInsertPoint(I->getNextNode());
    Value *CurrentTop =
        DynamicTop ? IRB.CreateLoad(StackPtrTy, DynamicTop) : StaticTop;
    IRB.CreateStore(CurrentTop, UnsafeStackPtr);
  }

  return DynamicTop;
}

void SafeStack::checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI,
                                AllocaInst *StackGuardSlot, Value *StackGuard) {
  Value *V = IRB.CreateLoad(StackPtrTy, StackGuardSlot);
  Value *Cmp = IRB.CreateICmpNE(StackGuard, V);

  auto SuccessProb = BranchProbabilityInfo::getBranchProbStackProtector(true);
  auto FailureProb = BranchProbabilityInfo::getBranchProbStackProtector(false);
  MDNode *Weights = MDBuilder(F.getContext())
                        .createBranchWeights(SuccessProb.getNumerator(),
                                             FailureProb.getNumerator());
  Instruction *CheckTerm =
      SplitBlockAndInsertIfThen(Cmp, &RI,
                                /* Unreachable */ true, Weights);
  IRBuilder<> IRBFail(CheckTerm);
  // FIXME: respect -fsanitize-trap / -ftrap-function here?
  FunctionCallee StackChkFail =
      F.getParent()->getOrInsertFunction("__stack_chk_fail", IRB.getVoidTy());
  IRBFail.CreateCall(StackChkFail, {});
}

/// We explicitly compute and set the unsafe stack layout for all unsafe
/// static alloca instructions. We save the unsafe "base pointer" in the
/// prologue into a local variable and restore it in the epilogue.
Value *SafeStack::moveStaticAllocasToUnsafeStack(
    IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas,
    ArrayRef<Argument *> ByValArguments, ArrayRef<ReturnInst *> Returns,
    Instruction *BasePointer, AllocaInst *StackGuardSlot) {
  if (StaticAllocas.empty() && ByValArguments.empty())
    return BasePointer;

  DIBuilder DIB(*F.getParent());

  StackLifetime SSC(F, StaticAllocas, StackLifetime::LivenessType::May);
  static const StackLifetime::LiveRange NoColoringRange(1, true);
  if (ClColoring)
    SSC.run();

  for (auto *I : SSC.getMarkers()) {
    auto *Op = dyn_cast<Instruction>(I->getOperand(1));
    const_cast<IntrinsicInst *>(I)->eraseFromParent();
    // Remove the operand bitcast, too, if it has no more uses left.
    if (Op && Op->use_empty())
      Op->eraseFromParent();
  }

  // Unsafe stack always grows down.
  StackLayout SSL(StackAlignment);
  if (StackGuardSlot) {
    Type *Ty = StackGuardSlot->getAllocatedType();
    unsigned Align =
        std::max(DL.getPrefTypeAlignment(Ty), StackGuardSlot->getAlignment());
    SSL.addObject(StackGuardSlot, getStaticAllocaAllocationSize(StackGuardSlot),
                  Align, SSC.getFullLiveRange());
  }

  for (Argument *Arg : ByValArguments) {
    Type *Ty = Arg->getType()->getPointerElementType();
    uint64_t Size = DL.getTypeStoreSize(Ty);
    if (Size == 0)
      Size = 1; // Don't create zero-sized stack objects.

    // Ensure the object is properly aligned.
    unsigned Align = std::max((unsigned)DL.getPrefTypeAlignment(Ty),
                              Arg->getParamAlignment());
    SSL.addObject(Arg, Size, Align, SSC.getFullLiveRange());
  }

  for (AllocaInst *AI : StaticAllocas) {
    Type *Ty = AI->getAllocatedType();
    uint64_t Size = getStaticAllocaAllocationSize(AI);
    if (Size == 0)
      Size = 1; // Don't create zero-sized stack objects.

    // Ensure the object is properly aligned.
    unsigned Align =
        std::max((unsigned)DL.getPrefTypeAlignment(Ty), AI->getAlignment());

    SSL.addObject(AI, Size, Align,
                  ClColoring ? SSC.getLiveRange(AI) : NoColoringRange);
  }

  SSL.computeLayout();
  unsigned FrameAlignment = SSL.getFrameAlignment();

  // FIXME: tell SSL that we start at a less-then-MaxAlignment aligned location
  // (AlignmentSkew).
  if (FrameAlignment > StackAlignment) {
    // Re-align the base pointer according to the max requested alignment.
    assert(isPowerOf2_32(FrameAlignment));
    IRB.SetInsertPoint(BasePointer->getNextNode());
    BasePointer = cast<Instruction>(IRB.CreateIntToPtr(
        IRB.CreateAnd(IRB.CreatePtrToInt(BasePointer, IntPtrTy),
                      ConstantInt::get(IntPtrTy, ~uint64_t(FrameAlignment - 1))),
        StackPtrTy));
  }

  IRB.SetInsertPoint(BasePointer->getNextNode());

  if (StackGuardSlot) {
    unsigned Offset = SSL.getObjectOffset(StackGuardSlot);
    Value *Off = IRB.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8*
                               ConstantInt::get(Int32Ty, -Offset));
    Value *NewAI =
        IRB.CreateBitCast(Off, StackGuardSlot->getType(), "StackGuardSlot");

    // Replace alloc with the new location.
    StackGuardSlot->replaceAllUsesWith(NewAI);
    StackGuardSlot->eraseFromParent();
  }

  for (Argument *Arg : ByValArguments) {
    unsigned Offset = SSL.getObjectOffset(Arg);
    MaybeAlign Align(SSL.getObjectAlignment(Arg));
    Type *Ty = Arg->getType()->getPointerElementType();

    uint64_t Size = DL.getTypeStoreSize(Ty);
    if (Size == 0)
      Size = 1; // Don't create zero-sized stack objects.

    Value *Off = IRB.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8*
                               ConstantInt::get(Int32Ty, -Offset));
    Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(),
                                     Arg->getName() + ".unsafe-byval");

    // Replace alloc with the new location.
    replaceDbgDeclare(Arg, BasePointer, DIB, DIExpression::ApplyOffset,
                      -Offset);
    Arg->replaceAllUsesWith(NewArg);
    IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode());
    IRB.CreateMemCpy(Off, Align, Arg, Arg->getParamAlign(), Size);
  }

  // Allocate space for every unsafe static AllocaInst on the unsafe stack.
  for (AllocaInst *AI : StaticAllocas) {
    IRB.SetInsertPoint(AI);
    unsigned Offset = SSL.getObjectOffset(AI);

    replaceDbgDeclare(AI, BasePointer, DIB, DIExpression::ApplyOffset, -Offset);
    replaceDbgValueForAlloca(AI, BasePointer, DIB, -Offset);

    // Replace uses of the alloca with the new location.
    // Insert address calculation close to each use to work around PR27844.
    std::string Name = std::string(AI->getName()) + ".unsafe";
    while (!AI->use_empty()) {
      Use &U = *AI->use_begin();
      Instruction *User = cast<Instruction>(U.getUser());

      Instruction *InsertBefore;
      if (auto *PHI = dyn_cast<PHINode>(User))
        InsertBefore = PHI->getIncomingBlock(U)->getTerminator();
      else
        InsertBefore = User;

      IRBuilder<> IRBUser(InsertBefore);
      Value *Off = IRBUser.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8*
                                     ConstantInt::get(Int32Ty, -Offset));
      Value *Replacement = IRBUser.CreateBitCast(Off, AI->getType(), Name);

      if (auto *PHI = dyn_cast<PHINode>(User))
        // PHI nodes may have multiple incoming edges from the same BB (why??),
        // all must be updated at once with the same incoming value.
        PHI->setIncomingValueForBlock(PHI->getIncomingBlock(U), Replacement);
      else
        U.set(Replacement);
    }

    AI->eraseFromParent();
  }

  // Re-align BasePointer so that our callees would see it aligned as
  // expected.
  // FIXME: no need to update BasePointer in leaf functions.
  unsigned FrameSize = alignTo(SSL.getFrameSize(), StackAlignment);

  // Update shadow stack pointer in the function epilogue.
  IRB.SetInsertPoint(BasePointer->getNextNode());

  Value *StaticTop =
      IRB.CreateGEP(Int8Ty, BasePointer, ConstantInt::get(Int32Ty, -FrameSize),
                    "unsafe_stack_static_top");
  IRB.CreateStore(StaticTop, UnsafeStackPtr);
  return StaticTop;
}

void SafeStack::moveDynamicAllocasToUnsafeStack(
    Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop,
    ArrayRef<AllocaInst *> DynamicAllocas) {
  DIBuilder DIB(*F.getParent());

  for (AllocaInst *AI : DynamicAllocas) {
    IRBuilder<> IRB(AI);

    // Compute the new SP value (after AI).
    Value *ArraySize = AI->getArraySize();
    if (ArraySize->getType() != IntPtrTy)
      ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false);

    Type *Ty = AI->getAllocatedType();
    uint64_t TySize = DL.getTypeAllocSize(Ty);
    Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize));

    Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(StackPtrTy, UnsafeStackPtr),
                                   IntPtrTy);
    SP = IRB.CreateSub(SP, Size);

    // Align the SP value to satisfy the AllocaInst, type and stack alignments.
    unsigned Align = std::max(
        std::max((unsigned)DL.getPrefTypeAlignment(Ty), AI->getAlignment()),
        (unsigned)StackAlignment);

    assert(isPowerOf2_32(Align));
    Value *NewTop = IRB.CreateIntToPtr(
        IRB.CreateAnd(SP, ConstantInt::get(IntPtrTy, ~uint64_t(Align - 1))),
        StackPtrTy);

    // Save the stack pointer.
    IRB.CreateStore(NewTop, UnsafeStackPtr);
    if (DynamicTop)
      IRB.CreateStore(NewTop, DynamicTop);

    Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType());
    if (AI->hasName() && isa<Instruction>(NewAI))
      NewAI->takeName(AI);

    replaceDbgDeclare(AI, NewAI, DIB, DIExpression::ApplyOffset, 0);
    AI->replaceAllUsesWith(NewAI);
    AI->eraseFromParent();
  }

  if (!DynamicAllocas.empty()) {
    // Now go through the instructions again, replacing stacksave/stackrestore.
    for (inst_iterator It = inst_begin(&F), Ie = inst_end(&F); It != Ie;) {
      Instruction *I = &*(It++);
      auto II = dyn_cast<IntrinsicInst>(I);
      if (!II)
        continue;

      if (II->getIntrinsicID() == Intrinsic::stacksave) {
        IRBuilder<> IRB(II);
        Instruction *LI = IRB.CreateLoad(StackPtrTy, UnsafeStackPtr);
        LI->takeName(II);
        II->replaceAllUsesWith(LI);
        II->eraseFromParent();
      } else if (II->getIntrinsicID() == Intrinsic::stackrestore) {
        IRBuilder<> IRB(II);
        Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr);
        SI->takeName(II);
        assert(II->use_empty());
        II->eraseFromParent();
      }
    }
  }
}

bool SafeStack::ShouldInlinePointerAddress(CallInst &CI) {
  Function *Callee = CI.getCalledFunction();
  if (CI.hasFnAttr(Attribute::AlwaysInline) &&
      isInlineViable(*Callee).isSuccess())
    return true;
  if (Callee->isInterposable() || Callee->hasFnAttribute(Attribute::NoInline) ||
      CI.isNoInline())
    return false;
  return true;
}

void SafeStack::TryInlinePointerAddress() {
  auto *CI = dyn_cast<CallInst>(UnsafeStackPtr);
  if (!CI)
    return;

  if(F.hasOptNone())
    return;

  Function *Callee = CI->getCalledFunction();
  if (!Callee || Callee->isDeclaration())
    return;

  if (!ShouldInlinePointerAddress(*CI))
    return;

  InlineFunctionInfo IFI;
  InlineFunction(*CI, IFI);
}

bool SafeStack::run() {
  assert(F.hasFnAttribute(Attribute::SafeStack) &&
         "Can't run SafeStack on a function without the attribute");
  assert(!F.isDeclaration() && "Can't run SafeStack on a function declaration");

  ++NumFunctions;

  SmallVector<AllocaInst *, 16> StaticAllocas;
  SmallVector<AllocaInst *, 4> DynamicAllocas;
  SmallVector<Argument *, 4> ByValArguments;
  SmallVector<ReturnInst *, 4> Returns;

  // Collect all points where stack gets unwound and needs to be restored
  // This is only necessary because the runtime (setjmp and unwind code) is
  // not aware of the unsafe stack and won't unwind/restore it properly.
  // To work around this problem without changing the runtime, we insert
  // instrumentation to restore the unsafe stack pointer when necessary.
  SmallVector<Instruction *, 4> StackRestorePoints;

  // Find all static and dynamic alloca instructions that must be moved to the
  // unsafe stack, all return instructions and stack restore points.
  findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns,
            StackRestorePoints);

  if (StaticAllocas.empty() && DynamicAllocas.empty() &&
      ByValArguments.empty() && StackRestorePoints.empty())
    return false; // Nothing to do in this function.

  if (!StaticAllocas.empty() || !DynamicAllocas.empty() ||
      !ByValArguments.empty())
    ++NumUnsafeStackFunctions; // This function has the unsafe stack.

  if (!StackRestorePoints.empty())
    ++NumUnsafeStackRestorePointsFunctions;

  IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt());
  // Calls must always have a debug location, or else inlining breaks. So
  // we explicitly set a artificial debug location here.
  if (DISubprogram *SP = F.getSubprogram())
    IRB.SetCurrentDebugLocation(DebugLoc::get(SP->getScopeLine(), 0, SP));
  if (SafeStackUsePointerAddress) {
    FunctionCallee Fn = F.getParent()->getOrInsertFunction(
        "__safestack_pointer_address", StackPtrTy->getPointerTo(0));
    UnsafeStackPtr = IRB.CreateCall(Fn);
  } else {
    UnsafeStackPtr = TL.getSafeStackPointerLocation(IRB);
  }

  // Load the current stack pointer (we'll also use it as a base pointer).
  // FIXME: use a dedicated register for it ?
  Instruction *BasePointer =
      IRB.CreateLoad(StackPtrTy, UnsafeStackPtr, false, "unsafe_stack_ptr");
  assert(BasePointer->getType() == StackPtrTy);

  AllocaInst *StackGuardSlot = nullptr;
  // FIXME: implement weaker forms of stack protector.
  if (F.hasFnAttribute(Attribute::StackProtect) ||
      F.hasFnAttribute(Attribute::StackProtectStrong) ||
      F.hasFnAttribute(Attribute::StackProtectReq)) {
    Value *StackGuard = getStackGuard(IRB, F);
    StackGuardSlot = IRB.CreateAlloca(StackPtrTy, nullptr);
    IRB.CreateStore(StackGuard, StackGuardSlot);

    for (ReturnInst *RI : Returns) {
      IRBuilder<> IRBRet(RI);
      checkStackGuard(IRBRet, F, *RI, StackGuardSlot, StackGuard);
    }
  }

  // The top of the unsafe stack after all unsafe static allocas are
  // allocated.
  Value *StaticTop =
      moveStaticAllocasToUnsafeStack(IRB, F, StaticAllocas, ByValArguments,
                                     Returns, BasePointer, StackGuardSlot);

  // Safe stack object that stores the current unsafe stack top. It is updated
  // as unsafe dynamic (non-constant-sized) allocas are allocated and freed.
  // This is only needed if we need to restore stack pointer after longjmp
  // or exceptions, and we have dynamic allocations.
  // FIXME: a better alternative might be to store the unsafe stack pointer
  // before setjmp / invoke instructions.
  AllocaInst *DynamicTop = createStackRestorePoints(
      IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty());

  // Handle dynamic allocas.
  moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop,
                                  DynamicAllocas);

  // Restore the unsafe stack pointer before each return.
  for (ReturnInst *RI : Returns) {
    IRB.SetInsertPoint(RI);
    IRB.CreateStore(BasePointer, UnsafeStackPtr);
  }

  TryInlinePointerAddress();

  LLVM_DEBUG(dbgs() << "[SafeStack]     safestack applied\n");
  return true;
}

class SafeStackLegacyPass : public FunctionPass {
  const TargetMachine *TM = nullptr;

public:
  static char ID; // Pass identification, replacement for typeid..

  SafeStackLegacyPass() : FunctionPass(ID) {
    initializeSafeStackLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetPassConfig>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<AssumptionCacheTracker>();
  }

  bool runOnFunction(Function &F) override {
    LLVM_DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n");

    if (!F.hasFnAttribute(Attribute::SafeStack)) {
      LLVM_DEBUG(dbgs() << "[SafeStack]     safestack is not requested"
                           " for this function\n");
      return false;
    }

    if (F.isDeclaration()) {
      LLVM_DEBUG(dbgs() << "[SafeStack]     function definition"
                           " is not available\n");
      return false;
    }

    TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
    auto *TL = TM->getSubtargetImpl(F)->getTargetLowering();
    if (!TL)
      report_fatal_error("TargetLowering instance is required");

    auto *DL = &F.getParent()->getDataLayout();
    auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
    auto &ACT = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);

    // Compute DT and LI only for functions that have the attribute.
    // This is only useful because the legacy pass manager doesn't let us
    // compute analyzes lazily.
    // In the backend pipeline, nothing preserves DT before SafeStack, so we
    // would otherwise always compute it wastefully, even if there is no
    // function with the safestack attribute.
    DominatorTree DT(F);
    LoopInfo LI(DT);

    ScalarEvolution SE(F, TLI, ACT, DT, LI);

    return SafeStack(F, *TL, *DL, SE).run();
  }
};

} // end anonymous namespace

char SafeStackLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(SafeStackLegacyPass, DEBUG_TYPE,
                      "Safe Stack instrumentation pass", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(SafeStackLegacyPass, DEBUG_TYPE,
                    "Safe Stack instrumentation pass", false, false)

FunctionPass *llvm::createSafeStackPass() { return new SafeStackLegacyPass(); }