Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
//===-- DWARFExpression.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
#include "llvm/DebugInfo/DWARF/DWARFUnit.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Format.h"
#include <cassert>
#include <cstdint>
#include <vector>

using namespace llvm;
using namespace dwarf;

namespace llvm {

typedef std::vector<DWARFExpression::Operation::Description> DescVector;

static DescVector getDescriptions() {
  DescVector Descriptions;
  typedef DWARFExpression::Operation Op;
  typedef Op::Description Desc;

  Descriptions.resize(0xff);
  Descriptions[DW_OP_addr] = Desc(Op::Dwarf2, Op::SizeAddr);
  Descriptions[DW_OP_deref] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_const1u] = Desc(Op::Dwarf2, Op::Size1);
  Descriptions[DW_OP_const1s] = Desc(Op::Dwarf2, Op::SignedSize1);
  Descriptions[DW_OP_const2u] = Desc(Op::Dwarf2, Op::Size2);
  Descriptions[DW_OP_const2s] = Desc(Op::Dwarf2, Op::SignedSize2);
  Descriptions[DW_OP_const4u] = Desc(Op::Dwarf2, Op::Size4);
  Descriptions[DW_OP_const4s] = Desc(Op::Dwarf2, Op::SignedSize4);
  Descriptions[DW_OP_const8u] = Desc(Op::Dwarf2, Op::Size8);
  Descriptions[DW_OP_const8s] = Desc(Op::Dwarf2, Op::SignedSize8);
  Descriptions[DW_OP_constu] = Desc(Op::Dwarf2, Op::SizeLEB);
  Descriptions[DW_OP_consts] = Desc(Op::Dwarf2, Op::SignedSizeLEB);
  Descriptions[DW_OP_dup] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_drop] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_over] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_pick] = Desc(Op::Dwarf2, Op::Size1);
  Descriptions[DW_OP_swap] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_rot] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_xderef] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_abs] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_and] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_div] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_minus] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_mod] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_mul] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_neg] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_not] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_or] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_plus] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_plus_uconst] = Desc(Op::Dwarf2, Op::SizeLEB);
  Descriptions[DW_OP_shl] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_shr] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_shra] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_xor] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_skip] = Desc(Op::Dwarf2, Op::SignedSize2);
  Descriptions[DW_OP_bra] = Desc(Op::Dwarf2, Op::SignedSize2);
  Descriptions[DW_OP_eq] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_ge] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_gt] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_le] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_lt] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_ne] = Desc(Op::Dwarf2);
  for (uint16_t LA = DW_OP_lit0; LA <= DW_OP_lit31; ++LA)
    Descriptions[LA] = Desc(Op::Dwarf2);
  for (uint16_t LA = DW_OP_reg0; LA <= DW_OP_reg31; ++LA)
    Descriptions[LA] = Desc(Op::Dwarf2);
  for (uint16_t LA = DW_OP_breg0; LA <= DW_OP_breg31; ++LA)
    Descriptions[LA] = Desc(Op::Dwarf2, Op::SignedSizeLEB);
  Descriptions[DW_OP_regx] = Desc(Op::Dwarf2, Op::SizeLEB);
  Descriptions[DW_OP_fbreg] = Desc(Op::Dwarf2, Op::SignedSizeLEB);
  Descriptions[DW_OP_bregx] = Desc(Op::Dwarf2, Op::SizeLEB, Op::SignedSizeLEB);
  Descriptions[DW_OP_piece] = Desc(Op::Dwarf2, Op::SizeLEB);
  Descriptions[DW_OP_deref_size] = Desc(Op::Dwarf2, Op::Size1);
  Descriptions[DW_OP_xderef_size] = Desc(Op::Dwarf2, Op::Size1);
  Descriptions[DW_OP_nop] = Desc(Op::Dwarf2);
  Descriptions[DW_OP_push_object_address] = Desc(Op::Dwarf3);
  Descriptions[DW_OP_call2] = Desc(Op::Dwarf3, Op::Size2);
  Descriptions[DW_OP_call4] = Desc(Op::Dwarf3, Op::Size4);
  Descriptions[DW_OP_call_ref] = Desc(Op::Dwarf3, Op::SizeRefAddr);
  Descriptions[DW_OP_form_tls_address] = Desc(Op::Dwarf3);
  Descriptions[DW_OP_call_frame_cfa] = Desc(Op::Dwarf3);
  Descriptions[DW_OP_bit_piece] = Desc(Op::Dwarf3, Op::SizeLEB, Op::SizeLEB);
  Descriptions[DW_OP_implicit_value] =
      Desc(Op::Dwarf3, Op::SizeLEB, Op::SizeBlock);
  Descriptions[DW_OP_stack_value] = Desc(Op::Dwarf3);
  Descriptions[DW_OP_WASM_location] =
      Desc(Op::Dwarf4, Op::SizeLEB, Op::WasmLocationArg);
  Descriptions[DW_OP_GNU_push_tls_address] = Desc(Op::Dwarf3);
  Descriptions[DW_OP_addrx] = Desc(Op::Dwarf4, Op::SizeLEB);
  Descriptions[DW_OP_GNU_addr_index] = Desc(Op::Dwarf4, Op::SizeLEB);
  Descriptions[DW_OP_GNU_const_index] = Desc(Op::Dwarf4, Op::SizeLEB);
  Descriptions[DW_OP_GNU_entry_value] = Desc(Op::Dwarf4, Op::SizeLEB);

  Descriptions[DW_OP_convert] = Desc(Op::Dwarf5, Op::BaseTypeRef);
  Descriptions[DW_OP_entry_value] = Desc(Op::Dwarf5, Op::SizeLEB);
  Descriptions[DW_OP_regval_type] =
      Desc(Op::Dwarf5, Op::SizeLEB, Op::BaseTypeRef);

  return Descriptions;
}

static DWARFExpression::Operation::Description getOpDesc(unsigned OpCode) {
  // FIXME: Make this constexpr once all compilers are smart enough to do it.
  static DescVector Descriptions = getDescriptions();
  // Handle possible corrupted or unsupported operation.
  if (OpCode >= Descriptions.size())
    return {};
  return Descriptions[OpCode];
}

bool DWARFExpression::Operation::extract(DataExtractor Data,
                                         uint8_t AddressSize, uint64_t Offset,
                                         Optional<DwarfFormat> Format) {
  EndOffset = Offset;
  Opcode = Data.getU8(&Offset);

  Desc = getOpDesc(Opcode);
  if (Desc.Version == Operation::DwarfNA)
    return false;

  for (unsigned Operand = 0; Operand < 2; ++Operand) {
    unsigned Size = Desc.Op[Operand];
    unsigned Signed = Size & Operation::SignBit;

    if (Size == Operation::SizeNA)
      break;

    switch (Size & ~Operation::SignBit) {
    case Operation::Size1:
      Operands[Operand] = Data.getU8(&Offset);
      if (Signed)
        Operands[Operand] = (int8_t)Operands[Operand];
      break;
    case Operation::Size2:
      Operands[Operand] = Data.getU16(&Offset);
      if (Signed)
        Operands[Operand] = (int16_t)Operands[Operand];
      break;
    case Operation::Size4:
      Operands[Operand] = Data.getU32(&Offset);
      if (Signed)
        Operands[Operand] = (int32_t)Operands[Operand];
      break;
    case Operation::Size8:
      Operands[Operand] = Data.getU64(&Offset);
      break;
    case Operation::SizeAddr:
      Operands[Operand] = Data.getUnsigned(&Offset, AddressSize);
      break;
    case Operation::SizeRefAddr:
      if (!Format)
        return false;
      Operands[Operand] =
          Data.getUnsigned(&Offset, dwarf::getDwarfOffsetByteSize(*Format));
      break;
    case Operation::SizeLEB:
      if (Signed)
        Operands[Operand] = Data.getSLEB128(&Offset);
      else
        Operands[Operand] = Data.getULEB128(&Offset);
      break;
    case Operation::BaseTypeRef:
      Operands[Operand] = Data.getULEB128(&Offset);
      break;
    case Operation::WasmLocationArg:
      assert(Operand == 1);
      switch (Operands[0]) {
      case 0: case 1: case 2:
        Operands[Operand] = Data.getULEB128(&Offset);
        break;
      case 3: // global as uint32
         Operands[Operand] = Data.getU32(&Offset);
         break;
      default:
        return false; // Unknown Wasm location
      }
      break;
    case Operation::SizeBlock:
      // We need a size, so this cannot be the first operand
      if (Operand == 0)
        return false;
      // Store the offset of the block as the value.
      Operands[Operand] = Offset;
      Offset += Operands[Operand - 1];
      break;
    default:
      llvm_unreachable("Unknown DWARFExpression Op size");
    }

    OperandEndOffsets[Operand] = Offset;
  }

  EndOffset = Offset;
  return true;
}

static void prettyPrintBaseTypeRef(DWARFUnit *U, raw_ostream &OS,
                                   uint64_t Operands[2], unsigned Operand) {
  assert(Operand < 2 && "operand out of bounds");
  auto Die = U->getDIEForOffset(U->getOffset() + Operands[Operand]);
  if (Die && Die.getTag() == dwarf::DW_TAG_base_type) {
    OS << format(" (0x%08" PRIx64 ")", U->getOffset() + Operands[Operand]);
    if (auto Name = Die.find(dwarf::DW_AT_name))
      OS << " \"" << Name->getAsCString() << "\"";
  } else {
    OS << format(" <invalid base_type ref: 0x%" PRIx64 ">",
                 Operands[Operand]);
  }
}

static bool prettyPrintRegisterOp(DWARFUnit *U, raw_ostream &OS, uint8_t Opcode,
                                  uint64_t Operands[2],
                                  const MCRegisterInfo *MRI, bool isEH) {
  if (!MRI)
    return false;

  uint64_t DwarfRegNum;
  unsigned OpNum = 0;

  if (Opcode == DW_OP_bregx || Opcode == DW_OP_regx ||
      Opcode == DW_OP_regval_type)
    DwarfRegNum = Operands[OpNum++];
  else if (Opcode >= DW_OP_breg0 && Opcode < DW_OP_bregx)
    DwarfRegNum = Opcode - DW_OP_breg0;
  else
    DwarfRegNum = Opcode - DW_OP_reg0;

  if (Optional<unsigned> LLVMRegNum = MRI->getLLVMRegNum(DwarfRegNum, isEH)) {
    if (const char *RegName = MRI->getName(*LLVMRegNum)) {
      if ((Opcode >= DW_OP_breg0 && Opcode <= DW_OP_breg31) ||
          Opcode == DW_OP_bregx)
        OS << format(" %s%+" PRId64, RegName, Operands[OpNum]);
      else
        OS << ' ' << RegName;

      if (Opcode == DW_OP_regval_type)
        prettyPrintBaseTypeRef(U, OS, Operands, 1);
      return true;
    }
  }

  return false;
}

bool DWARFExpression::Operation::print(raw_ostream &OS,
                                       const DWARFExpression *Expr,
                                       const MCRegisterInfo *RegInfo,
                                       DWARFUnit *U,
                                       bool isEH) {
  if (Error) {
    OS << "<decoding error>";
    return false;
  }

  StringRef Name = OperationEncodingString(Opcode);
  assert(!Name.empty() && "DW_OP has no name!");
  OS << Name;

  if ((Opcode >= DW_OP_breg0 && Opcode <= DW_OP_breg31) ||
      (Opcode >= DW_OP_reg0 && Opcode <= DW_OP_reg31) ||
      Opcode == DW_OP_bregx || Opcode == DW_OP_regx ||
      Opcode == DW_OP_regval_type)
    if (prettyPrintRegisterOp(U, OS, Opcode, Operands, RegInfo, isEH))
      return true;

  for (unsigned Operand = 0; Operand < 2; ++Operand) {
    unsigned Size = Desc.Op[Operand];
    unsigned Signed = Size & Operation::SignBit;

    if (Size == Operation::SizeNA)
      break;

    if (Size == Operation::BaseTypeRef && U) {
      // For DW_OP_convert the operand may be 0 to indicate that conversion to
      // the generic type should be done. The same holds for DW_OP_reinterpret,
      // which is currently not supported.
      if (Opcode == DW_OP_convert && Operands[Operand] == 0)
        OS << " 0x0";
      else
        prettyPrintBaseTypeRef(U, OS, Operands, Operand);
    } else if (Size == Operation::WasmLocationArg) {
      assert(Operand == 1);
      switch (Operands[0]) {
      case 0: case 1: case 2:
      case 3: // global as uint32
        OS << format(" 0x%" PRIx64, Operands[Operand]);
        break;
      default: assert(false);
      }
    } else if (Size == Operation::SizeBlock) {
      uint64_t Offset = Operands[Operand];
      for (unsigned i = 0; i < Operands[Operand - 1]; ++i)
        OS << format(" 0x%02x", Expr->Data.getU8(&Offset));
    } else {
      if (Signed)
        OS << format(" %+" PRId64, (int64_t)Operands[Operand]);
      else if (Opcode != DW_OP_entry_value &&
               Opcode != DW_OP_GNU_entry_value)
        OS << format(" 0x%" PRIx64, Operands[Operand]);
    }
  }
  return true;
}

void DWARFExpression::print(raw_ostream &OS, const MCRegisterInfo *RegInfo,
                            DWARFUnit *U, bool IsEH) const {
  uint32_t EntryValExprSize = 0;
  for (auto &Op : *this) {
    if (!Op.print(OS, this, RegInfo, U, IsEH)) {
      uint64_t FailOffset = Op.getEndOffset();
      while (FailOffset < Data.getData().size())
        OS << format(" %02x", Data.getU8(&FailOffset));
      return;
    }

    if (Op.getCode() == DW_OP_entry_value ||
        Op.getCode() == DW_OP_GNU_entry_value) {
      OS << "(";
      EntryValExprSize = Op.getRawOperand(0);
      continue;
    }

    if (EntryValExprSize) {
      EntryValExprSize--;
      if (EntryValExprSize == 0)
        OS << ")";
    }

    if (Op.getEndOffset() < Data.getData().size())
      OS << ", ";
  }
}

bool DWARFExpression::Operation::verify(DWARFUnit *U) {

  for (unsigned Operand = 0; Operand < 2; ++Operand) {
    unsigned Size = Desc.Op[Operand];

    if (Size == Operation::SizeNA)
      break;

    if (Size == Operation::BaseTypeRef) {
      // For DW_OP_convert the operand may be 0 to indicate that conversion to
      // the generic type should be done, so don't look up a base type in that
      // case. The same holds for DW_OP_reinterpret, which is currently not
      // supported.
      if (Opcode == DW_OP_convert && Operands[Operand] == 0)
        continue;
      auto Die = U->getDIEForOffset(U->getOffset() + Operands[Operand]);
      if (!Die || Die.getTag() != dwarf::DW_TAG_base_type) {
        Error = true;
        return false;
      }
    }
  }

  return true;
}

bool DWARFExpression::verify(DWARFUnit *U) {
  for (auto &Op : *this)
    if (!Op.verify(U))
      return false;

  return true;
}

/// A user-facing string representation of a DWARF expression. This might be an
/// Address expression, in which case it will be implicitly dereferenced, or a
/// Value expression.
struct PrintedExpr {
  enum ExprKind {
    Address,
    Value,
  };
  ExprKind Kind;
  SmallString<16> String;

  PrintedExpr(ExprKind K = Address) : Kind(K) {}
};

static bool printCompactDWARFExpr(raw_ostream &OS, DWARFExpression::iterator I,
                                  const DWARFExpression::iterator E,
                                  const MCRegisterInfo &MRI) {
  SmallVector<PrintedExpr, 4> Stack;

  while (I != E) {
    DWARFExpression::Operation &Op = *I;
    uint8_t Opcode = Op.getCode();
    switch (Opcode) {
    case dwarf::DW_OP_regx: {
      // DW_OP_regx: A register, with the register num given as an operand.
      // Printed as the plain register name.
      uint64_t DwarfRegNum = Op.getRawOperand(0);
      Optional<unsigned> LLVMRegNum = MRI.getLLVMRegNum(DwarfRegNum, false);
      if (!LLVMRegNum) {
        OS << "<unknown register " << DwarfRegNum << ">";
        return false;
      }
      raw_svector_ostream S(Stack.emplace_back(PrintedExpr::Value).String);
      S << MRI.getName(*LLVMRegNum);
      break;
    }
    case dwarf::DW_OP_bregx: {
      int DwarfRegNum = Op.getRawOperand(0);
      int64_t Offset = Op.getRawOperand(1);
      Optional<unsigned> LLVMRegNum = MRI.getLLVMRegNum(DwarfRegNum, false);
      if (!LLVMRegNum) {
        OS << "<unknown register " << DwarfRegNum << ">";
        return false;
      }
      raw_svector_ostream S(Stack.emplace_back().String);
      S << MRI.getName(*LLVMRegNum);
      if (Offset)
        S << format("%+" PRId64, Offset);
      break;
    }
    case dwarf::DW_OP_entry_value:
    case dwarf::DW_OP_GNU_entry_value: {
      // DW_OP_entry_value contains a sub-expression which must be rendered
      // separately.
      uint64_t SubExprLength = Op.getRawOperand(0);
      DWARFExpression::iterator SubExprEnd = I.skipBytes(SubExprLength);
      ++I;
      raw_svector_ostream S(Stack.emplace_back().String);
      S << "entry(";
      printCompactDWARFExpr(S, I, SubExprEnd, MRI);
      S << ")";
      I = SubExprEnd;
      continue;
    }
    case dwarf::DW_OP_stack_value: {
      // The top stack entry should be treated as the actual value of tne
      // variable, rather than the address of the variable in memory.
      assert(!Stack.empty());
      Stack.back().Kind = PrintedExpr::Value;
      break;
    }
    default:
      if (Opcode >= dwarf::DW_OP_reg0 && Opcode <= dwarf::DW_OP_reg31) {
        // DW_OP_reg<N>: A register, with the register num implied by the
        // opcode. Printed as the plain register name.
        uint64_t DwarfRegNum = Opcode - dwarf::DW_OP_reg0;
        Optional<unsigned> LLVMRegNum = MRI.getLLVMRegNum(DwarfRegNum, false);
        if (!LLVMRegNum) {
          OS << "<unknown register " << DwarfRegNum << ">";
          return false;
        }
        raw_svector_ostream S(Stack.emplace_back(PrintedExpr::Value).String);
        S << MRI.getName(*LLVMRegNum);
      } else if (Opcode >= dwarf::DW_OP_breg0 &&
                 Opcode <= dwarf::DW_OP_breg31) {
        int DwarfRegNum = Opcode - dwarf::DW_OP_breg0;
        int64_t Offset = Op.getRawOperand(0);
        Optional<unsigned> LLVMRegNum = MRI.getLLVMRegNum(DwarfRegNum, false);
        if (!LLVMRegNum) {
          OS << "<unknown register " << DwarfRegNum << ">";
          return false;
        }
        raw_svector_ostream S(Stack.emplace_back().String);
        S << MRI.getName(*LLVMRegNum);
        if (Offset)
          S << format("%+" PRId64, Offset);
      } else {
        // If we hit an unknown operand, we don't know its effect on the stack,
        // so bail out on the whole expression.
        OS << "<unknown op " << dwarf::OperationEncodingString(Opcode) << " ("
           << (int)Opcode << ")>";
        return false;
      }
      break;
    }
    ++I;
  }

  assert(Stack.size() == 1 && "expected one value on stack");

  if (Stack.front().Kind == PrintedExpr::Address)
    OS << "[" << Stack.front().String << "]";
  else
    OS << Stack.front().String;

  return true;
}

bool DWARFExpression::printCompact(raw_ostream &OS, const MCRegisterInfo &MRI) {
  return printCompactDWARFExpr(OS, begin(), end(), MRI);
}

} // namespace llvm