Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
//===-- ARMRegisterInfo.td - ARM Register defs -------------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

include "ARMSystemRegister.td"

//===----------------------------------------------------------------------===//
//  Declarations that describe the ARM register file
//===----------------------------------------------------------------------===//

// Registers are identified with 4-bit ID numbers.
class ARMReg<bits<16> Enc, string n, list<Register> subregs = [],
             list<string> altNames = []> : Register<n, altNames> {
  let HWEncoding = Enc;
  let Namespace = "ARM";
  let SubRegs = subregs;
  // All bits of ARM registers with sub-registers are covered by sub-registers.
  let CoveredBySubRegs = 1;
}

class ARMFReg<bits<16> Enc, string n> : Register<n> {
  let HWEncoding = Enc;
  let Namespace = "ARM";
}

let Namespace = "ARM",
    FallbackRegAltNameIndex = NoRegAltName in {
  def RegNamesRaw : RegAltNameIndex;
}

// Subregister indices.
let Namespace = "ARM" in {
def qqsub_0 : SubRegIndex<256>;
def qqsub_1 : SubRegIndex<256, 256>;

// Note: Code depends on these having consecutive numbers.
def qsub_0 : SubRegIndex<128>;
def qsub_1 : SubRegIndex<128, 128>;
def qsub_2 : ComposedSubRegIndex<qqsub_1, qsub_0>;
def qsub_3 : ComposedSubRegIndex<qqsub_1, qsub_1>;

def dsub_0 : SubRegIndex<64>;
def dsub_1 : SubRegIndex<64, 64>;
def dsub_2 : ComposedSubRegIndex<qsub_1, dsub_0>;
def dsub_3 : ComposedSubRegIndex<qsub_1, dsub_1>;
def dsub_4 : ComposedSubRegIndex<qsub_2, dsub_0>;
def dsub_5 : ComposedSubRegIndex<qsub_2, dsub_1>;
def dsub_6 : ComposedSubRegIndex<qsub_3, dsub_0>;
def dsub_7 : ComposedSubRegIndex<qsub_3, dsub_1>;

def ssub_0  : SubRegIndex<32>;
def ssub_1  : SubRegIndex<32, 32>;
def ssub_2  : ComposedSubRegIndex<dsub_1, ssub_0>;
def ssub_3  : ComposedSubRegIndex<dsub_1, ssub_1>;
def ssub_4  : ComposedSubRegIndex<dsub_2, ssub_0>;
def ssub_5  : ComposedSubRegIndex<dsub_2, ssub_1>;
def ssub_6  : ComposedSubRegIndex<dsub_3, ssub_0>;
def ssub_7  : ComposedSubRegIndex<dsub_3, ssub_1>;
def ssub_8  : ComposedSubRegIndex<dsub_4, ssub_0>;
def ssub_9  : ComposedSubRegIndex<dsub_4, ssub_1>;
def ssub_10 : ComposedSubRegIndex<dsub_5, ssub_0>;
def ssub_11 : ComposedSubRegIndex<dsub_5, ssub_1>;
def ssub_12 : ComposedSubRegIndex<dsub_6, ssub_0>;
def ssub_13 : ComposedSubRegIndex<dsub_6, ssub_1>;

def gsub_0 : SubRegIndex<32>;
def gsub_1 : SubRegIndex<32, 32>;
// Let TableGen synthesize the remaining 12 ssub_* indices.
// We don't need to name them.
}

// Integer registers
def R0  : ARMReg< 0, "r0">,  DwarfRegNum<[0]>;
def R1  : ARMReg< 1, "r1">,  DwarfRegNum<[1]>;
def R2  : ARMReg< 2, "r2">,  DwarfRegNum<[2]>;
def R3  : ARMReg< 3, "r3">,  DwarfRegNum<[3]>;
def R4  : ARMReg< 4, "r4">,  DwarfRegNum<[4]>;
def R5  : ARMReg< 5, "r5">,  DwarfRegNum<[5]>;
def R6  : ARMReg< 6, "r6">,  DwarfRegNum<[6]>;
def R7  : ARMReg< 7, "r7">,  DwarfRegNum<[7]>;
// These require 32-bit instructions.
let CostPerUse = 1 in {
def R8  : ARMReg< 8, "r8">,  DwarfRegNum<[8]>;
def R9  : ARMReg< 9, "r9">,  DwarfRegNum<[9]>;
def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>;
def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>;
def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>;
let RegAltNameIndices = [RegNamesRaw] in {
def SP  : ARMReg<13, "sp", [], ["r13"]>,  DwarfRegNum<[13]>;
def LR  : ARMReg<14, "lr", [], ["r14"]>,  DwarfRegNum<[14]>;
def PC  : ARMReg<15, "pc", [], ["r15"]>,  DwarfRegNum<[15]>;
}
}

// Float registers
def S0  : ARMFReg< 0, "s0">;  def S1  : ARMFReg< 1, "s1">;
def S2  : ARMFReg< 2, "s2">;  def S3  : ARMFReg< 3, "s3">;
def S4  : ARMFReg< 4, "s4">;  def S5  : ARMFReg< 5, "s5">;
def S6  : ARMFReg< 6, "s6">;  def S7  : ARMFReg< 7, "s7">;
def S8  : ARMFReg< 8, "s8">;  def S9  : ARMFReg< 9, "s9">;
def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">;
def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">;
def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">;
def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">;
def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">;
def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">;
def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">;
def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">;
def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">;
def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">;
def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">;

// Aliases of the F* registers used to hold 64-bit fp values (doubles)
let SubRegIndices = [ssub_0, ssub_1] in {
def D0  : ARMReg< 0,  "d0", [S0,   S1]>, DwarfRegNum<[256]>;
def D1  : ARMReg< 1,  "d1", [S2,   S3]>, DwarfRegNum<[257]>;
def D2  : ARMReg< 2,  "d2", [S4,   S5]>, DwarfRegNum<[258]>;
def D3  : ARMReg< 3,  "d3", [S6,   S7]>, DwarfRegNum<[259]>;
def D4  : ARMReg< 4,  "d4", [S8,   S9]>, DwarfRegNum<[260]>;
def D5  : ARMReg< 5,  "d5", [S10, S11]>, DwarfRegNum<[261]>;
def D6  : ARMReg< 6,  "d6", [S12, S13]>, DwarfRegNum<[262]>;
def D7  : ARMReg< 7,  "d7", [S14, S15]>, DwarfRegNum<[263]>;
def D8  : ARMReg< 8,  "d8", [S16, S17]>, DwarfRegNum<[264]>;
def D9  : ARMReg< 9,  "d9", [S18, S19]>, DwarfRegNum<[265]>;
def D10 : ARMReg<10, "d10", [S20, S21]>, DwarfRegNum<[266]>;
def D11 : ARMReg<11, "d11", [S22, S23]>, DwarfRegNum<[267]>;
def D12 : ARMReg<12, "d12", [S24, S25]>, DwarfRegNum<[268]>;
def D13 : ARMReg<13, "d13", [S26, S27]>, DwarfRegNum<[269]>;
def D14 : ARMReg<14, "d14", [S28, S29]>, DwarfRegNum<[270]>;
def D15 : ARMReg<15, "d15", [S30, S31]>, DwarfRegNum<[271]>;
}

// VFP3 defines 16 additional double registers
def D16 : ARMFReg<16, "d16">, DwarfRegNum<[272]>;
def D17 : ARMFReg<17, "d17">, DwarfRegNum<[273]>;
def D18 : ARMFReg<18, "d18">, DwarfRegNum<[274]>;
def D19 : ARMFReg<19, "d19">, DwarfRegNum<[275]>;
def D20 : ARMFReg<20, "d20">, DwarfRegNum<[276]>;
def D21 : ARMFReg<21, "d21">, DwarfRegNum<[277]>;
def D22 : ARMFReg<22, "d22">, DwarfRegNum<[278]>;
def D23 : ARMFReg<23, "d23">, DwarfRegNum<[279]>;
def D24 : ARMFReg<24, "d24">, DwarfRegNum<[280]>;
def D25 : ARMFReg<25, "d25">, DwarfRegNum<[281]>;
def D26 : ARMFReg<26, "d26">, DwarfRegNum<[282]>;
def D27 : ARMFReg<27, "d27">, DwarfRegNum<[283]>;
def D28 : ARMFReg<28, "d28">, DwarfRegNum<[284]>;
def D29 : ARMFReg<29, "d29">, DwarfRegNum<[285]>;
def D30 : ARMFReg<30, "d30">, DwarfRegNum<[286]>;
def D31 : ARMFReg<31, "d31">, DwarfRegNum<[287]>;

// Advanced SIMD (NEON) defines 16 quad-word aliases
let SubRegIndices = [dsub_0, dsub_1] in {
def Q0  : ARMReg< 0,  "q0", [D0,   D1]>;
def Q1  : ARMReg< 1,  "q1", [D2,   D3]>;
def Q2  : ARMReg< 2,  "q2", [D4,   D5]>;
def Q3  : ARMReg< 3,  "q3", [D6,   D7]>;
def Q4  : ARMReg< 4,  "q4", [D8,   D9]>;
def Q5  : ARMReg< 5,  "q5", [D10, D11]>;
def Q6  : ARMReg< 6,  "q6", [D12, D13]>;
def Q7  : ARMReg< 7,  "q7", [D14, D15]>;
}
let SubRegIndices = [dsub_0, dsub_1] in {
def Q8  : ARMReg< 8,  "q8", [D16, D17]>;
def Q9  : ARMReg< 9,  "q9", [D18, D19]>;
def Q10 : ARMReg<10, "q10", [D20, D21]>;
def Q11 : ARMReg<11, "q11", [D22, D23]>;
def Q12 : ARMReg<12, "q12", [D24, D25]>;
def Q13 : ARMReg<13, "q13", [D26, D27]>;
def Q14 : ARMReg<14, "q14", [D28, D29]>;
def Q15 : ARMReg<15, "q15", [D30, D31]>;
}

// Current Program Status Register.
// We model fpscr with two registers: FPSCR models the control bits and will be
// reserved. FPSCR_NZCV models the flag bits and will be unreserved. APSR_NZCV
// models the APSR when it's accessed by some special instructions. In such cases
// it has the same encoding as PC.
def CPSR       : ARMReg<0,  "cpsr">;
def APSR       : ARMReg<15, "apsr">;
def APSR_NZCV  : ARMReg<15, "apsr_nzcv">;
def SPSR       : ARMReg<2,  "spsr">;
def FPSCR      : ARMReg<3,  "fpscr">;
def FPSCR_NZCV : ARMReg<3,  "fpscr_nzcv"> {
  let Aliases = [FPSCR];
}
def ITSTATE    : ARMReg<4, "itstate">;

// Special Registers - only available in privileged mode.
def FPSID   : ARMReg<0,  "fpsid">;
def MVFR2   : ARMReg<5,  "mvfr2">;
def MVFR1   : ARMReg<6,  "mvfr1">;
def MVFR0   : ARMReg<7,  "mvfr0">;
def FPEXC   : ARMReg<8,  "fpexc">;
def FPINST  : ARMReg<9,  "fpinst">;
def FPINST2 : ARMReg<10, "fpinst2">;
// These encodings aren't actual instruction encodings, their encoding depends
// on the instruction they are used in and for VPR 32 was chosen such that it
// always comes last in spr_reglist_with_vpr.
def VPR     : ARMReg<32, "vpr">;
def FPSCR_NZCVQC
            : ARMReg<2, "fpscr_nzcvqc">;
def P0      : ARMReg<13, "p0">;
def FPCXTNS : ARMReg<14, "fpcxtns">;
def FPCXTS  : ARMReg<15, "fpcxts">;

def ZR  : ARMReg<15, "zr">,  DwarfRegNum<[15]>;

// Register classes.
//
// pc  == Program Counter
// lr  == Link Register
// sp  == Stack Pointer
// r12 == ip (scratch)
// r7  == Frame Pointer (thumb-style backtraces)
// r9  == May be reserved as Thread Register
// r11 == Frame Pointer (arm-style backtraces)
// r10 == Stack Limit
//
def GPR : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12),
                                               SP, LR, PC)> {
  // Allocate LR as the first CSR since it is always saved anyway.
  // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't
  // know how to spill them. If we make our prologue/epilogue code smarter at
  // some point, we can go back to using the above allocation orders for the
  // Thumb1 instructions that know how to use hi regs.
  let AltOrders = [(add LR, GPR), (trunc GPR, 8),
                   (add (trunc GPR, 8), R12, LR, (shl GPR, 8))];
  let AltOrderSelect = [{
      return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF);
  }];
  let DiagnosticString = "operand must be a register in range [r0, r15]";
}

// GPRs without the PC.  Some ARM instructions do not allow the PC in
// certain operand slots, particularly as the destination.  Primarily
// useful for disassembly.
def GPRnopc : RegisterClass<"ARM", [i32], 32, (sub GPR, PC)> {
  let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8),
                   (add (trunc GPRnopc, 8), R12, LR, (shl GPRnopc, 8))];
  let AltOrderSelect = [{
      return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF);
  }];
  let DiagnosticString = "operand must be a register in range [r0, r14]";
}

// GPRs without the PC but with APSR. Some instructions allow accessing the
// APSR, while actually encoding PC in the register field. This is useful
// for assembly and disassembly only.
def GPRwithAPSR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), APSR_NZCV)> {
  let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)];
  let AltOrderSelect = [{
      return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
  }];
  let DiagnosticString = "operand must be a register in range [r0, r14] or apsr_nzcv";
}

// GPRs without the PC and SP registers but with APSR. Used by CLRM instruction.
def GPRwithAPSRnosp : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), LR, APSR)> {
  let isAllocatable = 0;
}

def GPRwithZR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), ZR)> {
  let AltOrders = [(add LR, GPRwithZR), (trunc GPRwithZR, 8)];
  let AltOrderSelect = [{
      return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
  }];
  let DiagnosticString = "operand must be a register in range [r0, r14] or zr";
}

def GPRwithZRnosp : RegisterClass<"ARM", [i32], 32, (sub GPRwithZR, SP)> {
  let AltOrders = [(add LR, GPRwithZRnosp), (trunc GPRwithZRnosp, 8)];
  let AltOrderSelect = [{
      return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
  }];
  let DiagnosticString = "operand must be a register in range [r0, r12] or r14 or zr";
}

// GPRsp - Only the SP is legal. Used by Thumb1 instructions that want the
// implied SP argument list.
// FIXME: It would be better to not use this at all and refactor the
// instructions to not have SP an an explicit argument. That makes
// frame index resolution a bit trickier, though.
def GPRsp : RegisterClass<"ARM", [i32], 32, (add SP)> {
  let DiagnosticString = "operand must be a register sp";
}

// GPRlr - Only LR is legal. Used by ARMv8.1-M Low Overhead Loop instructions
// where LR is the only legal loop counter register.
def GPRlr : RegisterClass<"ARM", [i32], 32, (add LR)>;

// restricted GPR register class. Many Thumb2 instructions allow the full
// register range for operands, but have undefined behaviours when PC
// or SP (R13 or R15) are used. The ARM ISA refers to these operands
// via the BadReg() pseudo-code description.
def rGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, SP, PC)> {
  let AltOrders = [(add LR, rGPR), (trunc rGPR, 8),
                   (add (trunc rGPR, 8), R12, LR, (shl rGPR, 8))];
  let AltOrderSelect = [{
      return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF);
  }];
  let DiagnosticType = "rGPR";
}

// GPRs without the PC and SP but with APSR_NZCV.Some instructions allow
// accessing the APSR_NZCV, while actually encoding PC in the register field.
// This is useful for assembly and disassembly only.
// Currently used by the CDE extension.
def GPRwithAPSR_NZCVnosp
  : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), LR, APSR_NZCV)> {
  let isAllocatable = 0;
  let DiagnosticString =
    "operand must be a register in the range [r0, r12], r14 or apsr_nzcv";
}

// Thumb registers are R0-R7 normally. Some instructions can still use
// the general GPR register class above (MOV, e.g.)
def tGPR : RegisterClass<"ARM", [i32], 32, (trunc GPR, 8)> {
  let DiagnosticString = "operand must be a register in range [r0, r7]";
}

// Thumb registers R0-R7 and the PC. Some instructions like TBB or THH allow
// the PC to be used as a destination operand as well.
def tGPRwithpc : RegisterClass<"ARM", [i32], 32, (add tGPR, PC)>;

// The high registers in thumb mode, R8-R15.
def hGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, tGPR)> {
  let DiagnosticString = "operand must be a register in range [r8, r15]";
}

// For tail calls, we can't use callee-saved registers, as they are restored
// to the saved value before the tail call, which would clobber a call address.
// Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of
// this class and the preceding one(!)  This is what we want.
def tcGPR : RegisterClass<"ARM", [i32], 32, (add R0, R1, R2, R3, R12)> {
  let AltOrders = [(and tcGPR, tGPR)];
  let AltOrderSelect = [{
      return MF.getSubtarget<ARMSubtarget>().isThumb1Only();
  }];
}

def tGPROdd : RegisterClass<"ARM", [i32], 32, (add R1, R3, R5, R7, R9, R11)> {
  let AltOrders = [(and tGPROdd, tGPR)];
  let AltOrderSelect = [{
      return MF.getSubtarget<ARMSubtarget>().isThumb1Only();
  }];
  let DiagnosticString =
    "operand must be an odd-numbered register in range [r1,r11]";
}

def tGPREven : RegisterClass<"ARM", [i32], 32, (add R0, R2, R4, R6, R8, R10, R12, LR)> {
  let AltOrders = [(and tGPREven, tGPR)];
  let AltOrderSelect = [{
      return MF.getSubtarget<ARMSubtarget>().isThumb1Only();
  }];
  let DiagnosticString = "operand must be an even-numbered register";
}

// Condition code registers.
def CCR : RegisterClass<"ARM", [i32], 32, (add CPSR)> {
  let CopyCost = -1;  // Don't allow copying of status registers.
  let isAllocatable = 0;
}

// MVE Condition code register.
def VCCR : RegisterClass<"ARM", [i32, v16i1, v8i1, v4i1], 32, (add VPR)> {
//  let CopyCost = -1;  // Don't allow copying of status registers.
}

// FPSCR, when the flags at the top of it are used as the input or
// output to an instruction such as MVE VADC.
def cl_FPSCR_NZCV : RegisterClass<"ARM", [i32], 32, (add FPSCR_NZCV)>;

// Scalar single precision floating point register class..
// FIXME: Allocation order changed to s0, s2, ... or s0, s4, ... as a quick hack
// to avoid partial-write dependencies on D or Q (depending on platform)
// registers (S registers are renamed as portions of D/Q registers).
def SPR : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 31)> {
  let AltOrders = [(add (decimate SPR, 2), SPR),
                   (add (decimate SPR, 4),
                        (decimate SPR, 2),
                        (decimate (rotl SPR, 1), 4),
                        (decimate (rotl SPR, 1), 2))];
  let AltOrderSelect = [{
    return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs();
  }];
  let DiagnosticString = "operand must be a register in range [s0, s31]";
}

def HPR : RegisterClass<"ARM", [f16, bf16], 32, (sequence "S%u", 0, 31)> {
  let AltOrders = [(add (decimate HPR, 2), SPR),
                   (add (decimate HPR, 4),
                        (decimate HPR, 2),
                        (decimate (rotl HPR, 1), 4),
                        (decimate (rotl HPR, 1), 2))];
  let AltOrderSelect = [{
    return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs();
  }];
  let DiagnosticString = "operand must be a register in range [s0, s31]";
}

// Subset of SPR which can be used as a source of NEON scalars for 16-bit
// operations
def SPR_8 : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 15)> {
  let DiagnosticString = "operand must be a register in range [s0, s15]";
}

// Scalar double precision floating point / generic 64-bit vector register
// class.
// ARM requires only word alignment for double. It's more performant if it
// is double-word alignment though.
def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16, v4bf16], 64,
                        (sequence "D%u", 0, 31)> {
  // Allocate non-VFP2 registers D16-D31 first, and prefer even registers on
  // Darwin platforms.
  let AltOrders = [(rotl DPR, 16),
                   (add (decimate (rotl DPR, 16), 2), (rotl DPR, 16))];
  let AltOrderSelect = [{
    return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs();
  }];
  let DiagnosticType = "DPR";
}

// Scalar single and double precision floating point and VPR register class,
// this is only used for parsing, don't use it anywhere else as the size and
// types don't match!
def FPWithVPR : RegisterClass<"ARM", [f32], 32, (add SPR, DPR, VPR)> {
    let isAllocatable = 0;
}

// Subset of DPR that are accessible with VFP2 (and so that also have
// 32-bit SPR subregs).
def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16, v4bf16], 64,
                             (trunc DPR, 16)> {
  let DiagnosticString = "operand must be a register in range [d0, d15]";
}

// Subset of DPR which can be used as a source of NEON scalars for 16-bit
// operations
def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16, v4bf16], 64,
                          (trunc DPR, 8)> {
  let DiagnosticString = "operand must be a register in range [d0, d7]";
}

// Generic 128-bit vector register class.
def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, v8f16, v8bf16], 128,
                        (sequence "Q%u", 0, 15)> {
  // Allocate non-VFP2 aliases Q8-Q15 first.
  let AltOrders = [(rotl QPR, 8), (trunc QPR, 8)];
  let AltOrderSelect = [{
    return 1 + MF.getSubtarget<ARMSubtarget>().hasMVEIntegerOps();
  }];
  let DiagnosticString = "operand must be a register in range [q0, q15]";
}

// Subset of QPR that have 32-bit SPR subregs.
def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
                             128, (trunc QPR, 8)> {
  let DiagnosticString = "operand must be a register in range [q0, q7]";
}

// Subset of QPR that have DPR_8 and SPR_8 subregs.
def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
                           128, (trunc QPR, 4)> {
  let DiagnosticString = "operand must be a register in range [q0, q3]";
}

// MVE 128-bit vector register class. This class is only really needed for
// parsing assembly, since we still have to truncate the register set in the QPR
// class anyway.
def MQPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, v8f16],
                         128, (trunc QPR, 8)>;

// Pseudo-registers representing odd-even pairs of D registers. The even-odd
// pairs are already represented by the Q registers.
// These are needed by NEON instructions requiring two consecutive D registers.
// There is no D31_D0 register as that is always an UNPREDICTABLE encoding.
def TuplesOE2D : RegisterTuples<[dsub_0, dsub_1],
                                [(decimate (shl DPR, 1), 2),
                                 (decimate (shl DPR, 2), 2)]>;

// Register class representing a pair of consecutive D registers.
// Use the Q registers for the even-odd pairs.
def DPair : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
                          128, (interleave QPR, TuplesOE2D)> {
  // Allocate starting at non-VFP2 registers D16-D31 first.
  // Prefer even-odd pairs as they are easier to copy.
  let AltOrders = [(add (rotl QPR, 8),  (rotl DPair, 16)),
                   (add (trunc QPR, 8), (trunc DPair, 16))];
  let AltOrderSelect = [{
    return 1 + MF.getSubtarget<ARMSubtarget>().hasMVEIntegerOps();
  }];
}

// Pseudo-registers representing even-odd pairs of GPRs from R1 to R13/SP.
// These are needed by instructions (e.g. ldrexd/strexd) requiring even-odd GPRs.
def Tuples2Rnosp : RegisterTuples<[gsub_0, gsub_1],
                                  [(add R0, R2, R4, R6, R8, R10),
                                   (add R1, R3, R5, R7, R9, R11)]>;

def Tuples2Rsp   : RegisterTuples<[gsub_0, gsub_1],
                                  [(add R12), (add SP)]>;

// Register class representing a pair of even-odd GPRs.
def GPRPair : RegisterClass<"ARM", [untyped], 64, (add Tuples2Rnosp, Tuples2Rsp)> {
  let Size = 64; // 2 x 32 bits, we have no predefined type of that size.
}

// Register class representing a pair of even-odd GPRs, except (R12, SP).
def GPRPairnosp : RegisterClass<"ARM", [untyped], 64, (add Tuples2Rnosp)> {
  let Size = 64; // 2 x 32 bits, we have no predefined type of that size.
}

// Pseudo-registers representing 3 consecutive D registers.
def Tuples3D : RegisterTuples<[dsub_0, dsub_1, dsub_2],
                              [(shl DPR, 0),
                               (shl DPR, 1),
                               (shl DPR, 2)]>;

// 3 consecutive D registers.
def DTriple : RegisterClass<"ARM", [untyped], 64, (add Tuples3D)> {
  let Size = 192; // 3 x 64 bits, we have no predefined type of that size.
}

// Pseudo 256-bit registers to represent pairs of Q registers. These should
// never be present in the emitted code.
// These are used for NEON load / store instructions, e.g., vld4, vst3.
def Tuples2Q : RegisterTuples<[qsub_0, qsub_1], [(shl QPR, 0), (shl QPR, 1)]>;

// Pseudo 256-bit vector register class to model pairs of Q registers
// (4 consecutive D registers).
def QQPR : RegisterClass<"ARM", [v4i64], 256, (add Tuples2Q)> {
  // Allocate non-VFP2 aliases first.
  let AltOrders = [(rotl QQPR, 8)];
  let AltOrderSelect = [{ return 1; }];
}

// Tuples of 4 D regs that isn't also a pair of Q regs.
def TuplesOE4D : RegisterTuples<[dsub_0, dsub_1, dsub_2, dsub_3],
                                [(decimate (shl DPR, 1), 2),
                                 (decimate (shl DPR, 2), 2),
                                 (decimate (shl DPR, 3), 2),
                                 (decimate (shl DPR, 4), 2)]>;

// 4 consecutive D registers.
def DQuad : RegisterClass<"ARM", [v4i64], 256,
                          (interleave Tuples2Q, TuplesOE4D)>;

// Pseudo 512-bit registers to represent four consecutive Q registers.
def Tuples2QQ : RegisterTuples<[qqsub_0, qqsub_1],
                               [(shl QQPR, 0), (shl QQPR, 2)]>;

// Pseudo 512-bit vector register class to model 4 consecutive Q registers
// (8 consecutive D registers).
def QQQQPR : RegisterClass<"ARM", [v8i64], 256, (add Tuples2QQ)> {
  // Allocate non-VFP2 aliases first.
  let AltOrders = [(rotl QQQQPR, 8)];
  let AltOrderSelect = [{ return 1; }];
}


// Pseudo-registers representing 2-spaced consecutive D registers.
def Tuples2DSpc : RegisterTuples<[dsub_0, dsub_2],
                                 [(shl DPR, 0),
                                  (shl DPR, 2)]>;

// Spaced pairs of D registers.
def DPairSpc : RegisterClass<"ARM", [v2i64], 64, (add Tuples2DSpc)>;

def Tuples3DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4],
                                 [(shl DPR, 0),
                                  (shl DPR, 2),
                                  (shl DPR, 4)]>;

// Spaced triples of D registers.
def DTripleSpc : RegisterClass<"ARM", [untyped], 64, (add Tuples3DSpc)> {
  let Size = 192; // 3 x 64 bits, we have no predefined type of that size.
}

def Tuples4DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4, dsub_6],
                                 [(shl DPR, 0),
                                  (shl DPR, 2),
                                  (shl DPR, 4),
                                  (shl DPR, 6)]>;

// Spaced quads of D registers.
def DQuadSpc : RegisterClass<"ARM", [v4i64], 64, (add Tuples3DSpc)>;

// FP context payload
def FPCXTRegs : RegisterClass<"ARM", [i32], 32, (add FPCXTNS)>;