Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
//===-- RISCVFrameLowering.cpp - RISCV Frame Information ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the RISCV implementation of TargetFrameLowering class.
//
//===----------------------------------------------------------------------===//

#include "RISCVFrameLowering.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVSubtarget.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/MC/MCDwarf.h"

using namespace llvm;

// Get the ID of the libcall used for spilling and restoring callee saved
// registers. The ID is representative of the number of registers saved or
// restored by the libcall, except it is zero-indexed - ID 0 corresponds to a
// single register.
static int getLibCallID(const MachineFunction &MF,
                        const std::vector<CalleeSavedInfo> &CSI) {
  const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();

  if (CSI.empty() || !RVFI->useSaveRestoreLibCalls(MF))
    return -1;

  Register MaxReg = RISCV::NoRegister;
  for (auto &CS : CSI)
    // RISCVRegisterInfo::hasReservedSpillSlot assigns negative frame indexes to
    // registers which can be saved by libcall.
    if (CS.getFrameIdx() < 0)
      MaxReg = std::max(MaxReg.id(), CS.getReg());

  if (MaxReg == RISCV::NoRegister)
    return -1;

  switch (MaxReg) {
  default:
    llvm_unreachable("Something has gone wrong!");
  case /*s11*/ RISCV::X27: return 12;
  case /*s10*/ RISCV::X26: return 11;
  case /*s9*/  RISCV::X25: return 10;
  case /*s8*/  RISCV::X24: return 9;
  case /*s7*/  RISCV::X23: return 8;
  case /*s6*/  RISCV::X22: return 7;
  case /*s5*/  RISCV::X21: return 6;
  case /*s4*/  RISCV::X20: return 5;
  case /*s3*/  RISCV::X19: return 4;
  case /*s2*/  RISCV::X18: return 3;
  case /*s1*/  RISCV::X9:  return 2;
  case /*s0*/  RISCV::X8:  return 1;
  case /*ra*/  RISCV::X1:  return 0;
  }
}

// Get the name of the libcall used for spilling callee saved registers.
// If this function will not use save/restore libcalls, then return a nullptr.
static const char *
getSpillLibCallName(const MachineFunction &MF,
                    const std::vector<CalleeSavedInfo> &CSI) {
  static const char *const SpillLibCalls[] = {
    "__riscv_save_0",
    "__riscv_save_1",
    "__riscv_save_2",
    "__riscv_save_3",
    "__riscv_save_4",
    "__riscv_save_5",
    "__riscv_save_6",
    "__riscv_save_7",
    "__riscv_save_8",
    "__riscv_save_9",
    "__riscv_save_10",
    "__riscv_save_11",
    "__riscv_save_12"
  };

  int LibCallID = getLibCallID(MF, CSI);
  if (LibCallID == -1)
    return nullptr;
  return SpillLibCalls[LibCallID];
}

// Get the name of the libcall used for restoring callee saved registers.
// If this function will not use save/restore libcalls, then return a nullptr.
static const char *
getRestoreLibCallName(const MachineFunction &MF,
                      const std::vector<CalleeSavedInfo> &CSI) {
  static const char *const RestoreLibCalls[] = {
    "__riscv_restore_0",
    "__riscv_restore_1",
    "__riscv_restore_2",
    "__riscv_restore_3",
    "__riscv_restore_4",
    "__riscv_restore_5",
    "__riscv_restore_6",
    "__riscv_restore_7",
    "__riscv_restore_8",
    "__riscv_restore_9",
    "__riscv_restore_10",
    "__riscv_restore_11",
    "__riscv_restore_12"
  };

  int LibCallID = getLibCallID(MF, CSI);
  if (LibCallID == -1)
    return nullptr;
  return RestoreLibCalls[LibCallID];
}

bool RISCVFrameLowering::hasFP(const MachineFunction &MF) const {
  const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();

  const MachineFrameInfo &MFI = MF.getFrameInfo();
  return MF.getTarget().Options.DisableFramePointerElim(MF) ||
         RegInfo->needsStackRealignment(MF) || MFI.hasVarSizedObjects() ||
         MFI.isFrameAddressTaken();
}

bool RISCVFrameLowering::hasBP(const MachineFunction &MF) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const TargetRegisterInfo *TRI = STI.getRegisterInfo();

  return MFI.hasVarSizedObjects() && TRI->needsStackRealignment(MF);
}

// Determines the size of the frame and maximum call frame size.
void RISCVFrameLowering::determineFrameLayout(MachineFunction &MF) const {
  MachineFrameInfo &MFI = MF.getFrameInfo();
  const RISCVRegisterInfo *RI = STI.getRegisterInfo();

  // Get the number of bytes to allocate from the FrameInfo.
  uint64_t FrameSize = MFI.getStackSize();

  // Get the alignment.
  Align StackAlign = getStackAlign();
  if (RI->needsStackRealignment(MF)) {
    Align MaxStackAlign = std::max(StackAlign, MFI.getMaxAlign());
    FrameSize += (MaxStackAlign.value() - StackAlign.value());
    StackAlign = MaxStackAlign;
  }

  // Set Max Call Frame Size
  uint64_t MaxCallSize = alignTo(MFI.getMaxCallFrameSize(), StackAlign);
  MFI.setMaxCallFrameSize(MaxCallSize);

  // Make sure the frame is aligned.
  FrameSize = alignTo(FrameSize, StackAlign);

  // Update frame info.
  MFI.setStackSize(FrameSize);
}

void RISCVFrameLowering::adjustReg(MachineBasicBlock &MBB,
                                   MachineBasicBlock::iterator MBBI,
                                   const DebugLoc &DL, Register DestReg,
                                   Register SrcReg, int64_t Val,
                                   MachineInstr::MIFlag Flag) const {
  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
  const RISCVInstrInfo *TII = STI.getInstrInfo();

  if (DestReg == SrcReg && Val == 0)
    return;

  if (isInt<12>(Val)) {
    BuildMI(MBB, MBBI, DL, TII->get(RISCV::ADDI), DestReg)
        .addReg(SrcReg)
        .addImm(Val)
        .setMIFlag(Flag);
  } else {
    unsigned Opc = RISCV::ADD;
    bool isSub = Val < 0;
    if (isSub) {
      Val = -Val;
      Opc = RISCV::SUB;
    }

    Register ScratchReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
    TII->movImm(MBB, MBBI, DL, ScratchReg, Val, Flag);
    BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
        .addReg(SrcReg)
        .addReg(ScratchReg, RegState::Kill)
        .setMIFlag(Flag);
  }
}

// Returns the register used to hold the frame pointer.
static Register getFPReg(const RISCVSubtarget &STI) { return RISCV::X8; }

// Returns the register used to hold the stack pointer.
static Register getSPReg(const RISCVSubtarget &STI) { return RISCV::X2; }

static SmallVector<CalleeSavedInfo, 8>
getNonLibcallCSI(const std::vector<CalleeSavedInfo> &CSI) {
  SmallVector<CalleeSavedInfo, 8> NonLibcallCSI;

  for (auto &CS : CSI)
    if (CS.getFrameIdx() >= 0)
      NonLibcallCSI.push_back(CS);

  return NonLibcallCSI;
}

void RISCVFrameLowering::emitPrologue(MachineFunction &MF,
                                      MachineBasicBlock &MBB) const {
  MachineFrameInfo &MFI = MF.getFrameInfo();
  auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
  const RISCVRegisterInfo *RI = STI.getRegisterInfo();
  const RISCVInstrInfo *TII = STI.getInstrInfo();
  MachineBasicBlock::iterator MBBI = MBB.begin();

  Register FPReg = getFPReg(STI);
  Register SPReg = getSPReg(STI);
  Register BPReg = RISCVABI::getBPReg();

  // Since spillCalleeSavedRegisters may have inserted a libcall, skip past
  // any instructions marked as FrameSetup
  while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
    ++MBBI;

  // Debug location must be unknown since the first debug location is used
  // to determine the end of the prologue.
  DebugLoc DL;

  // Determine the correct frame layout
  determineFrameLayout(MF);

  // If libcalls are used to spill and restore callee-saved registers, the frame
  // has two sections; the opaque section managed by the libcalls, and the
  // section managed by MachineFrameInfo which can also hold callee saved
  // registers in fixed stack slots, both of which have negative frame indices.
  // This gets even more complicated when incoming arguments are passed via the
  // stack, as these too have negative frame indices. An example is detailed
  // below:
  //
  //  | incoming arg | <- FI[-3]
  //  | libcallspill |
  //  | calleespill  | <- FI[-2]
  //  | calleespill  | <- FI[-1]
  //  | this_frame   | <- FI[0]
  //
  // For negative frame indices, the offset from the frame pointer will differ
  // depending on which of these groups the frame index applies to.
  // The following calculates the correct offset knowing the number of callee
  // saved registers spilt by the two methods.
  if (int LibCallRegs = getLibCallID(MF, MFI.getCalleeSavedInfo()) + 1) {
    // Calculate the size of the frame managed by the libcall. The libcalls are
    // implemented such that the stack will always be 16 byte aligned.
    unsigned LibCallFrameSize = alignTo((STI.getXLen() / 8) * LibCallRegs, 16);
    RVFI->setLibCallStackSize(LibCallFrameSize);
  }

  // FIXME (note copied from Lanai): This appears to be overallocating.  Needs
  // investigation. Get the number of bytes to allocate from the FrameInfo.
  uint64_t StackSize = MFI.getStackSize();
  uint64_t RealStackSize = StackSize + RVFI->getLibCallStackSize();

  // Early exit if there is no need to allocate on the stack
  if (RealStackSize == 0 && !MFI.adjustsStack())
    return;

  // If the stack pointer has been marked as reserved, then produce an error if
  // the frame requires stack allocation
  if (STI.isRegisterReservedByUser(SPReg))
    MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
        MF.getFunction(), "Stack pointer required, but has been reserved."});

  uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF);
  // Split the SP adjustment to reduce the offsets of callee saved spill.
  if (FirstSPAdjustAmount) {
    StackSize = FirstSPAdjustAmount;
    RealStackSize = FirstSPAdjustAmount;
  }

  // Allocate space on the stack if necessary.
  adjustReg(MBB, MBBI, DL, SPReg, SPReg, -StackSize, MachineInstr::FrameSetup);

  // Emit ".cfi_def_cfa_offset RealStackSize"
  unsigned CFIIndex = MF.addFrameInst(
      MCCFIInstruction::cfiDefCfaOffset(nullptr, RealStackSize));
  BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
      .addCFIIndex(CFIIndex);

  const auto &CSI = MFI.getCalleeSavedInfo();

  // The frame pointer is callee-saved, and code has been generated for us to
  // save it to the stack. We need to skip over the storing of callee-saved
  // registers as the frame pointer must be modified after it has been saved
  // to the stack, not before.
  // FIXME: assumes exactly one instruction is used to save each callee-saved
  // register.
  std::advance(MBBI, getNonLibcallCSI(CSI).size());

  // Iterate over list of callee-saved registers and emit .cfi_offset
  // directives.
  for (const auto &Entry : CSI) {
    int FrameIdx = Entry.getFrameIdx();
    int64_t Offset;
    // Offsets for objects with fixed locations (IE: those saved by libcall) are
    // simply calculated from the frame index.
    if (FrameIdx < 0)
      Offset = FrameIdx * (int64_t) STI.getXLen() / 8;
    else
      Offset = MFI.getObjectOffset(Entry.getFrameIdx()) -
               RVFI->getLibCallStackSize();
    Register Reg = Entry.getReg();
    unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
        nullptr, RI->getDwarfRegNum(Reg, true), Offset));
    BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
        .addCFIIndex(CFIIndex);
  }

  // Generate new FP.
  if (hasFP(MF)) {
    if (STI.isRegisterReservedByUser(FPReg))
      MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
          MF.getFunction(), "Frame pointer required, but has been reserved."});

    adjustReg(MBB, MBBI, DL, FPReg, SPReg,
              RealStackSize - RVFI->getVarArgsSaveSize(),
              MachineInstr::FrameSetup);

    // Emit ".cfi_def_cfa $fp, RVFI->getVarArgsSaveSize()"
    unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
        nullptr, RI->getDwarfRegNum(FPReg, true), RVFI->getVarArgsSaveSize()));
    BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
        .addCFIIndex(CFIIndex);
  }

  // Emit the second SP adjustment after saving callee saved registers.
  if (FirstSPAdjustAmount) {
    uint64_t SecondSPAdjustAmount = MFI.getStackSize() - FirstSPAdjustAmount;
    assert(SecondSPAdjustAmount > 0 &&
           "SecondSPAdjustAmount should be greater than zero");
    adjustReg(MBB, MBBI, DL, SPReg, SPReg, -SecondSPAdjustAmount,
              MachineInstr::FrameSetup);

    // If we are using a frame-pointer, and thus emitted ".cfi_def_cfa fp, 0",
    // don't emit an sp-based .cfi_def_cfa_offset
    if (!hasFP(MF)) {
      // Emit ".cfi_def_cfa_offset StackSize"
      unsigned CFIIndex = MF.addFrameInst(
          MCCFIInstruction::cfiDefCfaOffset(nullptr, MFI.getStackSize()));
      BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
          .addCFIIndex(CFIIndex);
    }
  }

  if (hasFP(MF)) {
    // Realign Stack
    const RISCVRegisterInfo *RI = STI.getRegisterInfo();
    if (RI->needsStackRealignment(MF)) {
      Align MaxAlignment = MFI.getMaxAlign();

      const RISCVInstrInfo *TII = STI.getInstrInfo();
      if (isInt<12>(-(int)MaxAlignment.value())) {
        BuildMI(MBB, MBBI, DL, TII->get(RISCV::ANDI), SPReg)
            .addReg(SPReg)
            .addImm(-(int)MaxAlignment.value());
      } else {
        unsigned ShiftAmount = Log2(MaxAlignment);
        Register VR =
            MF.getRegInfo().createVirtualRegister(&RISCV::GPRRegClass);
        BuildMI(MBB, MBBI, DL, TII->get(RISCV::SRLI), VR)
            .addReg(SPReg)
            .addImm(ShiftAmount);
        BuildMI(MBB, MBBI, DL, TII->get(RISCV::SLLI), SPReg)
            .addReg(VR)
            .addImm(ShiftAmount);
      }
      // FP will be used to restore the frame in the epilogue, so we need
      // another base register BP to record SP after re-alignment. SP will
      // track the current stack after allocating variable sized objects.
      if (hasBP(MF)) {
        // move BP, SP
        BuildMI(MBB, MBBI, DL, TII->get(RISCV::ADDI), BPReg)
            .addReg(SPReg)
            .addImm(0);
      }
    }
  }
}

void RISCVFrameLowering::emitEpilogue(MachineFunction &MF,
                                      MachineBasicBlock &MBB) const {
  const RISCVRegisterInfo *RI = STI.getRegisterInfo();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
  Register FPReg = getFPReg(STI);
  Register SPReg = getSPReg(STI);

  // Get the insert location for the epilogue. If there were no terminators in
  // the block, get the last instruction.
  MachineBasicBlock::iterator MBBI = MBB.end();
  DebugLoc DL;
  if (!MBB.empty()) {
    MBBI = MBB.getFirstTerminator();
    if (MBBI == MBB.end())
      MBBI = MBB.getLastNonDebugInstr();
    DL = MBBI->getDebugLoc();

    // If this is not a terminator, the actual insert location should be after the
    // last instruction.
    if (!MBBI->isTerminator())
      MBBI = std::next(MBBI);

    // If callee-saved registers are saved via libcall, place stack adjustment
    // before this call.
    while (MBBI != MBB.begin() &&
           std::prev(MBBI)->getFlag(MachineInstr::FrameDestroy))
      --MBBI;
  }

  const auto &CSI = getNonLibcallCSI(MFI.getCalleeSavedInfo());

  // Skip to before the restores of callee-saved registers
  // FIXME: assumes exactly one instruction is used to restore each
  // callee-saved register.
  auto LastFrameDestroy = MBBI;
  if (!CSI.empty())
    LastFrameDestroy = std::prev(MBBI, CSI.size());

  uint64_t StackSize = MFI.getStackSize();
  uint64_t RealStackSize = StackSize + RVFI->getLibCallStackSize();
  uint64_t FPOffset = RealStackSize - RVFI->getVarArgsSaveSize();

  // Restore the stack pointer using the value of the frame pointer. Only
  // necessary if the stack pointer was modified, meaning the stack size is
  // unknown.
  if (RI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) {
    assert(hasFP(MF) && "frame pointer should not have been eliminated");
    adjustReg(MBB, LastFrameDestroy, DL, SPReg, FPReg, -FPOffset,
              MachineInstr::FrameDestroy);
  }

  uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF);
  if (FirstSPAdjustAmount) {
    uint64_t SecondSPAdjustAmount = MFI.getStackSize() - FirstSPAdjustAmount;
    assert(SecondSPAdjustAmount > 0 &&
           "SecondSPAdjustAmount should be greater than zero");

    adjustReg(MBB, LastFrameDestroy, DL, SPReg, SPReg, SecondSPAdjustAmount,
              MachineInstr::FrameDestroy);
  }

  if (FirstSPAdjustAmount)
    StackSize = FirstSPAdjustAmount;

  // Deallocate stack
  adjustReg(MBB, MBBI, DL, SPReg, SPReg, StackSize, MachineInstr::FrameDestroy);
}

int RISCVFrameLowering::getFrameIndexReference(const MachineFunction &MF,
                                               int FI,
                                               Register &FrameReg) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
  const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();

  // Callee-saved registers should be referenced relative to the stack
  // pointer (positive offset), otherwise use the frame pointer (negative
  // offset).
  const auto &CSI = getNonLibcallCSI(MFI.getCalleeSavedInfo());
  int MinCSFI = 0;
  int MaxCSFI = -1;

  int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea() +
               MFI.getOffsetAdjustment();

  uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF);

  if (CSI.size()) {
    MinCSFI = CSI[0].getFrameIdx();
    MaxCSFI = CSI[CSI.size() - 1].getFrameIdx();
  }

  if (FI >= MinCSFI && FI <= MaxCSFI) {
    FrameReg = RISCV::X2;

    if (FirstSPAdjustAmount)
      Offset += FirstSPAdjustAmount;
    else
      Offset += MFI.getStackSize();
  } else if (RI->needsStackRealignment(MF) && !MFI.isFixedObjectIndex(FI)) {
    // If the stack was realigned, the frame pointer is set in order to allow
    // SP to be restored, so we need another base register to record the stack
    // after realignment.
    if (hasBP(MF))
      FrameReg = RISCVABI::getBPReg();
    else
      FrameReg = RISCV::X2;
    Offset += MFI.getStackSize();
    if (FI < 0)
      Offset += RVFI->getLibCallStackSize();
  } else {
    FrameReg = RI->getFrameRegister(MF);
    if (hasFP(MF)) {
      Offset += RVFI->getVarArgsSaveSize();
      if (FI >= 0)
        Offset -= RVFI->getLibCallStackSize();
    } else {
      Offset += MFI.getStackSize();
      if (FI < 0)
        Offset += RVFI->getLibCallStackSize();
    }
  }
  return Offset;
}

void RISCVFrameLowering::determineCalleeSaves(MachineFunction &MF,
                                              BitVector &SavedRegs,
                                              RegScavenger *RS) const {
  TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
  // Unconditionally spill RA and FP only if the function uses a frame
  // pointer.
  if (hasFP(MF)) {
    SavedRegs.set(RISCV::X1);
    SavedRegs.set(RISCV::X8);
  }
  // Mark BP as used if function has dedicated base pointer.
  if (hasBP(MF))
    SavedRegs.set(RISCVABI::getBPReg());

  // If interrupt is enabled and there are calls in the handler,
  // unconditionally save all Caller-saved registers and
  // all FP registers, regardless whether they are used.
  MachineFrameInfo &MFI = MF.getFrameInfo();

  if (MF.getFunction().hasFnAttribute("interrupt") && MFI.hasCalls()) {

    static const MCPhysReg CSRegs[] = { RISCV::X1,      /* ra */
      RISCV::X5, RISCV::X6, RISCV::X7,                  /* t0-t2 */
      RISCV::X10, RISCV::X11,                           /* a0-a1, a2-a7 */
      RISCV::X12, RISCV::X13, RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17,
      RISCV::X28, RISCV::X29, RISCV::X30, RISCV::X31, 0 /* t3-t6 */
    };

    for (unsigned i = 0; CSRegs[i]; ++i)
      SavedRegs.set(CSRegs[i]);

    if (MF.getSubtarget<RISCVSubtarget>().hasStdExtD() ||
        MF.getSubtarget<RISCVSubtarget>().hasStdExtF()) {

      // If interrupt is enabled, this list contains all FP registers.
      const MCPhysReg * Regs = MF.getRegInfo().getCalleeSavedRegs();

      for (unsigned i = 0; Regs[i]; ++i)
        if (RISCV::FPR32RegClass.contains(Regs[i]) ||
            RISCV::FPR64RegClass.contains(Regs[i]))
          SavedRegs.set(Regs[i]);
    }
  }
}

void RISCVFrameLowering::processFunctionBeforeFrameFinalized(
    MachineFunction &MF, RegScavenger *RS) const {
  const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  const TargetRegisterClass *RC = &RISCV::GPRRegClass;
  // estimateStackSize has been observed to under-estimate the final stack
  // size, so give ourselves wiggle-room by checking for stack size
  // representable an 11-bit signed field rather than 12-bits.
  // FIXME: It may be possible to craft a function with a small stack that
  // still needs an emergency spill slot for branch relaxation. This case
  // would currently be missed.
  if (!isInt<11>(MFI.estimateStackSize(MF))) {
    int RegScavFI = MFI.CreateStackObject(RegInfo->getSpillSize(*RC),
                                          RegInfo->getSpillAlign(*RC), false);
    RS->addScavengingFrameIndex(RegScavFI);
  }
}

// Not preserve stack space within prologue for outgoing variables when the
// function contains variable size objects and let eliminateCallFramePseudoInstr
// preserve stack space for it.
bool RISCVFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
  return !MF.getFrameInfo().hasVarSizedObjects();
}

// Eliminate ADJCALLSTACKDOWN, ADJCALLSTACKUP pseudo instructions.
MachineBasicBlock::iterator RISCVFrameLowering::eliminateCallFramePseudoInstr(
    MachineFunction &MF, MachineBasicBlock &MBB,
    MachineBasicBlock::iterator MI) const {
  Register SPReg = RISCV::X2;
  DebugLoc DL = MI->getDebugLoc();

  if (!hasReservedCallFrame(MF)) {
    // If space has not been reserved for a call frame, ADJCALLSTACKDOWN and
    // ADJCALLSTACKUP must be converted to instructions manipulating the stack
    // pointer. This is necessary when there is a variable length stack
    // allocation (e.g. alloca), which means it's not possible to allocate
    // space for outgoing arguments from within the function prologue.
    int64_t Amount = MI->getOperand(0).getImm();

    if (Amount != 0) {
      // Ensure the stack remains aligned after adjustment.
      Amount = alignSPAdjust(Amount);

      if (MI->getOpcode() == RISCV::ADJCALLSTACKDOWN)
        Amount = -Amount;

      adjustReg(MBB, MI, DL, SPReg, SPReg, Amount, MachineInstr::NoFlags);
    }
  }

  return MBB.erase(MI);
}

// We would like to split the SP adjustment to reduce prologue/epilogue
// as following instructions. In this way, the offset of the callee saved
// register could fit in a single store.
//   add     sp,sp,-2032
//   sw      ra,2028(sp)
//   sw      s0,2024(sp)
//   sw      s1,2020(sp)
//   sw      s3,2012(sp)
//   sw      s4,2008(sp)
//   add     sp,sp,-64
uint64_t
RISCVFrameLowering::getFirstSPAdjustAmount(const MachineFunction &MF) const {
  const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
  uint64_t StackSize = MFI.getStackSize();

  // Disable SplitSPAdjust if save-restore libcall used. The callee saved
  // registers will be pushed by the save-restore libcalls, so we don't have to
  // split the SP adjustment in this case.
  if (RVFI->getLibCallStackSize())
    return 0;

  // Return the FirstSPAdjustAmount if the StackSize can not fit in signed
  // 12-bit and there exists a callee saved register need to be pushed.
  if (!isInt<12>(StackSize) && (CSI.size() > 0)) {
    // FirstSPAdjustAmount is choosed as (2048 - StackAlign)
    // because 2048 will cause sp = sp + 2048 in epilogue split into
    // multi-instructions. The offset smaller than 2048 can fit in signle
    // load/store instruction and we have to stick with the stack alignment.
    // 2048 is 16-byte alignment. The stack alignment for RV32 and RV64 is 16,
    // for RV32E is 4. So (2048 - StackAlign) will satisfy the stack alignment.
    return 2048 - getStackAlign().value();
  }
  return 0;
}

bool RISCVFrameLowering::spillCalleeSavedRegisters(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
    ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
  if (CSI.empty())
    return true;

  MachineFunction *MF = MBB.getParent();
  const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
  DebugLoc DL;
  if (MI != MBB.end() && !MI->isDebugInstr())
    DL = MI->getDebugLoc();

  const char *SpillLibCall = getSpillLibCallName(*MF, CSI);
  if (SpillLibCall) {
    // Add spill libcall via non-callee-saved register t0.
    BuildMI(MBB, MI, DL, TII.get(RISCV::PseudoCALLReg), RISCV::X5)
        .addExternalSymbol(SpillLibCall, RISCVII::MO_CALL)
        .setMIFlag(MachineInstr::FrameSetup);

    // Add registers spilled in libcall as liveins.
    for (auto &CS : CSI)
      MBB.addLiveIn(CS.getReg());
  }

  // Manually spill values not spilled by libcall.
  const auto &NonLibcallCSI = getNonLibcallCSI(CSI);
  for (auto &CS : NonLibcallCSI) {
    // Insert the spill to the stack frame.
    Register Reg = CS.getReg();
    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
    TII.storeRegToStackSlot(MBB, MI, Reg, true, CS.getFrameIdx(), RC, TRI);
  }

  return true;
}

bool RISCVFrameLowering::restoreCalleeSavedRegisters(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
    MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
  if (CSI.empty())
    return true;

  MachineFunction *MF = MBB.getParent();
  const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
  DebugLoc DL;
  if (MI != MBB.end() && !MI->isDebugInstr())
    DL = MI->getDebugLoc();

  // Manually restore values not restored by libcall. Insert in reverse order.
  // loadRegFromStackSlot can insert multiple instructions.
  const auto &NonLibcallCSI = getNonLibcallCSI(CSI);
  for (auto &CS : reverse(NonLibcallCSI)) {
    Register Reg = CS.getReg();
    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
    TII.loadRegFromStackSlot(MBB, MI, Reg, CS.getFrameIdx(), RC, TRI);
    assert(MI != MBB.begin() && "loadRegFromStackSlot didn't insert any code!");
  }

  const char *RestoreLibCall = getRestoreLibCallName(*MF, CSI);
  if (RestoreLibCall) {
    // Add restore libcall via tail call.
    MachineBasicBlock::iterator NewMI =
        BuildMI(MBB, MI, DL, TII.get(RISCV::PseudoTAIL))
            .addExternalSymbol(RestoreLibCall, RISCVII::MO_CALL)
            .setMIFlag(MachineInstr::FrameDestroy);

    // Remove trailing returns, since the terminator is now a tail call to the
    // restore function.
    if (MI != MBB.end() && MI->getOpcode() == RISCV::PseudoRET) {
      NewMI->copyImplicitOps(*MF, *MI);
      MI->eraseFromParent();
    }
  }

  return true;
}

bool RISCVFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
  MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
  const MachineFunction *MF = MBB.getParent();
  const auto *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();

  if (!RVFI->useSaveRestoreLibCalls(*MF))
    return true;

  // Inserting a call to a __riscv_save libcall requires the use of the register
  // t0 (X5) to hold the return address. Therefore if this register is already
  // used we can't insert the call.

  RegScavenger RS;
  RS.enterBasicBlock(*TmpMBB);
  return !RS.isRegUsed(RISCV::X5);
}

bool RISCVFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
  const MachineFunction *MF = MBB.getParent();
  MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
  const auto *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();

  if (!RVFI->useSaveRestoreLibCalls(*MF))
    return true;

  // Using the __riscv_restore libcalls to restore CSRs requires a tail call.
  // This means if we still need to continue executing code within this function
  // the restore cannot take place in this basic block.

  if (MBB.succ_size() > 1)
    return false;

  MachineBasicBlock *SuccMBB =
      MBB.succ_empty() ? TmpMBB->getFallThrough() : *MBB.succ_begin();

  // Doing a tail call should be safe if there are no successors, because either
  // we have a returning block or the end of the block is unreachable, so the
  // restore will be eliminated regardless.
  if (!SuccMBB)
    return true;

  // The successor can only contain a return, since we would effectively be
  // replacing the successor with our own tail return at the end of our block.
  return SuccMBB->isReturnBlock() && SuccMBB->size() == 1;
}