Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
//===-- RISCVInstrInfo.cpp - RISCV Instruction Information ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the RISCV implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "RISCVInstrInfo.h"
#include "RISCV.h"
#include "RISCVSubtarget.h"
#include "RISCVTargetMachine.h"
#include "Utils/RISCVMatInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"

using namespace llvm;

#define GEN_CHECK_COMPRESS_INSTR
#include "RISCVGenCompressInstEmitter.inc"

#define GET_INSTRINFO_CTOR_DTOR
#include "RISCVGenInstrInfo.inc"

RISCVInstrInfo::RISCVInstrInfo(RISCVSubtarget &STI)
    : RISCVGenInstrInfo(RISCV::ADJCALLSTACKDOWN, RISCV::ADJCALLSTACKUP),
      STI(STI) {}

unsigned RISCVInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
                                             int &FrameIndex) const {
  switch (MI.getOpcode()) {
  default:
    return 0;
  case RISCV::LB:
  case RISCV::LBU:
  case RISCV::LH:
  case RISCV::LHU:
  case RISCV::LW:
  case RISCV::FLW:
  case RISCV::LWU:
  case RISCV::LD:
  case RISCV::FLD:
    break;
  }

  if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
      MI.getOperand(2).getImm() == 0) {
    FrameIndex = MI.getOperand(1).getIndex();
    return MI.getOperand(0).getReg();
  }

  return 0;
}

unsigned RISCVInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
                                            int &FrameIndex) const {
  switch (MI.getOpcode()) {
  default:
    return 0;
  case RISCV::SB:
  case RISCV::SH:
  case RISCV::SW:
  case RISCV::FSW:
  case RISCV::SD:
  case RISCV::FSD:
    break;
  }

  if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
      MI.getOperand(2).getImm() == 0) {
    FrameIndex = MI.getOperand(1).getIndex();
    return MI.getOperand(0).getReg();
  }

  return 0;
}

void RISCVInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
                                 MachineBasicBlock::iterator MBBI,
                                 const DebugLoc &DL, MCRegister DstReg,
                                 MCRegister SrcReg, bool KillSrc) const {
  if (RISCV::GPRRegClass.contains(DstReg, SrcReg)) {
    BuildMI(MBB, MBBI, DL, get(RISCV::ADDI), DstReg)
        .addReg(SrcReg, getKillRegState(KillSrc))
        .addImm(0);
    return;
  }

  // FPR->FPR copies
  unsigned Opc;
  if (RISCV::FPR32RegClass.contains(DstReg, SrcReg))
    Opc = RISCV::FSGNJ_S;
  else if (RISCV::FPR64RegClass.contains(DstReg, SrcReg))
    Opc = RISCV::FSGNJ_D;
  else
    llvm_unreachable("Impossible reg-to-reg copy");

  BuildMI(MBB, MBBI, DL, get(Opc), DstReg)
      .addReg(SrcReg, getKillRegState(KillSrc))
      .addReg(SrcReg, getKillRegState(KillSrc));
}

void RISCVInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
                                         MachineBasicBlock::iterator I,
                                         Register SrcReg, bool IsKill, int FI,
                                         const TargetRegisterClass *RC,
                                         const TargetRegisterInfo *TRI) const {
  DebugLoc DL;
  if (I != MBB.end())
    DL = I->getDebugLoc();

  unsigned Opcode;

  if (RISCV::GPRRegClass.hasSubClassEq(RC))
    Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ?
             RISCV::SW : RISCV::SD;
  else if (RISCV::FPR32RegClass.hasSubClassEq(RC))
    Opcode = RISCV::FSW;
  else if (RISCV::FPR64RegClass.hasSubClassEq(RC))
    Opcode = RISCV::FSD;
  else
    llvm_unreachable("Can't store this register to stack slot");

  BuildMI(MBB, I, DL, get(Opcode))
      .addReg(SrcReg, getKillRegState(IsKill))
      .addFrameIndex(FI)
      .addImm(0);
}

void RISCVInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
                                          MachineBasicBlock::iterator I,
                                          Register DstReg, int FI,
                                          const TargetRegisterClass *RC,
                                          const TargetRegisterInfo *TRI) const {
  DebugLoc DL;
  if (I != MBB.end())
    DL = I->getDebugLoc();

  unsigned Opcode;

  if (RISCV::GPRRegClass.hasSubClassEq(RC))
    Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ?
             RISCV::LW : RISCV::LD;
  else if (RISCV::FPR32RegClass.hasSubClassEq(RC))
    Opcode = RISCV::FLW;
  else if (RISCV::FPR64RegClass.hasSubClassEq(RC))
    Opcode = RISCV::FLD;
  else
    llvm_unreachable("Can't load this register from stack slot");

  BuildMI(MBB, I, DL, get(Opcode), DstReg).addFrameIndex(FI).addImm(0);
}

void RISCVInstrInfo::movImm(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator MBBI,
                            const DebugLoc &DL, Register DstReg, uint64_t Val,
                            MachineInstr::MIFlag Flag) const {
  MachineFunction *MF = MBB.getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();
  bool IsRV64 = MF->getSubtarget<RISCVSubtarget>().is64Bit();
  Register SrcReg = RISCV::X0;
  Register Result = MRI.createVirtualRegister(&RISCV::GPRRegClass);
  unsigned Num = 0;

  if (!IsRV64 && !isInt<32>(Val))
    report_fatal_error("Should only materialize 32-bit constants for RV32");

  RISCVMatInt::InstSeq Seq;
  RISCVMatInt::generateInstSeq(Val, IsRV64, Seq);
  assert(Seq.size() > 0);

  for (RISCVMatInt::Inst &Inst : Seq) {
    // Write the final result to DstReg if it's the last instruction in the Seq.
    // Otherwise, write the result to the temp register.
    if (++Num == Seq.size())
      Result = DstReg;

    if (Inst.Opc == RISCV::LUI) {
      BuildMI(MBB, MBBI, DL, get(RISCV::LUI), Result)
          .addImm(Inst.Imm)
          .setMIFlag(Flag);
    } else {
      BuildMI(MBB, MBBI, DL, get(Inst.Opc), Result)
          .addReg(SrcReg, RegState::Kill)
          .addImm(Inst.Imm)
          .setMIFlag(Flag);
    }
    // Only the first instruction has X0 as its source.
    SrcReg = Result;
  }
}

// The contents of values added to Cond are not examined outside of
// RISCVInstrInfo, giving us flexibility in what to push to it. For RISCV, we
// push BranchOpcode, Reg1, Reg2.
static void parseCondBranch(MachineInstr &LastInst, MachineBasicBlock *&Target,
                            SmallVectorImpl<MachineOperand> &Cond) {
  // Block ends with fall-through condbranch.
  assert(LastInst.getDesc().isConditionalBranch() &&
         "Unknown conditional branch");
  Target = LastInst.getOperand(2).getMBB();
  Cond.push_back(MachineOperand::CreateImm(LastInst.getOpcode()));
  Cond.push_back(LastInst.getOperand(0));
  Cond.push_back(LastInst.getOperand(1));
}

static unsigned getOppositeBranchOpcode(int Opc) {
  switch (Opc) {
  default:
    llvm_unreachable("Unrecognized conditional branch");
  case RISCV::BEQ:
    return RISCV::BNE;
  case RISCV::BNE:
    return RISCV::BEQ;
  case RISCV::BLT:
    return RISCV::BGE;
  case RISCV::BGE:
    return RISCV::BLT;
  case RISCV::BLTU:
    return RISCV::BGEU;
  case RISCV::BGEU:
    return RISCV::BLTU;
  }
}

bool RISCVInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
                                   MachineBasicBlock *&TBB,
                                   MachineBasicBlock *&FBB,
                                   SmallVectorImpl<MachineOperand> &Cond,
                                   bool AllowModify) const {
  TBB = FBB = nullptr;
  Cond.clear();

  // If the block has no terminators, it just falls into the block after it.
  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
  if (I == MBB.end() || !isUnpredicatedTerminator(*I))
    return false;

  // Count the number of terminators and find the first unconditional or
  // indirect branch.
  MachineBasicBlock::iterator FirstUncondOrIndirectBr = MBB.end();
  int NumTerminators = 0;
  for (auto J = I.getReverse(); J != MBB.rend() && isUnpredicatedTerminator(*J);
       J++) {
    NumTerminators++;
    if (J->getDesc().isUnconditionalBranch() ||
        J->getDesc().isIndirectBranch()) {
      FirstUncondOrIndirectBr = J.getReverse();
    }
  }

  // If AllowModify is true, we can erase any terminators after
  // FirstUncondOrIndirectBR.
  if (AllowModify && FirstUncondOrIndirectBr != MBB.end()) {
    while (std::next(FirstUncondOrIndirectBr) != MBB.end()) {
      std::next(FirstUncondOrIndirectBr)->eraseFromParent();
      NumTerminators--;
    }
    I = FirstUncondOrIndirectBr;
  }

  // We can't handle blocks that end in an indirect branch.
  if (I->getDesc().isIndirectBranch())
    return true;

  // We can't handle blocks with more than 2 terminators.
  if (NumTerminators > 2)
    return true;

  // Handle a single unconditional branch.
  if (NumTerminators == 1 && I->getDesc().isUnconditionalBranch()) {
    TBB = getBranchDestBlock(*I);
    return false;
  }

  // Handle a single conditional branch.
  if (NumTerminators == 1 && I->getDesc().isConditionalBranch()) {
    parseCondBranch(*I, TBB, Cond);
    return false;
  }

  // Handle a conditional branch followed by an unconditional branch.
  if (NumTerminators == 2 && std::prev(I)->getDesc().isConditionalBranch() &&
      I->getDesc().isUnconditionalBranch()) {
    parseCondBranch(*std::prev(I), TBB, Cond);
    FBB = getBranchDestBlock(*I);
    return false;
  }

  // Otherwise, we can't handle this.
  return true;
}

unsigned RISCVInstrInfo::removeBranch(MachineBasicBlock &MBB,
                                      int *BytesRemoved) const {
  if (BytesRemoved)
    *BytesRemoved = 0;
  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
  if (I == MBB.end())
    return 0;

  if (!I->getDesc().isUnconditionalBranch() &&
      !I->getDesc().isConditionalBranch())
    return 0;

  // Remove the branch.
  if (BytesRemoved)
    *BytesRemoved += getInstSizeInBytes(*I);
  I->eraseFromParent();

  I = MBB.end();

  if (I == MBB.begin())
    return 1;
  --I;
  if (!I->getDesc().isConditionalBranch())
    return 1;

  // Remove the branch.
  if (BytesRemoved)
    *BytesRemoved += getInstSizeInBytes(*I);
  I->eraseFromParent();
  return 2;
}

// Inserts a branch into the end of the specific MachineBasicBlock, returning
// the number of instructions inserted.
unsigned RISCVInstrInfo::insertBranch(
    MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
    ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const {
  if (BytesAdded)
    *BytesAdded = 0;

  // Shouldn't be a fall through.
  assert(TBB && "insertBranch must not be told to insert a fallthrough");
  assert((Cond.size() == 3 || Cond.size() == 0) &&
         "RISCV branch conditions have two components!");

  // Unconditional branch.
  if (Cond.empty()) {
    MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(TBB);
    if (BytesAdded)
      *BytesAdded += getInstSizeInBytes(MI);
    return 1;
  }

  // Either a one or two-way conditional branch.
  unsigned Opc = Cond[0].getImm();
  MachineInstr &CondMI =
      *BuildMI(&MBB, DL, get(Opc)).add(Cond[1]).add(Cond[2]).addMBB(TBB);
  if (BytesAdded)
    *BytesAdded += getInstSizeInBytes(CondMI);

  // One-way conditional branch.
  if (!FBB)
    return 1;

  // Two-way conditional branch.
  MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(FBB);
  if (BytesAdded)
    *BytesAdded += getInstSizeInBytes(MI);
  return 2;
}

unsigned RISCVInstrInfo::insertIndirectBranch(MachineBasicBlock &MBB,
                                              MachineBasicBlock &DestBB,
                                              const DebugLoc &DL,
                                              int64_t BrOffset,
                                              RegScavenger *RS) const {
  assert(RS && "RegScavenger required for long branching");
  assert(MBB.empty() &&
         "new block should be inserted for expanding unconditional branch");
  assert(MBB.pred_size() == 1);

  MachineFunction *MF = MBB.getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();

  if (!isInt<32>(BrOffset))
    report_fatal_error(
        "Branch offsets outside of the signed 32-bit range not supported");

  // FIXME: A virtual register must be used initially, as the register
  // scavenger won't work with empty blocks (SIInstrInfo::insertIndirectBranch
  // uses the same workaround).
  Register ScratchReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
  auto II = MBB.end();

  MachineInstr &MI = *BuildMI(MBB, II, DL, get(RISCV::PseudoJump))
                          .addReg(ScratchReg, RegState::Define | RegState::Dead)
                          .addMBB(&DestBB, RISCVII::MO_CALL);

  RS->enterBasicBlockEnd(MBB);
  unsigned Scav = RS->scavengeRegisterBackwards(RISCV::GPRRegClass,
                                                MI.getIterator(), false, 0);
  MRI.replaceRegWith(ScratchReg, Scav);
  MRI.clearVirtRegs();
  RS->setRegUsed(Scav);
  return 8;
}

bool RISCVInstrInfo::reverseBranchCondition(
    SmallVectorImpl<MachineOperand> &Cond) const {
  assert((Cond.size() == 3) && "Invalid branch condition!");
  Cond[0].setImm(getOppositeBranchOpcode(Cond[0].getImm()));
  return false;
}

MachineBasicBlock *
RISCVInstrInfo::getBranchDestBlock(const MachineInstr &MI) const {
  assert(MI.getDesc().isBranch() && "Unexpected opcode!");
  // The branch target is always the last operand.
  int NumOp = MI.getNumExplicitOperands();
  return MI.getOperand(NumOp - 1).getMBB();
}

bool RISCVInstrInfo::isBranchOffsetInRange(unsigned BranchOp,
                                           int64_t BrOffset) const {
  unsigned XLen = STI.getXLen();
  // Ideally we could determine the supported branch offset from the
  // RISCVII::FormMask, but this can't be used for Pseudo instructions like
  // PseudoBR.
  switch (BranchOp) {
  default:
    llvm_unreachable("Unexpected opcode!");
  case RISCV::BEQ:
  case RISCV::BNE:
  case RISCV::BLT:
  case RISCV::BGE:
  case RISCV::BLTU:
  case RISCV::BGEU:
    return isIntN(13, BrOffset);
  case RISCV::JAL:
  case RISCV::PseudoBR:
    return isIntN(21, BrOffset);
  case RISCV::PseudoJump:
    return isIntN(32, SignExtend64(BrOffset + 0x800, XLen));
  }
}

unsigned RISCVInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
  unsigned Opcode = MI.getOpcode();

  switch (Opcode) {
  default: {
    if (MI.getParent() && MI.getParent()->getParent()) {
      const auto MF = MI.getMF();
      const auto &TM = static_cast<const RISCVTargetMachine &>(MF->getTarget());
      const MCRegisterInfo &MRI = *TM.getMCRegisterInfo();
      const MCSubtargetInfo &STI = *TM.getMCSubtargetInfo();
      const RISCVSubtarget &ST = MF->getSubtarget<RISCVSubtarget>();
      if (isCompressibleInst(MI, &ST, MRI, STI))
        return 2;
    }
    return get(Opcode).getSize();
  }
  case TargetOpcode::EH_LABEL:
  case TargetOpcode::IMPLICIT_DEF:
  case TargetOpcode::KILL:
  case TargetOpcode::DBG_VALUE:
    return 0;
  // These values are determined based on RISCVExpandAtomicPseudoInsts,
  // RISCVExpandPseudoInsts and RISCVMCCodeEmitter, depending on where the
  // pseudos are expanded.
  case RISCV::PseudoCALLReg:
  case RISCV::PseudoCALL:
  case RISCV::PseudoJump:
  case RISCV::PseudoTAIL:
  case RISCV::PseudoLLA:
  case RISCV::PseudoLA:
  case RISCV::PseudoLA_TLS_IE:
  case RISCV::PseudoLA_TLS_GD:
    return 8;
  case RISCV::PseudoAtomicLoadNand32:
  case RISCV::PseudoAtomicLoadNand64:
    return 20;
  case RISCV::PseudoMaskedAtomicSwap32:
  case RISCV::PseudoMaskedAtomicLoadAdd32:
  case RISCV::PseudoMaskedAtomicLoadSub32:
    return 28;
  case RISCV::PseudoMaskedAtomicLoadNand32:
    return 32;
  case RISCV::PseudoMaskedAtomicLoadMax32:
  case RISCV::PseudoMaskedAtomicLoadMin32:
    return 44;
  case RISCV::PseudoMaskedAtomicLoadUMax32:
  case RISCV::PseudoMaskedAtomicLoadUMin32:
    return 36;
  case RISCV::PseudoCmpXchg32:
  case RISCV::PseudoCmpXchg64:
    return 16;
  case RISCV::PseudoMaskedCmpXchg32:
    return 32;
  case TargetOpcode::INLINEASM:
  case TargetOpcode::INLINEASM_BR: {
    const MachineFunction &MF = *MI.getParent()->getParent();
    const auto &TM = static_cast<const RISCVTargetMachine &>(MF.getTarget());
    return getInlineAsmLength(MI.getOperand(0).getSymbolName(),
                              *TM.getMCAsmInfo());
  }
  }
}

bool RISCVInstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const {
  const unsigned Opcode = MI.getOpcode();
  switch(Opcode) {
    default:
      break;
    case RISCV::ADDI:
    case RISCV::ORI:
    case RISCV::XORI:
      return (MI.getOperand(1).isReg() && MI.getOperand(1).getReg() == RISCV::X0);
  }
  return MI.isAsCheapAsAMove();
}

bool RISCVInstrInfo::verifyInstruction(const MachineInstr &MI,
                                       StringRef &ErrInfo) const {
  const MCInstrInfo *MCII = STI.getInstrInfo();
  MCInstrDesc const &Desc = MCII->get(MI.getOpcode());

  for (auto &OI : enumerate(Desc.operands())) {
    unsigned OpType = OI.value().OperandType;
    if (OpType >= RISCVOp::OPERAND_FIRST_RISCV_IMM &&
        OpType <= RISCVOp::OPERAND_LAST_RISCV_IMM) {
      const MachineOperand &MO = MI.getOperand(OI.index());
      if (MO.isImm()) {
        int64_t Imm = MO.getImm();
        bool Ok;
        switch (OpType) {
        default:
          llvm_unreachable("Unexpected operand type");
        case RISCVOp::OPERAND_UIMM4:
          Ok = isUInt<4>(Imm);
          break;
        case RISCVOp::OPERAND_UIMM5:
          Ok = isUInt<5>(Imm);
          break;
        case RISCVOp::OPERAND_UIMM12:
          Ok = isUInt<12>(Imm);
          break;
        case RISCVOp::OPERAND_SIMM12:
          Ok = isInt<12>(Imm);
          break;
        case RISCVOp::OPERAND_SIMM13_LSB0:
          Ok = isShiftedInt<12, 1>(Imm);
          break;
        case RISCVOp::OPERAND_UIMM20:
          Ok = isUInt<20>(Imm);
          break;
        case RISCVOp::OPERAND_SIMM21_LSB0:
          Ok = isShiftedInt<20, 1>(Imm);
          break;
        case RISCVOp::OPERAND_UIMMLOG2XLEN:
          if (STI.getTargetTriple().isArch64Bit())
            Ok = isUInt<6>(Imm);
          else
            Ok = isUInt<5>(Imm);
          break;
        }
        if (!Ok) {
          ErrInfo = "Invalid immediate";
          return false;
        }
      }
    }
  }

  return true;
}

// Return true if get the base operand, byte offset of an instruction and the
// memory width. Width is the size of memory that is being loaded/stored.
bool RISCVInstrInfo::getMemOperandWithOffsetWidth(
    const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
    unsigned &Width, const TargetRegisterInfo *TRI) const {
  if (!LdSt.mayLoadOrStore())
    return false;

  // Here we assume the standard RISC-V ISA, which uses a base+offset
  // addressing mode. You'll need to relax these conditions to support custom
  // load/stores instructions.
  if (LdSt.getNumExplicitOperands() != 3)
    return false;
  if (!LdSt.getOperand(1).isReg() || !LdSt.getOperand(2).isImm())
    return false;

  if (!LdSt.hasOneMemOperand())
    return false;

  Width = (*LdSt.memoperands_begin())->getSize();
  BaseReg = &LdSt.getOperand(1);
  Offset = LdSt.getOperand(2).getImm();
  return true;
}

bool RISCVInstrInfo::areMemAccessesTriviallyDisjoint(
    const MachineInstr &MIa, const MachineInstr &MIb) const {
  assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
  assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");

  if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
      MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
    return false;

  // Retrieve the base register, offset from the base register and width. Width
  // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
  // base registers are identical, and the offset of a lower memory access +
  // the width doesn't overlap the offset of a higher memory access,
  // then the memory accesses are different.
  const TargetRegisterInfo *TRI = STI.getRegisterInfo();
  const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
  int64_t OffsetA = 0, OffsetB = 0;
  unsigned int WidthA = 0, WidthB = 0;
  if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
      getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
    if (BaseOpA->isIdenticalTo(*BaseOpB)) {
      int LowOffset = std::min(OffsetA, OffsetB);
      int HighOffset = std::max(OffsetA, OffsetB);
      int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
      if (LowOffset + LowWidth <= HighOffset)
        return true;
    }
  }
  return false;
}

std::pair<unsigned, unsigned>
RISCVInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
  const unsigned Mask = RISCVII::MO_DIRECT_FLAG_MASK;
  return std::make_pair(TF & Mask, TF & ~Mask);
}

ArrayRef<std::pair<unsigned, const char *>>
RISCVInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
  using namespace RISCVII;
  static const std::pair<unsigned, const char *> TargetFlags[] = {
      {MO_CALL, "riscv-call"},
      {MO_PLT, "riscv-plt"},
      {MO_LO, "riscv-lo"},
      {MO_HI, "riscv-hi"},
      {MO_PCREL_LO, "riscv-pcrel-lo"},
      {MO_PCREL_HI, "riscv-pcrel-hi"},
      {MO_GOT_HI, "riscv-got-hi"},
      {MO_TPREL_LO, "riscv-tprel-lo"},
      {MO_TPREL_HI, "riscv-tprel-hi"},
      {MO_TPREL_ADD, "riscv-tprel-add"},
      {MO_TLS_GOT_HI, "riscv-tls-got-hi"},
      {MO_TLS_GD_HI, "riscv-tls-gd-hi"}};
  return makeArrayRef(TargetFlags);
}
bool RISCVInstrInfo::isFunctionSafeToOutlineFrom(
    MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
  const Function &F = MF.getFunction();

  // Can F be deduplicated by the linker? If it can, don't outline from it.
  if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
    return false;

  // Don't outline from functions with section markings; the program could
  // expect that all the code is in the named section.
  if (F.hasSection())
    return false;

  // It's safe to outline from MF.
  return true;
}

bool RISCVInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
                                            unsigned &Flags) const {
  // More accurate safety checking is done in getOutliningCandidateInfo.
  return true;
}

// Enum values indicating how an outlined call should be constructed.
enum MachineOutlinerConstructionID {
  MachineOutlinerDefault
};

outliner::OutlinedFunction RISCVInstrInfo::getOutliningCandidateInfo(
    std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {

  // First we need to filter out candidates where the X5 register (IE t0) can't
  // be used to setup the function call.
  auto CannotInsertCall = [](outliner::Candidate &C) {
    const TargetRegisterInfo *TRI = C.getMF()->getSubtarget().getRegisterInfo();

    C.initLRU(*TRI);
    LiveRegUnits LRU = C.LRU;
    return !LRU.available(RISCV::X5);
  };

  RepeatedSequenceLocs.erase(std::remove_if(RepeatedSequenceLocs.begin(),
                                            RepeatedSequenceLocs.end(),
                                            CannotInsertCall),
                             RepeatedSequenceLocs.end());

  // If the sequence doesn't have enough candidates left, then we're done.
  if (RepeatedSequenceLocs.size() < 2)
    return outliner::OutlinedFunction();

  unsigned SequenceSize = 0;

  auto I = RepeatedSequenceLocs[0].front();
  auto E = std::next(RepeatedSequenceLocs[0].back());
  for (; I != E; ++I)
    SequenceSize += getInstSizeInBytes(*I);

  // call t0, function = 8 bytes.
  unsigned CallOverhead = 8;
  for (auto &C : RepeatedSequenceLocs)
    C.setCallInfo(MachineOutlinerDefault, CallOverhead);

  // jr t0 = 4 bytes, 2 bytes if compressed instructions are enabled.
  unsigned FrameOverhead = 4;
  if (RepeatedSequenceLocs[0].getMF()->getSubtarget()
          .getFeatureBits()[RISCV::FeatureStdExtC])
    FrameOverhead = 2;

  return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
                                    FrameOverhead, MachineOutlinerDefault);
}

outliner::InstrType
RISCVInstrInfo::getOutliningType(MachineBasicBlock::iterator &MBBI,
                                 unsigned Flags) const {
  MachineInstr &MI = *MBBI;
  MachineBasicBlock *MBB = MI.getParent();
  const TargetRegisterInfo *TRI =
      MBB->getParent()->getSubtarget().getRegisterInfo();

  // Positions generally can't safely be outlined.
  if (MI.isPosition()) {
    // We can manually strip out CFI instructions later.
    if (MI.isCFIInstruction())
      return outliner::InstrType::Invisible;

    return outliner::InstrType::Illegal;
  }

  // Don't trust the user to write safe inline assembly.
  if (MI.isInlineAsm())
    return outliner::InstrType::Illegal;

  // We can't outline branches to other basic blocks.
  if (MI.isTerminator() && !MBB->succ_empty())
    return outliner::InstrType::Illegal;

  // We need support for tail calls to outlined functions before return
  // statements can be allowed.
  if (MI.isReturn())
    return outliner::InstrType::Illegal;

  // Don't allow modifying the X5 register which we use for return addresses for
  // these outlined functions.
  if (MI.modifiesRegister(RISCV::X5, TRI) ||
      MI.getDesc().hasImplicitDefOfPhysReg(RISCV::X5))
    return outliner::InstrType::Illegal;

  // Make sure the operands don't reference something unsafe.
  for (const auto &MO : MI.operands())
    if (MO.isMBB() || MO.isBlockAddress() || MO.isCPI())
      return outliner::InstrType::Illegal;

  // Don't allow instructions which won't be materialized to impact outlining
  // analysis.
  if (MI.isMetaInstruction())
    return outliner::InstrType::Invisible;

  return outliner::InstrType::Legal;
}

void RISCVInstrInfo::buildOutlinedFrame(
    MachineBasicBlock &MBB, MachineFunction &MF,
    const outliner::OutlinedFunction &OF) const {

  // Strip out any CFI instructions
  bool Changed = true;
  while (Changed) {
    Changed = false;
    auto I = MBB.begin();
    auto E = MBB.end();
    for (; I != E; ++I) {
      if (I->isCFIInstruction()) {
        I->removeFromParent();
        Changed = true;
        break;
      }
    }
  }

  MBB.addLiveIn(RISCV::X5);

  // Add in a return instruction to the end of the outlined frame.
  MBB.insert(MBB.end(), BuildMI(MF, DebugLoc(), get(RISCV::JALR))
      .addReg(RISCV::X0, RegState::Define)
      .addReg(RISCV::X5)
      .addImm(0));
}

MachineBasicBlock::iterator RISCVInstrInfo::insertOutlinedCall(
    Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
    MachineFunction &MF, const outliner::Candidate &C) const {

  // Add in a call instruction to the outlined function at the given location.
  It = MBB.insert(It,
                  BuildMI(MF, DebugLoc(), get(RISCV::PseudoCALLReg), RISCV::X5)
                      .addGlobalAddress(M.getNamedValue(MF.getName()), 0,
                                        RISCVII::MO_CALL));
  return It;
}