Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
/*-
 * Copyright (C) 2010-2014 Nathan Whitehorn
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <stand.h>
#include <sys/endian.h>
#include <sys/param.h>
#include <fdt_platform.h>

#include <machine/cpufunc.h>
#include <bootstrap.h>
#include "host_syscall.h"


struct arch_switch	archsw;
extern void *_end;

int kboot_getdev(void **vdev, const char *devspec, const char **path);
ssize_t kboot_copyin(const void *src, vm_offset_t dest, const size_t len);
ssize_t kboot_copyout(vm_offset_t src, void *dest, const size_t len);
ssize_t kboot_readin(readin_handle_t fd, vm_offset_t dest, const size_t len);
int kboot_autoload(void);
uint64_t kboot_loadaddr(u_int type, void *data, uint64_t addr);
int kboot_setcurrdev(struct env_var *ev, int flags, const void *value);
static void kboot_kseg_get(int *nseg, void **ptr);

extern int command_fdt_internal(int argc, char *argv[]);

struct region_desc {
	uint64_t start;
	uint64_t end;
};

static uint64_t
kboot_get_phys_load_segment(void)
{
	int fd;
	uint64_t entry[2];
	static uint64_t load_segment = ~(0UL);
	uint64_t val_64;
	uint32_t val_32;
	struct region_desc rsvd_reg[32];
	int rsvd_reg_cnt = 0;
	int ret, a, b;
	uint64_t start, end;

	if (load_segment == ~(0UL)) {

		/* Default load address is 0x00000000 */
		load_segment = 0UL;

		/* Read reserved regions */
		fd = host_open("/proc/device-tree/reserved-ranges", O_RDONLY, 0);
		if (fd >= 0) {
			while (host_read(fd, &entry[0], sizeof(entry)) == sizeof(entry)) {
				rsvd_reg[rsvd_reg_cnt].start = be64toh(entry[0]);
				rsvd_reg[rsvd_reg_cnt].end =
				    be64toh(entry[1]) + rsvd_reg[rsvd_reg_cnt].start - 1;
				rsvd_reg_cnt++;
			}
			host_close(fd);
		}
		/* Read where the kernel ends */
		fd = host_open("/proc/device-tree/chosen/linux,kernel-end", O_RDONLY, 0);
		if (fd >= 0) {
			ret = host_read(fd, &val_64, sizeof(val_64));

			if (ret == sizeof(uint64_t)) {
				rsvd_reg[rsvd_reg_cnt].start = 0;
				rsvd_reg[rsvd_reg_cnt].end = be64toh(val_64) - 1;
			} else {
				memcpy(&val_32, &val_64, sizeof(val_32));
				rsvd_reg[rsvd_reg_cnt].start = 0;
				rsvd_reg[rsvd_reg_cnt].end = be32toh(val_32) - 1;
			}
			rsvd_reg_cnt++;

			host_close(fd);
		}
		/* Read memory size (SOCKET0 only) */
		fd = host_open("/proc/device-tree/memory@0/reg", O_RDONLY, 0);
		if (fd < 0)
			fd = host_open("/proc/device-tree/memory/reg", O_RDONLY, 0);
		if (fd >= 0) {
			ret = host_read(fd, &entry, sizeof(entry));

			/* Memory range in start:length format */
			entry[0] = be64toh(entry[0]);
			entry[1] = be64toh(entry[1]);

			/* Reserve everything what is before start */
			if (entry[0] != 0) {
				rsvd_reg[rsvd_reg_cnt].start = 0;
				rsvd_reg[rsvd_reg_cnt].end = entry[0] - 1;
				rsvd_reg_cnt++;
			}
			/* Reserve everything what is after end */
			if (entry[1] != 0xffffffffffffffffUL) {
				rsvd_reg[rsvd_reg_cnt].start = entry[0] + entry[1];
				rsvd_reg[rsvd_reg_cnt].end = 0xffffffffffffffffUL;
				rsvd_reg_cnt++;
			}

			host_close(fd);
		}

		/* Sort entries in ascending order (bubble) */
		for (a = rsvd_reg_cnt - 1; a > 0; a--) {
			for (b = 0; b < a; b++) {
				if (rsvd_reg[b].start > rsvd_reg[b + 1].start) {
					struct region_desc tmp;
					tmp = rsvd_reg[b];
					rsvd_reg[b] = rsvd_reg[b + 1];
					rsvd_reg[b + 1] = tmp;
				}
			}
		}

		/* Join overlapping/adjacent regions */
		for (a = 0; a < rsvd_reg_cnt - 1; ) {

			if ((rsvd_reg[a + 1].start >= rsvd_reg[a].start) &&
			    ((rsvd_reg[a + 1].start - 1) <= rsvd_reg[a].end)) {
				/* We have overlapping/adjacent regions! */
				rsvd_reg[a].end =
				    MAX(rsvd_reg[a].end, rsvd_reg[a + a].end);

				for (b = a + 1; b < rsvd_reg_cnt - 1; b++)
					rsvd_reg[b] = rsvd_reg[b + 1];
				rsvd_reg_cnt--;
			} else
				a++;
		}

		/* Find the first free region */
		if (rsvd_reg_cnt > 0) {
			start = 0;
			end = rsvd_reg[0].start;
			for (a = 0; a < rsvd_reg_cnt - 1; a++) {
				if ((start >= rsvd_reg[a].start) &&
				    (start <= rsvd_reg[a].end)) {
					start = rsvd_reg[a].end + 1;
					end = rsvd_reg[a + 1].start;
				} else
					break;
			}

			if (start != end) {
				uint64_t align = 64UL*1024UL*1024UL;

				/* Align both to 64MB boundary */
				start = (start + align - 1UL) & ~(align - 1UL);
				end = ((end + 1UL) & ~(align - 1UL)) - 1UL;

				if (start < end)
					load_segment = start;
			}
		}
	}

	return (load_segment);
}

uint8_t
kboot_get_kernel_machine_bits(void)
{
	static uint8_t bits = 0;
	struct old_utsname utsname;
	int ret;

	if (bits == 0) {
		/* Default is 32-bit kernel */
		bits = 32;

		/* Try to get system type */
		memset(&utsname, 0, sizeof(utsname));
		ret = host_uname(&utsname);
		if (ret == 0) {
			if (strcmp(utsname.machine, "ppc64") == 0)
				bits = 64;
			else if (strcmp(utsname.machine, "ppc64le") == 0)
				bits = 64;
		}
	}

	return (bits);
}

int
kboot_getdev(void **vdev, const char *devspec, const char **path)
{
	int i;
	const char *devpath, *filepath;
	struct devsw *dv;
	struct devdesc *desc;

	if (strchr(devspec, ':') != NULL) {
		devpath = devspec;
		filepath = strchr(devspec, ':') + 1;
	} else {
		devpath = getenv("currdev");
		filepath = devspec;
	}

	for (i = 0; (dv = devsw[i]) != NULL; i++) {
		if (strncmp(dv->dv_name, devpath, strlen(dv->dv_name)) == 0)
			goto found;
	}
	return (ENOENT);

found:
	if (path != NULL && filepath != NULL)
		*path = filepath;
	else if (path != NULL)
		*path = strchr(devspec, ':') + 1;

	if (vdev != NULL) {
		desc = malloc(sizeof(*desc));
		desc->d_dev = dv;
		desc->d_unit = 0;
		desc->d_opendata = strdup(devpath);
		*vdev = desc;
	}

	return (0);
}

int
main(int argc, const char **argv)
{
	void *heapbase;
	const size_t heapsize = 15*1024*1024;
	const char *bootdev;

	/*
	 * Set the heap to one page after the end of the loader.
	 */
	heapbase = host_getmem(heapsize);
	setheap(heapbase, heapbase + heapsize);

	/*
	 * Set up console.
	 */
	cons_probe();

	/* Choose bootdev if provided */
	if (argc > 1)
		bootdev = argv[1];
	else
		bootdev = "";

	printf("Boot device: %s\n", bootdev);

	archsw.arch_getdev = kboot_getdev;
	archsw.arch_copyin = kboot_copyin;
	archsw.arch_copyout = kboot_copyout;
	archsw.arch_readin = kboot_readin;
	archsw.arch_autoload = kboot_autoload;
	archsw.arch_loadaddr = kboot_loadaddr;
	archsw.arch_kexec_kseg_get = kboot_kseg_get;

	printf("\n%s", bootprog_info);

	setenv("currdev", bootdev, 1);
	setenv("loaddev", bootdev, 1);
	setenv("LINES", "24", 1);
	setenv("usefdt", "1", 1);

	interact();			/* doesn't return */

	return (0);
}

void
exit(int code)
{
	while (1); /* XXX: host_exit */
	__unreachable();
}

void
delay(int usecs)
{
	struct host_timeval tvi, tv;
	uint64_t ti, t;
	host_gettimeofday(&tvi, NULL);
	ti = tvi.tv_sec*1000000 + tvi.tv_usec;
	do {
		host_gettimeofday(&tv, NULL);
		t = tv.tv_sec*1000000 + tv.tv_usec;
	} while (t < ti + usecs);
}

time_t
getsecs(void)
{
	struct host_timeval tv;
	host_gettimeofday(&tv, NULL);
	return (tv.tv_sec);
}

time_t
time(time_t *tloc)
{
	time_t rv;
	
	rv = getsecs();
	if (tloc != NULL)
		*tloc = rv;

	return (rv);
}

struct kexec_segment {
	void *buf;
	int bufsz;
	void *mem;
	int memsz;
};

struct kexec_segment loaded_segments[128];
int nkexec_segments = 0;

static ssize_t
get_phys_buffer(vm_offset_t dest, const size_t len, void **buf)
{
	int i = 0;
	const size_t segsize = 4*1024*1024;

	for (i = 0; i < nkexec_segments; i++) {
		if (dest >= (vm_offset_t)loaded_segments[i].mem &&
		    dest < (vm_offset_t)loaded_segments[i].mem +
		    loaded_segments[i].memsz)
			goto out;
	}

	loaded_segments[nkexec_segments].buf = host_getmem(segsize);
	loaded_segments[nkexec_segments].bufsz = segsize;
	loaded_segments[nkexec_segments].mem = (void *)rounddown2(dest,segsize);
	loaded_segments[nkexec_segments].memsz = segsize;

	i = nkexec_segments;
	nkexec_segments++;

out:
	*buf = loaded_segments[i].buf + (dest -
	    (vm_offset_t)loaded_segments[i].mem);
	return (min(len,loaded_segments[i].bufsz - (dest -
	    (vm_offset_t)loaded_segments[i].mem)));
}

ssize_t
kboot_copyin(const void *src, vm_offset_t dest, const size_t len)
{
	ssize_t segsize, remainder;
	void *destbuf;

	remainder = len;
	do {
		segsize = get_phys_buffer(dest, remainder, &destbuf);
		bcopy(src, destbuf, segsize);
		remainder -= segsize;
		src += segsize;
		dest += segsize;
	} while (remainder > 0);

	return (len);
}

ssize_t
kboot_copyout(vm_offset_t src, void *dest, const size_t len)
{
	ssize_t segsize, remainder;
	void *srcbuf;

	remainder = len;
	do {
		segsize = get_phys_buffer(src, remainder, &srcbuf);
		bcopy(srcbuf, dest, segsize);
		remainder -= segsize;
		src += segsize;
		dest += segsize;
	} while (remainder > 0);

	return (len);
}

ssize_t
kboot_readin(readin_handle_t fd, vm_offset_t dest, const size_t len)
{
	void            *buf;
	size_t          resid, chunk, get;
	ssize_t         got;
	vm_offset_t     p;

	p = dest;

	chunk = min(PAGE_SIZE, len);
	buf = malloc(chunk);
	if (buf == NULL) {
		printf("kboot_readin: buf malloc failed\n");
		return (0);
	}

	for (resid = len; resid > 0; resid -= got, p += got) {
		get = min(chunk, resid);
		got = VECTX_READ(fd, buf, get);
		if (got <= 0) {
			if (got < 0)
				printf("kboot_readin: read failed\n");
			break;
		}

		kboot_copyin(buf, p, got);
	}

	free (buf);
	return (len - resid);
}

int
kboot_autoload(void)
{

	return (0);
}

uint64_t
kboot_loadaddr(u_int type, void *data, uint64_t addr)
{

	if (type == LOAD_ELF)
		addr = roundup(addr, PAGE_SIZE);
	else
		addr += kboot_get_phys_load_segment();

	return (addr);
}

static void
kboot_kseg_get(int *nseg, void **ptr)
{
#if 0
	int a;

	for (a = 0; a < nkexec_segments; a++) {
		printf("kseg_get: %jx %jx %jx %jx\n",
			(uintmax_t)loaded_segments[a].buf,
			(uintmax_t)loaded_segments[a].bufsz,
			(uintmax_t)loaded_segments[a].mem,
			(uintmax_t)loaded_segments[a].memsz);
	}
#endif

	*nseg = nkexec_segments;
	*ptr = &loaded_segments[0];
}

void
_start(int argc, const char **argv, char **env)
{
// This makes error "variable 'sp' is uninitialized" be just a warning on clang.
// Initializing 'sp' is not desired here as it would overwrite "r1" original value
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic warning "-Wuninitialized"
#endif
	register volatile void **sp asm("r1");
	main((int)sp[0], (const char **)&sp[1]);
#if defined(__clang__)
#pragma clang diagnostic pop
#endif

}

/*
 * Since proper fdt command handling function is defined in fdt_loader_cmd.c,
 * and declaring it as extern is in contradiction with COMMAND_SET() macro
 * (which uses static pointer), we're defining wrapper function, which
 * calls the proper fdt handling routine.
 */
static int
command_fdt(int argc, char *argv[])
{

	return (command_fdt_internal(argc, argv));
}
        
COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);