Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
/*-
 * SPDX-License-Identifier: BSD-3-Clause
 *
 * Copyright (c) 1990 William Jolitz.
 * Copyright (c) 1991 The Regents of the University of California.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/domainset.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/sysent.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <sys/signalvar.h>
#include <vm/uma.h>

#include <machine/cputypes.h>
#include <machine/frame.h>
#include <machine/intr_machdep.h>
#include <machine/md_var.h>
#include <machine/pcb.h>
#include <machine/psl.h>
#include <machine/resource.h>
#include <machine/specialreg.h>
#include <machine/segments.h>
#include <machine/ucontext.h>
#include <x86/ifunc.h>

/*
 * Floating point support.
 */

#if defined(__GNUCLIKE_ASM) && !defined(lint)

#define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
#define	fnclex()		__asm __volatile("fnclex")
#define	fninit()		__asm __volatile("fninit")
#define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
#define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
#define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
#define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
#define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
#define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))

static __inline void
xrstor32(char *addr, uint64_t mask)
{
	uint32_t low, hi;

	low = mask;
	hi = mask >> 32;
	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
}

static __inline void
xrstor64(char *addr, uint64_t mask)
{
	uint32_t low, hi;

	low = mask;
	hi = mask >> 32;
	__asm __volatile("xrstor64 %0" : : "m" (*addr), "a" (low), "d" (hi));
}

static __inline void
xsave32(char *addr, uint64_t mask)
{
	uint32_t low, hi;

	low = mask;
	hi = mask >> 32;
	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
	    "memory");
}

static __inline void
xsave64(char *addr, uint64_t mask)
{
	uint32_t low, hi;

	low = mask;
	hi = mask >> 32;
	__asm __volatile("xsave64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
	    "memory");
}

static __inline void
xsaveopt32(char *addr, uint64_t mask)
{
	uint32_t low, hi;

	low = mask;
	hi = mask >> 32;
	__asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
	    "memory");
}

static __inline void
xsaveopt64(char *addr, uint64_t mask)
{
	uint32_t low, hi;

	low = mask;
	hi = mask >> 32;
	__asm __volatile("xsaveopt64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
	    "memory");
}

#else	/* !(__GNUCLIKE_ASM && !lint) */

void	fldcw(u_short cw);
void	fnclex(void);
void	fninit(void);
void	fnstcw(caddr_t addr);
void	fnstsw(caddr_t addr);
void	fxsave(caddr_t addr);
void	fxrstor(caddr_t addr);
void	ldmxcsr(u_int csr);
void	stmxcsr(u_int *csr);
void	xrstor32(char *addr, uint64_t mask);
void	xrstor64(char *addr, uint64_t mask);
void	xsave32(char *addr, uint64_t mask);
void	xsave64(char *addr, uint64_t mask);
void	xsaveopt32(char *addr, uint64_t mask);
void	xsaveopt64(char *addr, uint64_t mask);

#endif	/* __GNUCLIKE_ASM && !lint */

#define	start_emulating()	load_cr0(rcr0() | CR0_TS)
#define	stop_emulating()	clts()

CTASSERT(sizeof(struct savefpu) == 512);
CTASSERT(sizeof(struct xstate_hdr) == 64);
CTASSERT(sizeof(struct savefpu_ymm) == 832);

/*
 * This requirement is to make it easier for asm code to calculate
 * offset of the fpu save area from the pcb address. FPU save area
 * must be 64-byte aligned.
 */
CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);

/*
 * Ensure the copy of XCR0 saved in a core is contained in the padding
 * area.
 */
CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
    X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));

static	void	fpu_clean_state(void);

SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
    SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");

int use_xsave;			/* non-static for cpu_switch.S */
uint64_t xsave_mask;		/* the same */
static	uma_zone_t fpu_save_area_zone;
static	struct savefpu *fpu_initialstate;

static struct xsave_area_elm_descr {
	u_int	offset;
	u_int	size;
} *xsave_area_desc;

static void
fpusave_xsaveopt64(void *addr)
{
	xsaveopt64((char *)addr, xsave_mask);
}

static void
fpusave_xsaveopt3264(void *addr)
{
	if (SV_CURPROC_FLAG(SV_ILP32))
		xsaveopt32((char *)addr, xsave_mask);
	else
		xsaveopt64((char *)addr, xsave_mask);
}

static void
fpusave_xsave64(void *addr)
{
	xsave64((char *)addr, xsave_mask);
}

static void
fpusave_xsave3264(void *addr)
{
	if (SV_CURPROC_FLAG(SV_ILP32))
		xsave32((char *)addr, xsave_mask);
	else
		xsave64((char *)addr, xsave_mask);
}

static void
fpurestore_xrstor64(void *addr)
{
	xrstor64((char *)addr, xsave_mask);
}

static void
fpurestore_xrstor3264(void *addr)
{
	if (SV_CURPROC_FLAG(SV_ILP32))
		xrstor32((char *)addr, xsave_mask);
	else
		xrstor64((char *)addr, xsave_mask);
}

static void
fpusave_fxsave(void *addr)
{

	fxsave((char *)addr);
}

static void
fpurestore_fxrstor(void *addr)
{

	fxrstor((char *)addr);
}

static void
init_xsave(void)
{

	if (use_xsave)
		return;
	if ((cpu_feature2 & CPUID2_XSAVE) == 0)
		return;
	use_xsave = 1;
	TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
}

DEFINE_IFUNC(, void, fpusave, (void *))
{

	init_xsave();
	if (!use_xsave)
		return (fpusave_fxsave);
	if ((cpu_stdext_feature & CPUID_EXTSTATE_XSAVEOPT) != 0) {
		return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
		    fpusave_xsaveopt64 : fpusave_xsaveopt3264);
	}
	return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
	    fpusave_xsave64 : fpusave_xsave3264);
}

DEFINE_IFUNC(, void, fpurestore, (void *))
{

	init_xsave();
	if (!use_xsave)
		return (fpurestore_fxrstor);
	return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
	    fpurestore_xrstor64 : fpurestore_xrstor3264);
}

void
fpususpend(void *addr)
{
	u_long cr0;

	cr0 = rcr0();
	stop_emulating();
	fpusave(addr);
	load_cr0(cr0);
}

void
fpuresume(void *addr)
{
	u_long cr0;

	cr0 = rcr0();
	stop_emulating();
	fninit();
	if (use_xsave)
		load_xcr(XCR0, xsave_mask);
	fpurestore(addr);
	load_cr0(cr0);
}

/*
 * Enable XSAVE if supported and allowed by user.
 * Calculate the xsave_mask.
 */
static void
fpuinit_bsp1(void)
{
	u_int cp[4];
	uint64_t xsave_mask_user;
	bool old_wp;

	if (!use_xsave)
		return;
	cpuid_count(0xd, 0x0, cp);
	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
	if ((cp[0] & xsave_mask) != xsave_mask)
		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
	xsave_mask_user = xsave_mask;
	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
	xsave_mask &= xsave_mask_user;
	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
		xsave_mask &= ~XFEATURE_AVX512;
	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
		xsave_mask &= ~XFEATURE_MPX;

	cpuid_count(0xd, 0x1, cp);
	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
		/*
		 * Patch the XSAVE instruction in the cpu_switch code
		 * to XSAVEOPT.  We assume that XSAVE encoding used
		 * REX byte, and set the bit 4 of the r/m byte.
		 *
		 * It seems that some BIOSes give control to the OS
		 * with CR0.WP already set, making the kernel text
		 * read-only before cpu_startup().
		 */
		old_wp = disable_wp();
		ctx_switch_xsave32[3] |= 0x10;
		ctx_switch_xsave[3] |= 0x10;
		restore_wp(old_wp);
	}
}

/*
 * Calculate the fpu save area size.
 */
static void
fpuinit_bsp2(void)
{
	u_int cp[4];

	if (use_xsave) {
		cpuid_count(0xd, 0x0, cp);
		cpu_max_ext_state_size = cp[1];

		/*
		 * Reload the cpu_feature2, since we enabled OSXSAVE.
		 */
		do_cpuid(1, cp);
		cpu_feature2 = cp[2];
	} else
		cpu_max_ext_state_size = sizeof(struct savefpu);
}

/*
 * Initialize the floating point unit.
 */
void
fpuinit(void)
{
	register_t saveintr;
	u_int mxcsr;
	u_short control;

	if (IS_BSP())
		fpuinit_bsp1();

	if (use_xsave) {
		load_cr4(rcr4() | CR4_XSAVE);
		load_xcr(XCR0, xsave_mask);
	}

	/*
	 * XCR0 shall be set up before CPU can report the save area size.
	 */
	if (IS_BSP())
		fpuinit_bsp2();

	/*
	 * It is too early for critical_enter() to work on AP.
	 */
	saveintr = intr_disable();
	stop_emulating();
	fninit();
	control = __INITIAL_FPUCW__;
	fldcw(control);
	mxcsr = __INITIAL_MXCSR__;
	ldmxcsr(mxcsr);
	start_emulating();
	intr_restore(saveintr);
}

/*
 * On the boot CPU we generate a clean state that is used to
 * initialize the floating point unit when it is first used by a
 * process.
 */
static void
fpuinitstate(void *arg __unused)
{
	uint64_t *xstate_bv;
	register_t saveintr;
	int cp[4], i, max_ext_n;

	/* Do potentially blocking operations before disabling interrupts. */
	fpu_save_area_zone = uma_zcreate("FPU_save_area",
	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
	    XSAVE_AREA_ALIGN - 1, 0);
	fpu_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO);
	if (use_xsave) {
		max_ext_n = flsl(xsave_mask);
		xsave_area_desc = malloc(max_ext_n * sizeof(struct
		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
	}

	saveintr = intr_disable();
	stop_emulating();

	fpusave_fxsave(fpu_initialstate);
	if (fpu_initialstate->sv_env.en_mxcsr_mask)
		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
	else
		cpu_mxcsr_mask = 0xFFBF;

	/*
	 * The fninit instruction does not modify XMM registers or x87
	 * registers (MM/ST).  The fpusave call dumped the garbage
	 * contained in the registers after reset to the initial state
	 * saved.  Clear XMM and x87 registers file image to make the
	 * startup program state and signal handler XMM/x87 register
	 * content predictable.
	 */
	bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
	bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));

	/*
	 * Create a table describing the layout of the CPU Extended
	 * Save Area.
	 */
	if (use_xsave) {
		xstate_bv = (uint64_t *)((char *)(fpu_initialstate + 1) +
		    offsetof(struct xstate_hdr, xstate_bv));
		*xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;

		/* x87 state */
		xsave_area_desc[0].offset = 0;
		xsave_area_desc[0].size = 160;
		/* XMM */
		xsave_area_desc[1].offset = 160;
		xsave_area_desc[1].size = 288 - 160;

		for (i = 2; i < max_ext_n; i++) {
			cpuid_count(0xd, i, cp);
			xsave_area_desc[i].offset = cp[1];
			xsave_area_desc[i].size = cp[0];
		}
	}

	start_emulating();
	intr_restore(saveintr);
}
/* EFIRT needs this to be initialized before we can enter our EFI environment */
SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_FIRST, fpuinitstate, NULL);

/*
 * Free coprocessor (if we have it).
 */
void
fpuexit(struct thread *td)
{

	critical_enter();
	if (curthread == PCPU_GET(fpcurthread)) {
		stop_emulating();
		fpusave(curpcb->pcb_save);
		start_emulating();
		PCPU_SET(fpcurthread, NULL);
	}
	critical_exit();
}

int
fpuformat(void)
{

	return (_MC_FPFMT_XMM);
}

/* 
 * The following mechanism is used to ensure that the FPE_... value
 * that is passed as a trapcode to the signal handler of the user
 * process does not have more than one bit set.
 * 
 * Multiple bits may be set if the user process modifies the control
 * word while a status word bit is already set.  While this is a sign
 * of bad coding, we have no choise than to narrow them down to one
 * bit, since we must not send a trapcode that is not exactly one of
 * the FPE_ macros.
 *
 * The mechanism has a static table with 127 entries.  Each combination
 * of the 7 FPU status word exception bits directly translates to a
 * position in this table, where a single FPE_... value is stored.
 * This FPE_... value stored there is considered the "most important"
 * of the exception bits and will be sent as the signal code.  The
 * precedence of the bits is based upon Intel Document "Numerical
 * Applications", Chapter "Special Computational Situations".
 *
 * The macro to choose one of these values does these steps: 1) Throw
 * away status word bits that cannot be masked.  2) Throw away the bits
 * currently masked in the control word, assuming the user isn't
 * interested in them anymore.  3) Reinsert status word bit 7 (stack
 * fault) if it is set, which cannot be masked but must be presered.
 * 4) Use the remaining bits to point into the trapcode table.
 *
 * The 6 maskable bits in order of their preference, as stated in the
 * above referenced Intel manual:
 * 1  Invalid operation (FP_X_INV)
 * 1a   Stack underflow
 * 1b   Stack overflow
 * 1c   Operand of unsupported format
 * 1d   SNaN operand.
 * 2  QNaN operand (not an exception, irrelavant here)
 * 3  Any other invalid-operation not mentioned above or zero divide
 *      (FP_X_INV, FP_X_DZ)
 * 4  Denormal operand (FP_X_DNML)
 * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
 * 6  Inexact result (FP_X_IMP) 
 */
static char fpetable[128] = {
	0,
	FPE_FLTINV,	/*  1 - INV */
	FPE_FLTUND,	/*  2 - DNML */
	FPE_FLTINV,	/*  3 - INV | DNML */
	FPE_FLTDIV,	/*  4 - DZ */
	FPE_FLTINV,	/*  5 - INV | DZ */
	FPE_FLTDIV,	/*  6 - DNML | DZ */
	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
	FPE_FLTOVF,	/*  8 - OFL */
	FPE_FLTINV,	/*  9 - INV | OFL */
	FPE_FLTUND,	/*  A - DNML | OFL */
	FPE_FLTINV,	/*  B - INV | DNML | OFL */
	FPE_FLTDIV,	/*  C - DZ | OFL */
	FPE_FLTINV,	/*  D - INV | DZ | OFL */
	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
	FPE_FLTUND,	/* 10 - UFL */
	FPE_FLTINV,	/* 11 - INV | UFL */
	FPE_FLTUND,	/* 12 - DNML | UFL */
	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
	FPE_FLTDIV,	/* 14 - DZ | UFL */
	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
	FPE_FLTOVF,	/* 18 - OFL | UFL */
	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
	FPE_FLTRES,	/* 20 - IMP */
	FPE_FLTINV,	/* 21 - INV | IMP */
	FPE_FLTUND,	/* 22 - DNML | IMP */
	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
	FPE_FLTDIV,	/* 24 - DZ | IMP */
	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
	FPE_FLTOVF,	/* 28 - OFL | IMP */
	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
	FPE_FLTUND,	/* 30 - UFL | IMP */
	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
	FPE_FLTSUB,	/* 40 - STK */
	FPE_FLTSUB,	/* 41 - INV | STK */
	FPE_FLTUND,	/* 42 - DNML | STK */
	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
	FPE_FLTDIV,	/* 44 - DZ | STK */
	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
	FPE_FLTOVF,	/* 48 - OFL | STK */
	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
	FPE_FLTUND,	/* 50 - UFL | STK */
	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
	FPE_FLTRES,	/* 60 - IMP | STK */
	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
};

/*
 * Read the FP status and control words, then generate si_code value
 * for SIGFPE.  The error code chosen will be one of the
 * FPE_... macros.  It will be sent as the second argument to old
 * BSD-style signal handlers and as "siginfo_t->si_code" (second
 * argument) to SA_SIGINFO signal handlers.
 *
 * Some time ago, we cleared the x87 exceptions with FNCLEX there.
 * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
 * usermode code which understands the FPU hardware enough to enable
 * the exceptions, can also handle clearing the exception state in the
 * handler.  The only consequence of not clearing the exception is the
 * rethrow of the SIGFPE on return from the signal handler and
 * reexecution of the corresponding instruction.
 *
 * For XMM traps, the exceptions were never cleared.
 */
int
fputrap_x87(void)
{
	struct savefpu *pcb_save;
	u_short control, status;

	critical_enter();

	/*
	 * Interrupt handling (for another interrupt) may have pushed the
	 * state to memory.  Fetch the relevant parts of the state from
	 * wherever they are.
	 */
	if (PCPU_GET(fpcurthread) != curthread) {
		pcb_save = curpcb->pcb_save;
		control = pcb_save->sv_env.en_cw;
		status = pcb_save->sv_env.en_sw;
	} else {
		fnstcw(&control);
		fnstsw(&status);
	}

	critical_exit();
	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
}

int
fputrap_sse(void)
{
	u_int mxcsr;

	critical_enter();
	if (PCPU_GET(fpcurthread) != curthread)
		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
	else
		stmxcsr(&mxcsr);
	critical_exit();
	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
}

static void
restore_fpu_curthread(struct thread *td)
{
	struct pcb *pcb;

	/*
	 * Record new context early in case frstor causes a trap.
	 */
	PCPU_SET(fpcurthread, td);

	stop_emulating();
	fpu_clean_state();
	pcb = td->td_pcb;

	if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) {
		/*
		 * This is the first time this thread has used the FPU or
		 * the PCB doesn't contain a clean FPU state.  Explicitly
		 * load an initial state.
		 *
		 * We prefer to restore the state from the actual save
		 * area in PCB instead of directly loading from
		 * fpu_initialstate, to ignite the XSAVEOPT
		 * tracking engine.
		 */
		bcopy(fpu_initialstate, pcb->pcb_save,
		    cpu_max_ext_state_size);
		fpurestore(pcb->pcb_save);
		if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
			fldcw(pcb->pcb_initial_fpucw);
		if (PCB_USER_FPU(pcb))
			set_pcb_flags(pcb, PCB_FPUINITDONE |
			    PCB_USERFPUINITDONE);
		else
			set_pcb_flags(pcb, PCB_FPUINITDONE);
	} else
		fpurestore(pcb->pcb_save);
}

/*
 * Device Not Available (DNA, #NM) exception handler.
 *
 * It would be better to switch FP context here (if curthread !=
 * fpcurthread) and not necessarily for every context switch, but it
 * is too hard to access foreign pcb's.
 */
void
fpudna(void)
{
	struct thread *td;

	td = curthread;
	/*
	 * This handler is entered with interrupts enabled, so context
	 * switches may occur before critical_enter() is executed.  If
	 * a context switch occurs, then when we regain control, our
	 * state will have been completely restored.  The CPU may
	 * change underneath us, but the only part of our context that
	 * lives in the CPU is CR0.TS and that will be "restored" by
	 * setting it on the new CPU.
	 */
	critical_enter();

	KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
	    ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
	if (__predict_false(PCPU_GET(fpcurthread) == td)) {
		/*
		 * Some virtual machines seems to set %cr0.TS at
		 * arbitrary moments.  Silently clear the TS bit
		 * regardless of the eager/lazy FPU context switch
		 * mode.
		 */
		stop_emulating();
	} else {
		if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
			panic(
		    "fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
			    PCPU_GET(fpcurthread),
			    PCPU_GET(fpcurthread)->td_tid, td, td->td_tid);
		}
		restore_fpu_curthread(td);
	}
	critical_exit();
}

void fpu_activate_sw(struct thread *td); /* Called from the context switch */
void
fpu_activate_sw(struct thread *td)
{

	if ((td->td_pflags & TDP_KTHREAD) != 0 || !PCB_USER_FPU(td->td_pcb)) {
		PCPU_SET(fpcurthread, NULL);
		start_emulating();
	} else if (PCPU_GET(fpcurthread) != td) {
		restore_fpu_curthread(td);
	}
}

void
fpudrop(void)
{
	struct thread *td;

	td = PCPU_GET(fpcurthread);
	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
	CRITICAL_ASSERT(td);
	PCPU_SET(fpcurthread, NULL);
	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
	start_emulating();
}

/*
 * Get the user state of the FPU into pcb->pcb_user_save without
 * dropping ownership (if possible).  It returns the FPU ownership
 * status.
 */
int
fpugetregs(struct thread *td)
{
	struct pcb *pcb;
	uint64_t *xstate_bv, bit;
	char *sa;
	int max_ext_n, i, owned;

	pcb = td->td_pcb;
	critical_enter();
	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
		    cpu_max_ext_state_size);
		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
		    pcb->pcb_initial_fpucw;
		fpuuserinited(td);
		critical_exit();
		return (_MC_FPOWNED_PCB);
	}
	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
		fpusave(get_pcb_user_save_pcb(pcb));
		owned = _MC_FPOWNED_FPU;
	} else {
		owned = _MC_FPOWNED_PCB;
	}
	if (use_xsave) {
		/*
		 * Handle partially saved state.
		 */
		sa = (char *)get_pcb_user_save_pcb(pcb);
		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
		    offsetof(struct xstate_hdr, xstate_bv));
		max_ext_n = flsl(xsave_mask);
		for (i = 0; i < max_ext_n; i++) {
			bit = 1ULL << i;
			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
				continue;
			bcopy((char *)fpu_initialstate +
			    xsave_area_desc[i].offset,
			    sa + xsave_area_desc[i].offset,
			    xsave_area_desc[i].size);
			*xstate_bv |= bit;
		}
	}
	critical_exit();
	return (owned);
}

void
fpuuserinited(struct thread *td)
{
	struct pcb *pcb;

	CRITICAL_ASSERT(td);
	pcb = td->td_pcb;
	if (PCB_USER_FPU(pcb))
		set_pcb_flags(pcb,
		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
	else
		set_pcb_flags(pcb, PCB_FPUINITDONE);
}

int
fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
{
	struct xstate_hdr *hdr, *ehdr;
	size_t len, max_len;
	uint64_t bv;

	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
	if (xfpustate == NULL)
		return (0);
	if (!use_xsave)
		return (EOPNOTSUPP);

	len = xfpustate_size;
	if (len < sizeof(struct xstate_hdr))
		return (EINVAL);
	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
	if (len > max_len)
		return (EINVAL);

	ehdr = (struct xstate_hdr *)xfpustate;
	bv = ehdr->xstate_bv;

	/*
	 * Avoid #gp.
	 */
	if (bv & ~xsave_mask)
		return (EINVAL);

	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);

	hdr->xstate_bv = bv;
	bcopy(xfpustate + sizeof(struct xstate_hdr),
	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));

	return (0);
}

/*
 * Set the state of the FPU.
 */
int
fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
    size_t xfpustate_size)
{
	struct pcb *pcb;
	int error;

	addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
	pcb = td->td_pcb;
	error = 0;
	critical_enter();
	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
		error = fpusetxstate(td, xfpustate, xfpustate_size);
		if (error == 0) {
			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
			fpurestore(get_pcb_user_save_td(td));
			set_pcb_flags(pcb, PCB_FPUINITDONE |
			    PCB_USERFPUINITDONE);
		}
	} else {
		error = fpusetxstate(td, xfpustate, xfpustate_size);
		if (error == 0) {
			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
			fpuuserinited(td);
		}
	}
	critical_exit();
	return (error);
}

/*
 * On AuthenticAMD processors, the fxrstor instruction does not restore
 * the x87's stored last instruction pointer, last data pointer, and last
 * opcode values, except in the rare case in which the exception summary
 * (ES) bit in the x87 status word is set to 1.
 *
 * In order to avoid leaking this information across processes, we clean
 * these values by performing a dummy load before executing fxrstor().
 */
static void
fpu_clean_state(void)
{
	static float dummy_variable = 0.0;
	u_short status;

	/*
	 * Clear the ES bit in the x87 status word if it is currently
	 * set, in order to avoid causing a fault in the upcoming load.
	 */
	fnstsw(&status);
	if (status & 0x80)
		fnclex();

	/*
	 * Load the dummy variable into the x87 stack.  This mangles
	 * the x87 stack, but we don't care since we're about to call
	 * fxrstor() anyway.
	 */
	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
}

/*
 * This really sucks.  We want the acpi version only, but it requires
 * the isa_if.h file in order to get the definitions.
 */
#include "opt_isa.h"
#ifdef DEV_ISA
#include <isa/isavar.h>
/*
 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
 */
static struct isa_pnp_id fpupnp_ids[] = {
	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
	{ 0 }
};

static int
fpupnp_probe(device_t dev)
{
	int result;

	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
	if (result <= 0)
		device_quiet(dev);
	return (result);
}

static int
fpupnp_attach(device_t dev)
{

	return (0);
}

static device_method_t fpupnp_methods[] = {
	/* Device interface */
	DEVMETHOD(device_probe,		fpupnp_probe),
	DEVMETHOD(device_attach,	fpupnp_attach),
	DEVMETHOD(device_detach,	bus_generic_detach),
	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
	DEVMETHOD(device_suspend,	bus_generic_suspend),
	DEVMETHOD(device_resume,	bus_generic_resume),
	{ 0, 0 }
};

static driver_t fpupnp_driver = {
	"fpupnp",
	fpupnp_methods,
	1,			/* no softc */
};

static devclass_t fpupnp_devclass;

DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
ISA_PNP_INFO(fpupnp_ids);
#endif	/* DEV_ISA */

static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
    "Kernel contexts for FPU state");

#define	FPU_KERN_CTX_FPUINITDONE 0x01
#define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
#define	FPU_KERN_CTX_INUSE	 0x04

struct fpu_kern_ctx {
	struct savefpu *prev;
	uint32_t flags;
	char hwstate1[];
};

static inline size_t __pure2
fpu_kern_alloc_sz(u_int max_est)
{
	return (sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN + max_est);
}

static inline int __pure2
fpu_kern_malloc_flags(u_int fpflags)
{
	return (((fpflags & FPU_KERN_NOWAIT) ? M_NOWAIT : M_WAITOK) | M_ZERO);
}

struct fpu_kern_ctx *
fpu_kern_alloc_ctx_domain(int domain, u_int flags)
{
	return (malloc_domainset(fpu_kern_alloc_sz(cpu_max_ext_state_size),
	    M_FPUKERN_CTX, DOMAINSET_PREF(domain),
	    fpu_kern_malloc_flags(flags)));
}

struct fpu_kern_ctx *
fpu_kern_alloc_ctx(u_int flags)
{
	return (malloc(fpu_kern_alloc_sz(cpu_max_ext_state_size),
	    M_FPUKERN_CTX, fpu_kern_malloc_flags(flags)));
}

void
fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
{

	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
	/* XXXKIB clear the memory ? */
	free(ctx, M_FPUKERN_CTX);
}

static struct savefpu *
fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
{
	vm_offset_t p;

	p = (vm_offset_t)&ctx->hwstate1;
	p = roundup2(p, XSAVE_AREA_ALIGN);
	return ((struct savefpu *)p);
}

void
fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
{
	struct pcb *pcb;

	pcb = td->td_pcb;
	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
	    ("ctx is required when !FPU_KERN_NOCTX"));
	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
	    ("using inuse ctx"));
	KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
	    ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));

	if ((flags & FPU_KERN_NOCTX) != 0) {
		critical_enter();
		stop_emulating();
		if (curthread == PCPU_GET(fpcurthread)) {
			fpusave(curpcb->pcb_save);
			PCPU_SET(fpcurthread, NULL);
		} else {
			KASSERT(PCPU_GET(fpcurthread) == NULL,
			    ("invalid fpcurthread"));
		}

		/*
		 * This breaks XSAVEOPT tracker, but
		 * PCB_FPUNOSAVE state is supposed to never need to
		 * save FPU context at all.
		 */
		fpurestore(fpu_initialstate);
		set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
		    PCB_FPUINITDONE);
		return;
	}
	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
		return;
	}
	critical_enter();
	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
	ctx->flags = FPU_KERN_CTX_INUSE;
	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
	fpuexit(td);
	ctx->prev = pcb->pcb_save;
	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
	set_pcb_flags(pcb, PCB_KERNFPU);
	clear_pcb_flags(pcb, PCB_FPUINITDONE);
	critical_exit();
}

int
fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
{
	struct pcb *pcb;

	pcb = td->td_pcb;

	if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
		KASSERT(PCPU_GET(fpcurthread) == NULL,
		    ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
		CRITICAL_ASSERT(td);

		clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
		start_emulating();
	} else {
		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
		    ("leaving not inuse ctx"));
		ctx->flags &= ~FPU_KERN_CTX_INUSE;

		if (is_fpu_kern_thread(0) &&
		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
			return (0);
		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
		    ("dummy ctx"));
		critical_enter();
		if (curthread == PCPU_GET(fpcurthread))
			fpudrop();
		pcb->pcb_save = ctx->prev;
	}

	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
			set_pcb_flags(pcb, PCB_FPUINITDONE);
			if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
				clear_pcb_flags(pcb, PCB_KERNFPU);
		} else if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
	} else {
		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
			set_pcb_flags(pcb, PCB_FPUINITDONE);
		else
			clear_pcb_flags(pcb, PCB_FPUINITDONE);
		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
	}
	critical_exit();
	return (0);
}

int
fpu_kern_thread(u_int flags)
{

	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
	    ("Only kthread may use fpu_kern_thread"));
	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
	    ("mangled pcb_save"));
	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));

	set_pcb_flags(curpcb, PCB_KERNFPU | PCB_KERNFPU_THR);
	return (0);
}

int
is_fpu_kern_thread(u_int flags)
{

	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
		return (0);
	return ((curpcb->pcb_flags & PCB_KERNFPU_THR) != 0);
}

/*
 * FPU save area alloc/free/init utility routines
 */
struct savefpu *
fpu_save_area_alloc(void)
{

	return (uma_zalloc(fpu_save_area_zone, M_WAITOK));
}

void
fpu_save_area_free(struct savefpu *fsa)
{

	uma_zfree(fpu_save_area_zone, fsa);
}

void
fpu_save_area_reset(struct savefpu *fsa)
{

	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
}