Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#include <sys/zfs_context.h>
#include <modes/modes.h>
#include <sys/crypto/common.h>
#include <sys/crypto/impl.h>

#ifdef HAVE_EFFICIENT_UNALIGNED_ACCESS
#include <sys/byteorder.h>
#define	UNALIGNED_POINTERS_PERMITTED
#endif

/*
 * Encrypt multiple blocks of data in CCM mode.  Decrypt for CCM mode
 * is done in another function.
 */
int
ccm_mode_encrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
    crypto_data_t *out, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	size_t remainder = length;
	size_t need = 0;
	uint8_t *datap = (uint8_t *)data;
	uint8_t *blockp;
	uint8_t *lastp;
	void *iov_or_mp;
	offset_t offset;
	uint8_t *out_data_1;
	uint8_t *out_data_2;
	size_t out_data_1_len;
	uint64_t counter;
	uint8_t *mac_buf;

	if (length + ctx->ccm_remainder_len < block_size) {
		/* accumulate bytes here and return */
		bcopy(datap,
		    (uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
		    length);
		ctx->ccm_remainder_len += length;
		ctx->ccm_copy_to = datap;
		return (CRYPTO_SUCCESS);
	}

	lastp = (uint8_t *)ctx->ccm_cb;
	crypto_init_ptrs(out, &iov_or_mp, &offset);

	mac_buf = (uint8_t *)ctx->ccm_mac_buf;

	do {
		/* Unprocessed data from last call. */
		if (ctx->ccm_remainder_len > 0) {
			need = block_size - ctx->ccm_remainder_len;

			if (need > remainder)
				return (CRYPTO_DATA_LEN_RANGE);

			bcopy(datap, &((uint8_t *)ctx->ccm_remainder)
			    [ctx->ccm_remainder_len], need);

			blockp = (uint8_t *)ctx->ccm_remainder;
		} else {
			blockp = datap;
		}

		/*
		 * do CBC MAC
		 *
		 * XOR the previous cipher block current clear block.
		 * mac_buf always contain previous cipher block.
		 */
		xor_block(blockp, mac_buf);
		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);

		/* ccm_cb is the counter block */
		encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb,
		    (uint8_t *)ctx->ccm_tmp);

		lastp = (uint8_t *)ctx->ccm_tmp;

		/*
		 * Increment counter. Counter bits are confined
		 * to the bottom 64 bits of the counter block.
		 */
#ifdef _ZFS_LITTLE_ENDIAN
		counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
		counter = htonll(counter + 1);
#else
		counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask;
		counter++;
#endif	/* _ZFS_LITTLE_ENDIAN */
		counter &= ctx->ccm_counter_mask;
		ctx->ccm_cb[1] =
		    (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;

		/*
		 * XOR encrypted counter block with the current clear block.
		 */
		xor_block(blockp, lastp);

		ctx->ccm_processed_data_len += block_size;

		crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
		    &out_data_1_len, &out_data_2, block_size);

		/* copy block to where it belongs */
		if (out_data_1_len == block_size) {
			copy_block(lastp, out_data_1);
		} else {
			bcopy(lastp, out_data_1, out_data_1_len);
			if (out_data_2 != NULL) {
				bcopy(lastp + out_data_1_len,
				    out_data_2,
				    block_size - out_data_1_len);
			}
		}
		/* update offset */
		out->cd_offset += block_size;

		/* Update pointer to next block of data to be processed. */
		if (ctx->ccm_remainder_len != 0) {
			datap += need;
			ctx->ccm_remainder_len = 0;
		} else {
			datap += block_size;
		}

		remainder = (size_t)&data[length] - (size_t)datap;

		/* Incomplete last block. */
		if (remainder > 0 && remainder < block_size) {
			bcopy(datap, ctx->ccm_remainder, remainder);
			ctx->ccm_remainder_len = remainder;
			ctx->ccm_copy_to = datap;
			goto out;
		}
		ctx->ccm_copy_to = NULL;

	} while (remainder > 0);

out:
	return (CRYPTO_SUCCESS);
}

void
calculate_ccm_mac(ccm_ctx_t *ctx, uint8_t *ccm_mac,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
{
	uint64_t counter;
	uint8_t *counterp, *mac_buf;
	int i;

	mac_buf = (uint8_t *)ctx->ccm_mac_buf;

	/* first counter block start with index 0 */
	counter = 0;
	ctx->ccm_cb[1] = (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;

	counterp = (uint8_t *)ctx->ccm_tmp;
	encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);

	/* calculate XOR of MAC with first counter block */
	for (i = 0; i < ctx->ccm_mac_len; i++) {
		ccm_mac[i] = mac_buf[i] ^ counterp[i];
	}
}

/* ARGSUSED */
int
ccm_encrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	uint8_t *lastp, *mac_buf, *ccm_mac_p, *macp = NULL;
	void *iov_or_mp;
	offset_t offset;
	uint8_t *out_data_1;
	uint8_t *out_data_2;
	size_t out_data_1_len;
	int i;

	if (out->cd_length < (ctx->ccm_remainder_len + ctx->ccm_mac_len)) {
		return (CRYPTO_DATA_LEN_RANGE);
	}

	/*
	 * When we get here, the number of bytes of payload processed
	 * plus whatever data remains, if any,
	 * should be the same as the number of bytes that's being
	 * passed in the argument during init time.
	 */
	if ((ctx->ccm_processed_data_len + ctx->ccm_remainder_len)
	    != (ctx->ccm_data_len)) {
		return (CRYPTO_DATA_LEN_RANGE);
	}

	mac_buf = (uint8_t *)ctx->ccm_mac_buf;

	if (ctx->ccm_remainder_len > 0) {

		/* ccm_mac_input_buf is not used for encryption */
		macp = (uint8_t *)ctx->ccm_mac_input_buf;
		bzero(macp, block_size);

		/* copy remainder to temporary buffer */
		bcopy(ctx->ccm_remainder, macp, ctx->ccm_remainder_len);

		/* calculate the CBC MAC */
		xor_block(macp, mac_buf);
		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);

		/* calculate the counter mode */
		lastp = (uint8_t *)ctx->ccm_tmp;
		encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, lastp);

		/* XOR with counter block */
		for (i = 0; i < ctx->ccm_remainder_len; i++) {
			macp[i] ^= lastp[i];
		}
		ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
	}

	/* Calculate the CCM MAC */
	ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
	calculate_ccm_mac(ctx, ccm_mac_p, encrypt_block);

	crypto_init_ptrs(out, &iov_or_mp, &offset);
	crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
	    &out_data_1_len, &out_data_2,
	    ctx->ccm_remainder_len + ctx->ccm_mac_len);

	if (ctx->ccm_remainder_len > 0) {

		/* copy temporary block to where it belongs */
		if (out_data_2 == NULL) {
			/* everything will fit in out_data_1 */
			bcopy(macp, out_data_1, ctx->ccm_remainder_len);
			bcopy(ccm_mac_p, out_data_1 + ctx->ccm_remainder_len,
			    ctx->ccm_mac_len);
		} else {

			if (out_data_1_len < ctx->ccm_remainder_len) {

				size_t data_2_len_used;

				bcopy(macp, out_data_1, out_data_1_len);

				data_2_len_used = ctx->ccm_remainder_len
				    - out_data_1_len;

				bcopy((uint8_t *)macp + out_data_1_len,
				    out_data_2, data_2_len_used);
				bcopy(ccm_mac_p, out_data_2 + data_2_len_used,
				    ctx->ccm_mac_len);
			} else {
				bcopy(macp, out_data_1, out_data_1_len);
				if (out_data_1_len == ctx->ccm_remainder_len) {
					/* mac will be in out_data_2 */
					bcopy(ccm_mac_p, out_data_2,
					    ctx->ccm_mac_len);
				} else {
					size_t len_not_used = out_data_1_len -
					    ctx->ccm_remainder_len;
					/*
					 * part of mac in will be in
					 * out_data_1, part of the mac will be
					 * in out_data_2
					 */
					bcopy(ccm_mac_p,
					    out_data_1 + ctx->ccm_remainder_len,
					    len_not_used);
					bcopy(ccm_mac_p + len_not_used,
					    out_data_2,
					    ctx->ccm_mac_len - len_not_used);

				}
			}
		}
	} else {
		/* copy block to where it belongs */
		bcopy(ccm_mac_p, out_data_1, out_data_1_len);
		if (out_data_2 != NULL) {
			bcopy(ccm_mac_p + out_data_1_len, out_data_2,
			    block_size - out_data_1_len);
		}
	}
	out->cd_offset += ctx->ccm_remainder_len + ctx->ccm_mac_len;
	ctx->ccm_remainder_len = 0;
	return (CRYPTO_SUCCESS);
}

/*
 * This will only deal with decrypting the last block of the input that
 * might not be a multiple of block length.
 */
static void
ccm_decrypt_incomplete_block(ccm_ctx_t *ctx,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
{
	uint8_t *datap, *outp, *counterp;
	int i;

	datap = (uint8_t *)ctx->ccm_remainder;
	outp = &((ctx->ccm_pt_buf)[ctx->ccm_processed_data_len]);

	counterp = (uint8_t *)ctx->ccm_tmp;
	encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);

	/* XOR with counter block */
	for (i = 0; i < ctx->ccm_remainder_len; i++) {
		outp[i] = datap[i] ^ counterp[i];
	}
}

/*
 * This will decrypt the cipher text.  However, the plaintext won't be
 * returned to the caller.  It will be returned when decrypt_final() is
 * called if the MAC matches
 */
/* ARGSUSED */
int
ccm_mode_decrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
    crypto_data_t *out, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	size_t remainder = length;
	size_t need = 0;
	uint8_t *datap = (uint8_t *)data;
	uint8_t *blockp;
	uint8_t *cbp;
	uint64_t counter;
	size_t pt_len, total_decrypted_len, mac_len, pm_len, pd_len;
	uint8_t *resultp;


	pm_len = ctx->ccm_processed_mac_len;

	if (pm_len > 0) {
		uint8_t *tmp;
		/*
		 * all ciphertext has been processed, just waiting for
		 * part of the value of the mac
		 */
		if ((pm_len + length) > ctx->ccm_mac_len) {
			return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
		}
		tmp = (uint8_t *)ctx->ccm_mac_input_buf;

		bcopy(datap, tmp + pm_len, length);

		ctx->ccm_processed_mac_len += length;
		return (CRYPTO_SUCCESS);
	}

	/*
	 * If we decrypt the given data, what total amount of data would
	 * have been decrypted?
	 */
	pd_len = ctx->ccm_processed_data_len;
	total_decrypted_len = pd_len + length + ctx->ccm_remainder_len;

	if (total_decrypted_len >
	    (ctx->ccm_data_len + ctx->ccm_mac_len)) {
		return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
	}

	pt_len = ctx->ccm_data_len;

	if (total_decrypted_len > pt_len) {
		/*
		 * part of the input will be the MAC, need to isolate that
		 * to be dealt with later.  The left-over data in
		 * ccm_remainder_len from last time will not be part of the
		 * MAC.  Otherwise, it would have already been taken out
		 * when this call is made last time.
		 */
		size_t pt_part = pt_len - pd_len - ctx->ccm_remainder_len;

		mac_len = length - pt_part;

		ctx->ccm_processed_mac_len = mac_len;
		bcopy(data + pt_part, ctx->ccm_mac_input_buf, mac_len);

		if (pt_part + ctx->ccm_remainder_len < block_size) {
			/*
			 * since this is last of the ciphertext, will
			 * just decrypt with it here
			 */
			bcopy(datap, &((uint8_t *)ctx->ccm_remainder)
			    [ctx->ccm_remainder_len], pt_part);
			ctx->ccm_remainder_len += pt_part;
			ccm_decrypt_incomplete_block(ctx, encrypt_block);
			ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
			ctx->ccm_remainder_len = 0;
			return (CRYPTO_SUCCESS);
		} else {
			/* let rest of the code handle this */
			length = pt_part;
		}
	} else if (length + ctx->ccm_remainder_len < block_size) {
			/* accumulate bytes here and return */
		bcopy(datap,
		    (uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
		    length);
		ctx->ccm_remainder_len += length;
		ctx->ccm_copy_to = datap;
		return (CRYPTO_SUCCESS);
	}

	do {
		/* Unprocessed data from last call. */
		if (ctx->ccm_remainder_len > 0) {
			need = block_size - ctx->ccm_remainder_len;

			if (need > remainder)
				return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);

			bcopy(datap, &((uint8_t *)ctx->ccm_remainder)
			    [ctx->ccm_remainder_len], need);

			blockp = (uint8_t *)ctx->ccm_remainder;
		} else {
			blockp = datap;
		}

		/* Calculate the counter mode, ccm_cb is the counter block */
		cbp = (uint8_t *)ctx->ccm_tmp;
		encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, cbp);

		/*
		 * Increment counter.
		 * Counter bits are confined to the bottom 64 bits
		 */
#ifdef _ZFS_LITTLE_ENDIAN
		counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
		counter = htonll(counter + 1);
#else
		counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask;
		counter++;
#endif	/* _ZFS_LITTLE_ENDIAN */
		counter &= ctx->ccm_counter_mask;
		ctx->ccm_cb[1] =
		    (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;

		/* XOR with the ciphertext */
		xor_block(blockp, cbp);

		/* Copy the plaintext to the "holding buffer" */
		resultp = (uint8_t *)ctx->ccm_pt_buf +
		    ctx->ccm_processed_data_len;
		copy_block(cbp, resultp);

		ctx->ccm_processed_data_len += block_size;

		ctx->ccm_lastp = blockp;

		/* Update pointer to next block of data to be processed. */
		if (ctx->ccm_remainder_len != 0) {
			datap += need;
			ctx->ccm_remainder_len = 0;
		} else {
			datap += block_size;
		}

		remainder = (size_t)&data[length] - (size_t)datap;

		/* Incomplete last block */
		if (remainder > 0 && remainder < block_size) {
			bcopy(datap, ctx->ccm_remainder, remainder);
			ctx->ccm_remainder_len = remainder;
			ctx->ccm_copy_to = datap;
			if (ctx->ccm_processed_mac_len > 0) {
				/*
				 * not expecting anymore ciphertext, just
				 * compute plaintext for the remaining input
				 */
				ccm_decrypt_incomplete_block(ctx,
				    encrypt_block);
				ctx->ccm_processed_data_len += remainder;
				ctx->ccm_remainder_len = 0;
			}
			goto out;
		}
		ctx->ccm_copy_to = NULL;

	} while (remainder > 0);

out:
	return (CRYPTO_SUCCESS);
}

int
ccm_decrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	size_t mac_remain, pt_len;
	uint8_t *pt, *mac_buf, *macp, *ccm_mac_p;
	int rv;

	pt_len = ctx->ccm_data_len;

	/* Make sure output buffer can fit all of the plaintext */
	if (out->cd_length < pt_len) {
		return (CRYPTO_DATA_LEN_RANGE);
	}

	pt = ctx->ccm_pt_buf;
	mac_remain = ctx->ccm_processed_data_len;
	mac_buf = (uint8_t *)ctx->ccm_mac_buf;

	macp = (uint8_t *)ctx->ccm_tmp;

	while (mac_remain > 0) {

		if (mac_remain < block_size) {
			bzero(macp, block_size);
			bcopy(pt, macp, mac_remain);
			mac_remain = 0;
		} else {
			copy_block(pt, macp);
			mac_remain -= block_size;
			pt += block_size;
		}

		/* calculate the CBC MAC */
		xor_block(macp, mac_buf);
		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
	}

	/* Calculate the CCM MAC */
	ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
	calculate_ccm_mac((ccm_ctx_t *)ctx, ccm_mac_p, encrypt_block);

	/* compare the input CCM MAC value with what we calculated */
	if (bcmp(ctx->ccm_mac_input_buf, ccm_mac_p, ctx->ccm_mac_len)) {
		/* They don't match */
		return (CRYPTO_INVALID_MAC);
	} else {
		rv = crypto_put_output_data(ctx->ccm_pt_buf, out, pt_len);
		if (rv != CRYPTO_SUCCESS)
			return (rv);
		out->cd_offset += pt_len;
	}
	return (CRYPTO_SUCCESS);
}

static int
ccm_validate_args(CK_AES_CCM_PARAMS *ccm_param, boolean_t is_encrypt_init)
{
	size_t macSize, nonceSize;
	uint8_t q;
	uint64_t maxValue;

	/*
	 * Check the length of the MAC.  The only valid
	 * lengths for the MAC are: 4, 6, 8, 10, 12, 14, 16
	 */
	macSize = ccm_param->ulMACSize;
	if ((macSize < 4) || (macSize > 16) || ((macSize % 2) != 0)) {
		return (CRYPTO_MECHANISM_PARAM_INVALID);
	}

	/* Check the nonce length.  Valid values are 7, 8, 9, 10, 11, 12, 13 */
	nonceSize = ccm_param->ulNonceSize;
	if ((nonceSize < 7) || (nonceSize > 13)) {
		return (CRYPTO_MECHANISM_PARAM_INVALID);
	}

	/* q is the length of the field storing the length, in bytes */
	q = (uint8_t)((15 - nonceSize) & 0xFF);


	/*
	 * If it is decrypt, need to make sure size of ciphertext is at least
	 * bigger than MAC len
	 */
	if ((!is_encrypt_init) && (ccm_param->ulDataSize < macSize)) {
		return (CRYPTO_MECHANISM_PARAM_INVALID);
	}

	/*
	 * Check to make sure the length of the payload is within the
	 * range of values allowed by q
	 */
	if (q < 8) {
		maxValue = (1ULL << (q * 8)) - 1;
	} else {
		maxValue = ULONG_MAX;
	}

	if (ccm_param->ulDataSize > maxValue) {
		return (CRYPTO_MECHANISM_PARAM_INVALID);
	}
	return (CRYPTO_SUCCESS);
}

/*
 * Format the first block used in CBC-MAC (B0) and the initial counter
 * block based on formatting functions and counter generation functions
 * specified in RFC 3610 and NIST publication 800-38C, appendix A
 *
 * b0 is the first block used in CBC-MAC
 * cb0 is the first counter block
 *
 * It's assumed that the arguments b0 and cb0 are preallocated AES blocks
 *
 */
static void
ccm_format_initial_blocks(uchar_t *nonce, ulong_t nonceSize,
    ulong_t authDataSize, uint8_t *b0, ccm_ctx_t *aes_ctx)
{
	uint64_t payloadSize;
	uint8_t t, q, have_adata = 0;
	size_t limit;
	int i, j, k;
	uint64_t mask = 0;
	uint8_t *cb;

	q = (uint8_t)((15 - nonceSize) & 0xFF);
	t = (uint8_t)((aes_ctx->ccm_mac_len) & 0xFF);

	/* Construct the first octet of b0 */
	if (authDataSize > 0) {
		have_adata = 1;
	}
	b0[0] = (have_adata << 6) | (((t - 2)  / 2) << 3) | (q - 1);

	/* copy the nonce value into b0 */
	bcopy(nonce, &(b0[1]), nonceSize);

	/* store the length of the payload into b0 */
	bzero(&(b0[1+nonceSize]), q);

	payloadSize = aes_ctx->ccm_data_len;
	limit = 8 < q ? 8 : q;

	for (i = 0, j = 0, k = 15; i < limit; i++, j += 8, k--) {
		b0[k] = (uint8_t)((payloadSize >> j) & 0xFF);
	}

	/* format the counter block */

	cb = (uint8_t *)aes_ctx->ccm_cb;

	cb[0] = 0x07 & (q-1); /* first byte */

	/* copy the nonce value into the counter block */
	bcopy(nonce, &(cb[1]), nonceSize);

	bzero(&(cb[1+nonceSize]), q);

	/* Create the mask for the counter field based on the size of nonce */
	q <<= 3;
	while (q-- > 0) {
		mask |= (1ULL << q);
	}

#ifdef _ZFS_LITTLE_ENDIAN
	mask = htonll(mask);
#endif
	aes_ctx->ccm_counter_mask = mask;

	/*
	 * During calculation, we start using counter block 1, we will
	 * set it up right here.
	 * We can just set the last byte to have the value 1, because
	 * even with the biggest nonce of 13, the last byte of the
	 * counter block will be used for the counter value.
	 */
	cb[15] = 0x01;
}

/*
 * Encode the length of the associated data as
 * specified in RFC 3610 and NIST publication 800-38C, appendix A
 */
static void
encode_adata_len(ulong_t auth_data_len, uint8_t *encoded, size_t *encoded_len)
{
#ifdef UNALIGNED_POINTERS_PERMITTED
	uint32_t	*lencoded_ptr;
#ifdef _LP64
	uint64_t	*llencoded_ptr;
#endif
#endif	/* UNALIGNED_POINTERS_PERMITTED */

	if (auth_data_len < ((1ULL<<16) - (1ULL<<8))) {
		/* 0 < a < (2^16-2^8) */
		*encoded_len = 2;
		encoded[0] = (auth_data_len & 0xff00) >> 8;
		encoded[1] = auth_data_len & 0xff;

	} else if ((auth_data_len >= ((1ULL<<16) - (1ULL<<8))) &&
	    (auth_data_len < (1ULL << 31))) {
		/* (2^16-2^8) <= a < 2^32 */
		*encoded_len = 6;
		encoded[0] = 0xff;
		encoded[1] = 0xfe;
#ifdef UNALIGNED_POINTERS_PERMITTED
		lencoded_ptr = (uint32_t *)&encoded[2];
		*lencoded_ptr = htonl(auth_data_len);
#else
		encoded[2] = (auth_data_len & 0xff000000) >> 24;
		encoded[3] = (auth_data_len & 0xff0000) >> 16;
		encoded[4] = (auth_data_len & 0xff00) >> 8;
		encoded[5] = auth_data_len & 0xff;
#endif	/* UNALIGNED_POINTERS_PERMITTED */

#ifdef _LP64
	} else {
		/* 2^32 <= a < 2^64 */
		*encoded_len = 10;
		encoded[0] = 0xff;
		encoded[1] = 0xff;
#ifdef UNALIGNED_POINTERS_PERMITTED
		llencoded_ptr = (uint64_t *)&encoded[2];
		*llencoded_ptr = htonl(auth_data_len);
#else
		encoded[2] = (auth_data_len & 0xff00000000000000) >> 56;
		encoded[3] = (auth_data_len & 0xff000000000000) >> 48;
		encoded[4] = (auth_data_len & 0xff0000000000) >> 40;
		encoded[5] = (auth_data_len & 0xff00000000) >> 32;
		encoded[6] = (auth_data_len & 0xff000000) >> 24;
		encoded[7] = (auth_data_len & 0xff0000) >> 16;
		encoded[8] = (auth_data_len & 0xff00) >> 8;
		encoded[9] = auth_data_len & 0xff;
#endif	/* UNALIGNED_POINTERS_PERMITTED */
#endif	/* _LP64 */
	}
}

static int
ccm_init(ccm_ctx_t *ctx, unsigned char *nonce, size_t nonce_len,
    unsigned char *auth_data, size_t auth_data_len, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	uint8_t *mac_buf, *datap, *ivp, *authp;
	size_t remainder, processed;
	uint8_t encoded_a[10]; /* max encoded auth data length is 10 octets */
	size_t encoded_a_len = 0;

	mac_buf = (uint8_t *)&(ctx->ccm_mac_buf);

	/*
	 * Format the 1st block for CBC-MAC and construct the
	 * 1st counter block.
	 *
	 * aes_ctx->ccm_iv is used for storing the counter block
	 * mac_buf will store b0 at this time.
	 */
	ccm_format_initial_blocks(nonce, nonce_len,
	    auth_data_len, mac_buf, ctx);

	/* The IV for CBC MAC for AES CCM mode is always zero */
	ivp = (uint8_t *)ctx->ccm_tmp;
	bzero(ivp, block_size);

	xor_block(ivp, mac_buf);

	/* encrypt the nonce */
	encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);

	/* take care of the associated data, if any */
	if (auth_data_len == 0) {
		return (CRYPTO_SUCCESS);
	}

	encode_adata_len(auth_data_len, encoded_a, &encoded_a_len);

	remainder = auth_data_len;

	/* 1st block: it contains encoded associated data, and some data */
	authp = (uint8_t *)ctx->ccm_tmp;
	bzero(authp, block_size);
	bcopy(encoded_a, authp, encoded_a_len);
	processed = block_size - encoded_a_len;
	if (processed > auth_data_len) {
		/* in case auth_data is very small */
		processed = auth_data_len;
	}
	bcopy(auth_data, authp+encoded_a_len, processed);
	/* xor with previous buffer */
	xor_block(authp, mac_buf);
	encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
	remainder -= processed;
	if (remainder == 0) {
		/* a small amount of associated data, it's all done now */
		return (CRYPTO_SUCCESS);
	}

	do {
		if (remainder < block_size) {
			/*
			 * There's not a block full of data, pad rest of
			 * buffer with zero
			 */
			bzero(authp, block_size);
			bcopy(&(auth_data[processed]), authp, remainder);
			datap = (uint8_t *)authp;
			remainder = 0;
		} else {
			datap = (uint8_t *)(&(auth_data[processed]));
			processed += block_size;
			remainder -= block_size;
		}

		xor_block(datap, mac_buf);
		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);

	} while (remainder > 0);

	return (CRYPTO_SUCCESS);
}

/*
 * The following function should be call at encrypt or decrypt init time
 * for AES CCM mode.
 */
int
ccm_init_ctx(ccm_ctx_t *ccm_ctx, char *param, int kmflag,
    boolean_t is_encrypt_init, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	int rv;
	CK_AES_CCM_PARAMS *ccm_param;

	if (param != NULL) {
		ccm_param = (CK_AES_CCM_PARAMS *)param;

		if ((rv = ccm_validate_args(ccm_param,
		    is_encrypt_init)) != 0) {
			return (rv);
		}

		ccm_ctx->ccm_mac_len = ccm_param->ulMACSize;
		if (is_encrypt_init) {
			ccm_ctx->ccm_data_len = ccm_param->ulDataSize;
		} else {
			ccm_ctx->ccm_data_len =
			    ccm_param->ulDataSize - ccm_ctx->ccm_mac_len;
			ccm_ctx->ccm_processed_mac_len = 0;
		}
		ccm_ctx->ccm_processed_data_len = 0;

		ccm_ctx->ccm_flags |= CCM_MODE;
	} else {
		return (CRYPTO_MECHANISM_PARAM_INVALID);
	}

	if (ccm_init(ccm_ctx, ccm_param->nonce, ccm_param->ulNonceSize,
	    ccm_param->authData, ccm_param->ulAuthDataSize, block_size,
	    encrypt_block, xor_block) != 0) {
		return (CRYPTO_MECHANISM_PARAM_INVALID);
	}
	if (!is_encrypt_init) {
		/* allocate buffer for storing decrypted plaintext */
		ccm_ctx->ccm_pt_buf = vmem_alloc(ccm_ctx->ccm_data_len,
		    kmflag);
		if (ccm_ctx->ccm_pt_buf == NULL) {
			rv = CRYPTO_HOST_MEMORY;
		}
	}
	return (rv);
}

void *
ccm_alloc_ctx(int kmflag)
{
	ccm_ctx_t *ccm_ctx;

	if ((ccm_ctx = kmem_zalloc(sizeof (ccm_ctx_t), kmflag)) == NULL)
		return (NULL);

	ccm_ctx->ccm_flags = CCM_MODE;
	return (ccm_ctx);
}