Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
 * Copyright (c) 2019 by Delphix. All rights reserved.
 */

/*
 * See abd.c for a general overview of the arc buffered data (ABD).
 *
 * Linear buffers act exactly like normal buffers and are always mapped into the
 * kernel's virtual memory space, while scattered ABD data chunks are allocated
 * as physical pages and then mapped in only while they are actually being
 * accessed through one of the abd_* library functions. Using scattered ABDs
 * provides several benefits:
 *
 *  (1) They avoid use of kmem_*, preventing performance problems where running
 *      kmem_reap on very large memory systems never finishes and causes
 *      constant TLB shootdowns.
 *
 *  (2) Fragmentation is less of an issue since when we are at the limit of
 *      allocatable space, we won't have to search around for a long free
 *      hole in the VA space for large ARC allocations. Each chunk is mapped in
 *      individually, so even if we are using HIGHMEM (see next point) we
 *      wouldn't need to worry about finding a contiguous address range.
 *
 *  (3) If we are not using HIGHMEM, then all physical memory is always
 *      mapped into the kernel's address space, so we also avoid the map /
 *      unmap costs on each ABD access.
 *
 * If we are not using HIGHMEM, scattered buffers which have only one chunk
 * can be treated as linear buffers, because they are contiguous in the
 * kernel's virtual address space.  See abd_alloc_chunks() for details.
 */

#include <sys/abd_impl.h>
#include <sys/param.h>
#include <sys/zio.h>
#include <sys/arc.h>
#include <sys/zfs_context.h>
#include <sys/zfs_znode.h>
#ifdef _KERNEL
#include <linux/kmap_compat.h>
#include <linux/scatterlist.h>
#else
#define	MAX_ORDER	1
#endif

typedef struct abd_stats {
	kstat_named_t abdstat_struct_size;
	kstat_named_t abdstat_linear_cnt;
	kstat_named_t abdstat_linear_data_size;
	kstat_named_t abdstat_scatter_cnt;
	kstat_named_t abdstat_scatter_data_size;
	kstat_named_t abdstat_scatter_chunk_waste;
	kstat_named_t abdstat_scatter_orders[MAX_ORDER];
	kstat_named_t abdstat_scatter_page_multi_chunk;
	kstat_named_t abdstat_scatter_page_multi_zone;
	kstat_named_t abdstat_scatter_page_alloc_retry;
	kstat_named_t abdstat_scatter_sg_table_retry;
} abd_stats_t;

static abd_stats_t abd_stats = {
	/* Amount of memory occupied by all of the abd_t struct allocations */
	{ "struct_size",			KSTAT_DATA_UINT64 },
	/*
	 * The number of linear ABDs which are currently allocated, excluding
	 * ABDs which don't own their data (for instance the ones which were
	 * allocated through abd_get_offset() and abd_get_from_buf()). If an
	 * ABD takes ownership of its buf then it will become tracked.
	 */
	{ "linear_cnt",				KSTAT_DATA_UINT64 },
	/* Amount of data stored in all linear ABDs tracked by linear_cnt */
	{ "linear_data_size",			KSTAT_DATA_UINT64 },
	/*
	 * The number of scatter ABDs which are currently allocated, excluding
	 * ABDs which don't own their data (for instance the ones which were
	 * allocated through abd_get_offset()).
	 */
	{ "scatter_cnt",			KSTAT_DATA_UINT64 },
	/* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
	{ "scatter_data_size",			KSTAT_DATA_UINT64 },
	/*
	 * The amount of space wasted at the end of the last chunk across all
	 * scatter ABDs tracked by scatter_cnt.
	 */
	{ "scatter_chunk_waste",		KSTAT_DATA_UINT64 },
	/*
	 * The number of compound allocations of a given order.  These
	 * allocations are spread over all currently allocated ABDs, and
	 * act as a measure of memory fragmentation.
	 */
	{ { "scatter_order_N",			KSTAT_DATA_UINT64 } },
	/*
	 * The number of scatter ABDs which contain multiple chunks.
	 * ABDs are preferentially allocated from the minimum number of
	 * contiguous multi-page chunks, a single chunk is optimal.
	 */
	{ "scatter_page_multi_chunk",		KSTAT_DATA_UINT64 },
	/*
	 * The number of scatter ABDs which are split across memory zones.
	 * ABDs are preferentially allocated using pages from a single zone.
	 */
	{ "scatter_page_multi_zone",		KSTAT_DATA_UINT64 },
	/*
	 *  The total number of retries encountered when attempting to
	 *  allocate the pages to populate the scatter ABD.
	 */
	{ "scatter_page_alloc_retry",		KSTAT_DATA_UINT64 },
	/*
	 *  The total number of retries encountered when attempting to
	 *  allocate the sg table for an ABD.
	 */
	{ "scatter_sg_table_retry",		KSTAT_DATA_UINT64 },
};

#define	abd_for_each_sg(abd, sg, n, i)	\
	for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i)

unsigned zfs_abd_scatter_max_order = MAX_ORDER - 1;

/*
 * zfs_abd_scatter_min_size is the minimum allocation size to use scatter
 * ABD's.  Smaller allocations will use linear ABD's which uses
 * zio_[data_]buf_alloc().
 *
 * Scatter ABD's use at least one page each, so sub-page allocations waste
 * some space when allocated as scatter (e.g. 2KB scatter allocation wastes
 * half of each page).  Using linear ABD's for small allocations means that
 * they will be put on slabs which contain many allocations.  This can
 * improve memory efficiency, but it also makes it much harder for ARC
 * evictions to actually free pages, because all the buffers on one slab need
 * to be freed in order for the slab (and underlying pages) to be freed.
 * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's
 * possible for them to actually waste more memory than scatter (one page per
 * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th).
 *
 * Spill blocks are typically 512B and are heavily used on systems running
 * selinux with the default dnode size and the `xattr=sa` property set.
 *
 * By default we use linear allocations for 512B and 1KB, and scatter
 * allocations for larger (1.5KB and up).
 */
int zfs_abd_scatter_min_size = 512 * 3;

/*
 * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are
 * just a single zero'd page. This allows us to conserve memory by
 * only using a single zero page for the scatterlist.
 */
abd_t *abd_zero_scatter = NULL;

struct page;
/*
 * abd_zero_page we will be an allocated zero'd PAGESIZE buffer, which is
 * assigned to set each of the pages of abd_zero_scatter.
 */
static struct page *abd_zero_page = NULL;

static kmem_cache_t *abd_cache = NULL;
static kstat_t *abd_ksp;

static size_t
abd_chunkcnt_for_bytes(size_t size)
{
	return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE);
}

abd_t *
abd_alloc_struct(size_t size)
{
	/*
	 * In Linux we do not use the size passed in during ABD
	 * allocation, so we just ignore it.
	 */
	abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE);
	ASSERT3P(abd, !=, NULL);
	list_link_init(&abd->abd_gang_link);
	mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL);
	ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t));

	return (abd);
}

void
abd_free_struct(abd_t *abd)
{
	mutex_destroy(&abd->abd_mtx);
	ASSERT(!list_link_active(&abd->abd_gang_link));
	kmem_cache_free(abd_cache, abd);
	ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t));
}

#ifdef _KERNEL
/*
 * Mark zfs data pages so they can be excluded from kernel crash dumps
 */
#ifdef _LP64
#define	ABD_FILE_CACHE_PAGE	0x2F5ABDF11ECAC4E

static inline void
abd_mark_zfs_page(struct page *page)
{
	get_page(page);
	SetPagePrivate(page);
	set_page_private(page, ABD_FILE_CACHE_PAGE);
}

static inline void
abd_unmark_zfs_page(struct page *page)
{
	set_page_private(page, 0UL);
	ClearPagePrivate(page);
	put_page(page);
}
#else
#define	abd_mark_zfs_page(page)
#define	abd_unmark_zfs_page(page)
#endif /* _LP64 */

#ifndef CONFIG_HIGHMEM

#ifndef __GFP_RECLAIM
#define	__GFP_RECLAIM		__GFP_WAIT
#endif

/*
 * The goal is to minimize fragmentation by preferentially populating ABDs
 * with higher order compound pages from a single zone.  Allocation size is
 * progressively decreased until it can be satisfied without performing
 * reclaim or compaction.  When necessary this function will degenerate to
 * allocating individual pages and allowing reclaim to satisfy allocations.
 */
void
abd_alloc_chunks(abd_t *abd, size_t size)
{
	struct list_head pages;
	struct sg_table table;
	struct scatterlist *sg;
	struct page *page, *tmp_page = NULL;
	gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
	gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM;
	int max_order = MIN(zfs_abd_scatter_max_order, MAX_ORDER - 1);
	int nr_pages = abd_chunkcnt_for_bytes(size);
	int chunks = 0, zones = 0;
	size_t remaining_size;
	int nid = NUMA_NO_NODE;
	int alloc_pages = 0;

	INIT_LIST_HEAD(&pages);

	while (alloc_pages < nr_pages) {
		unsigned chunk_pages;
		int order;

		order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order);
		chunk_pages = (1U << order);

		page = alloc_pages_node(nid, order ? gfp_comp : gfp, order);
		if (page == NULL) {
			if (order == 0) {
				ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
				schedule_timeout_interruptible(1);
			} else {
				max_order = MAX(0, order - 1);
			}
			continue;
		}

		list_add_tail(&page->lru, &pages);

		if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid))
			zones++;

		nid = page_to_nid(page);
		ABDSTAT_BUMP(abdstat_scatter_orders[order]);
		chunks++;
		alloc_pages += chunk_pages;
	}

	ASSERT3S(alloc_pages, ==, nr_pages);

	while (sg_alloc_table(&table, chunks, gfp)) {
		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
		schedule_timeout_interruptible(1);
	}

	sg = table.sgl;
	remaining_size = size;
	list_for_each_entry_safe(page, tmp_page, &pages, lru) {
		size_t sg_size = MIN(PAGESIZE << compound_order(page),
		    remaining_size);
		sg_set_page(sg, page, sg_size, 0);
		abd_mark_zfs_page(page);
		remaining_size -= sg_size;

		sg = sg_next(sg);
		list_del(&page->lru);
	}

	/*
	 * These conditions ensure that a possible transformation to a linear
	 * ABD would be valid.
	 */
	ASSERT(!PageHighMem(sg_page(table.sgl)));
	ASSERT0(ABD_SCATTER(abd).abd_offset);

	if (table.nents == 1) {
		/*
		 * Since there is only one entry, this ABD can be represented
		 * as a linear buffer.  All single-page (4K) ABD's can be
		 * represented this way.  Some multi-page ABD's can also be
		 * represented this way, if we were able to allocate a single
		 * "chunk" (higher-order "page" which represents a power-of-2
		 * series of physically-contiguous pages).  This is often the
		 * case for 2-page (8K) ABD's.
		 *
		 * Representing a single-entry scatter ABD as a linear ABD
		 * has the performance advantage of avoiding the copy (and
		 * allocation) in abd_borrow_buf_copy / abd_return_buf_copy.
		 * A performance increase of around 5% has been observed for
		 * ARC-cached reads (of small blocks which can take advantage
		 * of this).
		 *
		 * Note that this optimization is only possible because the
		 * pages are always mapped into the kernel's address space.
		 * This is not the case for highmem pages, so the
		 * optimization can not be made there.
		 */
		abd->abd_flags |= ABD_FLAG_LINEAR;
		abd->abd_flags |= ABD_FLAG_LINEAR_PAGE;
		abd->abd_u.abd_linear.abd_sgl = table.sgl;
		ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl));
	} else if (table.nents > 1) {
		ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
		abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;

		if (zones) {
			ABDSTAT_BUMP(abdstat_scatter_page_multi_zone);
			abd->abd_flags |= ABD_FLAG_MULTI_ZONE;
		}

		ABD_SCATTER(abd).abd_sgl = table.sgl;
		ABD_SCATTER(abd).abd_nents = table.nents;
	}
}
#else

/*
 * Allocate N individual pages to construct a scatter ABD.  This function
 * makes no attempt to request contiguous pages and requires the minimal
 * number of kernel interfaces.  It's designed for maximum compatibility.
 */
void
abd_alloc_chunks(abd_t *abd, size_t size)
{
	struct scatterlist *sg = NULL;
	struct sg_table table;
	struct page *page;
	gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
	int nr_pages = abd_chunkcnt_for_bytes(size);
	int i = 0;

	while (sg_alloc_table(&table, nr_pages, gfp)) {
		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
		schedule_timeout_interruptible(1);
	}

	ASSERT3U(table.nents, ==, nr_pages);
	ABD_SCATTER(abd).abd_sgl = table.sgl;
	ABD_SCATTER(abd).abd_nents = nr_pages;

	abd_for_each_sg(abd, sg, nr_pages, i) {
		while ((page = __page_cache_alloc(gfp)) == NULL) {
			ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
			schedule_timeout_interruptible(1);
		}

		ABDSTAT_BUMP(abdstat_scatter_orders[0]);
		sg_set_page(sg, page, PAGESIZE, 0);
		abd_mark_zfs_page(page);
	}

	if (nr_pages > 1) {
		ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
		abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
	}
}
#endif /* !CONFIG_HIGHMEM */

/*
 * This must be called if any of the sg_table allocation functions
 * are called.
 */
static void
abd_free_sg_table(abd_t *abd)
{
	struct sg_table table;

	table.sgl = ABD_SCATTER(abd).abd_sgl;
	table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents;
	sg_free_table(&table);
}

void
abd_free_chunks(abd_t *abd)
{
	struct scatterlist *sg = NULL;
	struct page *page;
	int nr_pages = ABD_SCATTER(abd).abd_nents;
	int order, i = 0;

	if (abd->abd_flags & ABD_FLAG_MULTI_ZONE)
		ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone);

	if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK)
		ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);

	abd_for_each_sg(abd, sg, nr_pages, i) {
		page = sg_page(sg);
		abd_unmark_zfs_page(page);
		order = compound_order(page);
		__free_pages(page, order);
		ASSERT3U(sg->length, <=, PAGE_SIZE << order);
		ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]);
	}
	abd_free_sg_table(abd);
}

/*
 * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in
 * the scatterlist will be set to the zero'd out buffer abd_zero_page.
 */
static void
abd_alloc_zero_scatter(void)
{
	struct scatterlist *sg = NULL;
	struct sg_table table;
	gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
	gfp_t gfp_zero_page = gfp | __GFP_ZERO;
	int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
	int i = 0;

	while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) {
		ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
		schedule_timeout_interruptible(1);
	}
	abd_mark_zfs_page(abd_zero_page);

	while (sg_alloc_table(&table, nr_pages, gfp)) {
		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
		schedule_timeout_interruptible(1);
	}
	ASSERT3U(table.nents, ==, nr_pages);

	abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
	abd_zero_scatter->abd_flags = ABD_FLAG_OWNER;
	ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
	ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl;
	ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
	abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
	abd_zero_scatter->abd_parent = NULL;
	abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
	zfs_refcount_create(&abd_zero_scatter->abd_children);

	abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
		sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
	}

	ABDSTAT_BUMP(abdstat_scatter_cnt);
	ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
	ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
}

#else /* _KERNEL */

#ifndef PAGE_SHIFT
#define	PAGE_SHIFT (highbit64(PAGESIZE)-1)
#endif

#define	zfs_kmap_atomic(chunk, km)	((void *)chunk)
#define	zfs_kunmap_atomic(addr, km)	do { (void)(addr); } while (0)
#define	local_irq_save(flags)		do { (void)(flags); } while (0)
#define	local_irq_restore(flags)	do { (void)(flags); } while (0)
#define	nth_page(pg, i) \
	((struct page *)((void *)(pg) + (i) * PAGESIZE))

struct scatterlist {
	struct page *page;
	int length;
	int end;
};

static void
sg_init_table(struct scatterlist *sg, int nr)
{
	memset(sg, 0, nr * sizeof (struct scatterlist));
	sg[nr - 1].end = 1;
}

/*
 * This must be called if any of the sg_table allocation functions
 * are called.
 */
static void
abd_free_sg_table(abd_t *abd)
{
	int nents = ABD_SCATTER(abd).abd_nents;
	vmem_free(ABD_SCATTER(abd).abd_sgl,
	    nents * sizeof (struct scatterlist));
}

#define	for_each_sg(sgl, sg, nr, i)	\
	for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg))

static inline void
sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len,
    unsigned int offset)
{
	/* currently we don't use offset */
	ASSERT(offset == 0);
	sg->page = page;
	sg->length = len;
}

static inline struct page *
sg_page(struct scatterlist *sg)
{
	return (sg->page);
}

static inline struct scatterlist *
sg_next(struct scatterlist *sg)
{
	if (sg->end)
		return (NULL);

	return (sg + 1);
}

void
abd_alloc_chunks(abd_t *abd, size_t size)
{
	unsigned nr_pages = abd_chunkcnt_for_bytes(size);
	struct scatterlist *sg;
	int i;

	ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages *
	    sizeof (struct scatterlist), KM_SLEEP);
	sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages);

	abd_for_each_sg(abd, sg, nr_pages, i) {
		struct page *p = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
		sg_set_page(sg, p, PAGESIZE, 0);
	}
	ABD_SCATTER(abd).abd_nents = nr_pages;
}

void
abd_free_chunks(abd_t *abd)
{
	int i, n = ABD_SCATTER(abd).abd_nents;
	struct scatterlist *sg;

	abd_for_each_sg(abd, sg, n, i) {
		for (int j = 0; j < sg->length; j += PAGESIZE) {
			struct page *p = nth_page(sg_page(sg), j >> PAGE_SHIFT);
			umem_free(p, PAGESIZE);
		}
	}
	abd_free_sg_table(abd);
}

static void
abd_alloc_zero_scatter(void)
{
	unsigned nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
	struct scatterlist *sg;
	int i;

	abd_zero_page = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
	memset(abd_zero_page, 0, PAGESIZE);
	abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
	abd_zero_scatter->abd_flags = ABD_FLAG_OWNER;
	abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
	ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
	ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
	abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
	abd_zero_scatter->abd_parent = NULL;
	zfs_refcount_create(&abd_zero_scatter->abd_children);
	ABD_SCATTER(abd_zero_scatter).abd_sgl = vmem_alloc(nr_pages *
	    sizeof (struct scatterlist), KM_SLEEP);

	sg_init_table(ABD_SCATTER(abd_zero_scatter).abd_sgl, nr_pages);

	abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
		sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
	}

	ABDSTAT_BUMP(abdstat_scatter_cnt);
	ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
	ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
}

#endif /* _KERNEL */

boolean_t
abd_size_alloc_linear(size_t size)
{
	return (size < zfs_abd_scatter_min_size ? B_TRUE : B_FALSE);
}

void
abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op)
{
	ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
	int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size;
	if (op == ABDSTAT_INCR) {
		ABDSTAT_BUMP(abdstat_scatter_cnt);
		ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size);
		ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste);
		arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE);
	} else {
		ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
		ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
		ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste);
		arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE);
	}
}

void
abd_update_linear_stats(abd_t *abd, abd_stats_op_t op)
{
	ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
	if (op == ABDSTAT_INCR) {
		ABDSTAT_BUMP(abdstat_linear_cnt);
		ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
	} else {
		ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
		ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
	}
}

void
abd_verify_scatter(abd_t *abd)
{
	size_t n;
	int i = 0;
	struct scatterlist *sg = NULL;

	ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0);
	ASSERT3U(ABD_SCATTER(abd).abd_offset, <,
	    ABD_SCATTER(abd).abd_sgl->length);
	n = ABD_SCATTER(abd).abd_nents;
	abd_for_each_sg(abd, sg, n, i) {
		ASSERT3P(sg_page(sg), !=, NULL);
	}
}

static void
abd_free_zero_scatter(void)
{
	zfs_refcount_destroy(&abd_zero_scatter->abd_children);
	ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
	ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE);
	ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);

	abd_free_sg_table(abd_zero_scatter);
	abd_free_struct(abd_zero_scatter);
	abd_zero_scatter = NULL;
	ASSERT3P(abd_zero_page, !=, NULL);
#if defined(_KERNEL)
	abd_unmark_zfs_page(abd_zero_page);
	__free_page(abd_zero_page);
#else
	umem_free(abd_zero_page, PAGESIZE);
#endif /* _KERNEL */
}

void
abd_init(void)
{
	int i;

	abd_cache = kmem_cache_create("abd_t", sizeof (abd_t),
	    0, NULL, NULL, NULL, NULL, NULL, 0);

	abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
	    sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
	if (abd_ksp != NULL) {
		for (i = 0; i < MAX_ORDER; i++) {
			snprintf(abd_stats.abdstat_scatter_orders[i].name,
			    KSTAT_STRLEN, "scatter_order_%d", i);
			abd_stats.abdstat_scatter_orders[i].data_type =
			    KSTAT_DATA_UINT64;
		}
		abd_ksp->ks_data = &abd_stats;
		kstat_install(abd_ksp);
	}

	abd_alloc_zero_scatter();
}

void
abd_fini(void)
{
	abd_free_zero_scatter();

	if (abd_ksp != NULL) {
		kstat_delete(abd_ksp);
		abd_ksp = NULL;
	}

	if (abd_cache) {
		kmem_cache_destroy(abd_cache);
		abd_cache = NULL;
	}
}

void
abd_free_linear_page(abd_t *abd)
{
	/* Transform it back into a scatter ABD for freeing */
	struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl;
	abd->abd_flags &= ~ABD_FLAG_LINEAR;
	abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE;
	ABD_SCATTER(abd).abd_nents = 1;
	ABD_SCATTER(abd).abd_offset = 0;
	ABD_SCATTER(abd).abd_sgl = sg;
	abd_free_chunks(abd);

	zfs_refcount_destroy(&abd->abd_children);
	abd_update_scatter_stats(abd, ABDSTAT_DECR);
	abd_free_struct(abd);
}

/*
 * If we're going to use this ABD for doing I/O using the block layer, the
 * consumer of the ABD data doesn't care if it's scattered or not, and we don't
 * plan to store this ABD in memory for a long period of time, we should
 * allocate the ABD type that requires the least data copying to do the I/O.
 *
 * On Linux the optimal thing to do would be to use abd_get_offset() and
 * construct a new ABD which shares the original pages thereby eliminating
 * the copy.  But for the moment a new linear ABD is allocated until this
 * performance optimization can be implemented.
 */
abd_t *
abd_alloc_for_io(size_t size, boolean_t is_metadata)
{
	return (abd_alloc(size, is_metadata));
}

abd_t *
abd_get_offset_scatter(abd_t *sabd, size_t off)
{
	abd_t *abd = NULL;
	int i = 0;
	struct scatterlist *sg = NULL;

	abd_verify(sabd);
	ASSERT3U(off, <=, sabd->abd_size);

	size_t new_offset = ABD_SCATTER(sabd).abd_offset + off;

	abd = abd_alloc_struct(0);

	/*
	 * Even if this buf is filesystem metadata, we only track that
	 * if we own the underlying data buffer, which is not true in
	 * this case. Therefore, we don't ever use ABD_FLAG_META here.
	 */
	abd->abd_flags = 0;

	abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) {
		if (new_offset < sg->length)
			break;
		new_offset -= sg->length;
	}

	ABD_SCATTER(abd).abd_sgl = sg;
	ABD_SCATTER(abd).abd_offset = new_offset;
	ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i;

	return (abd);
}

/*
 * Initialize the abd_iter.
 */
void
abd_iter_init(struct abd_iter *aiter, abd_t *abd)
{
	ASSERT(!abd_is_gang(abd));
	abd_verify(abd);
	aiter->iter_abd = abd;
	aiter->iter_mapaddr = NULL;
	aiter->iter_mapsize = 0;
	aiter->iter_pos = 0;
	if (abd_is_linear(abd)) {
		aiter->iter_offset = 0;
		aiter->iter_sg = NULL;
	} else {
		aiter->iter_offset = ABD_SCATTER(abd).abd_offset;
		aiter->iter_sg = ABD_SCATTER(abd).abd_sgl;
	}
}

/*
 * This is just a helper function to see if we have exhausted the
 * abd_iter and reached the end.
 */
boolean_t
abd_iter_at_end(struct abd_iter *aiter)
{
	return (aiter->iter_pos == aiter->iter_abd->abd_size);
}

/*
 * Advance the iterator by a certain amount. Cannot be called when a chunk is
 * in use. This can be safely called when the aiter has already exhausted, in
 * which case this does nothing.
 */
void
abd_iter_advance(struct abd_iter *aiter, size_t amount)
{
	ASSERT3P(aiter->iter_mapaddr, ==, NULL);
	ASSERT0(aiter->iter_mapsize);

	/* There's nothing left to advance to, so do nothing */
	if (abd_iter_at_end(aiter))
		return;

	aiter->iter_pos += amount;
	aiter->iter_offset += amount;
	if (!abd_is_linear(aiter->iter_abd)) {
		while (aiter->iter_offset >= aiter->iter_sg->length) {
			aiter->iter_offset -= aiter->iter_sg->length;
			aiter->iter_sg = sg_next(aiter->iter_sg);
			if (aiter->iter_sg == NULL) {
				ASSERT0(aiter->iter_offset);
				break;
			}
		}
	}
}

/*
 * Map the current chunk into aiter. This can be safely called when the aiter
 * has already exhausted, in which case this does nothing.
 */
void
abd_iter_map(struct abd_iter *aiter)
{
	void *paddr;
	size_t offset = 0;

	ASSERT3P(aiter->iter_mapaddr, ==, NULL);
	ASSERT0(aiter->iter_mapsize);

	/* There's nothing left to iterate over, so do nothing */
	if (abd_iter_at_end(aiter))
		return;

	if (abd_is_linear(aiter->iter_abd)) {
		ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
		offset = aiter->iter_offset;
		aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
		paddr = ABD_LINEAR_BUF(aiter->iter_abd);
	} else {
		offset = aiter->iter_offset;
		aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset,
		    aiter->iter_abd->abd_size - aiter->iter_pos);

		paddr = zfs_kmap_atomic(sg_page(aiter->iter_sg),
		    km_table[aiter->iter_km]);
	}

	aiter->iter_mapaddr = (char *)paddr + offset;
}

/*
 * Unmap the current chunk from aiter. This can be safely called when the aiter
 * has already exhausted, in which case this does nothing.
 */
void
abd_iter_unmap(struct abd_iter *aiter)
{
	/* There's nothing left to unmap, so do nothing */
	if (abd_iter_at_end(aiter))
		return;

	if (!abd_is_linear(aiter->iter_abd)) {
		/* LINTED E_FUNC_SET_NOT_USED */
		zfs_kunmap_atomic(aiter->iter_mapaddr - aiter->iter_offset,
		    km_table[aiter->iter_km]);
	}

	ASSERT3P(aiter->iter_mapaddr, !=, NULL);
	ASSERT3U(aiter->iter_mapsize, >, 0);

	aiter->iter_mapaddr = NULL;
	aiter->iter_mapsize = 0;
}

void
abd_cache_reap_now(void)
{
}

#if defined(_KERNEL)
/*
 * bio_nr_pages for ABD.
 * @off is the offset in @abd
 */
unsigned long
abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off)
{
	unsigned long pos;

	while (abd_is_gang(abd))
		abd = abd_gang_get_offset(abd, &off);

	ASSERT(!abd_is_gang(abd));
	if (abd_is_linear(abd))
		pos = (unsigned long)abd_to_buf(abd) + off;
	else
		pos = ABD_SCATTER(abd).abd_offset + off;

	return ((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) -
	    (pos >> PAGE_SHIFT);
}

static unsigned int
bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size)
{
	unsigned int offset, size, i;
	struct page *page;

	offset = offset_in_page(buf_ptr);
	for (i = 0; i < bio->bi_max_vecs; i++) {
		size = PAGE_SIZE - offset;

		if (bio_size <= 0)
			break;

		if (size > bio_size)
			size = bio_size;

		if (is_vmalloc_addr(buf_ptr))
			page = vmalloc_to_page(buf_ptr);
		else
			page = virt_to_page(buf_ptr);

		/*
		 * Some network related block device uses tcp_sendpage, which
		 * doesn't behave well when using 0-count page, this is a
		 * safety net to catch them.
		 */
		ASSERT3S(page_count(page), >, 0);

		if (bio_add_page(bio, page, size, offset) != size)
			break;

		buf_ptr += size;
		bio_size -= size;
		offset = 0;
	}

	return (bio_size);
}

/*
 * bio_map for gang ABD.
 */
static unsigned int
abd_gang_bio_map_off(struct bio *bio, abd_t *abd,
    unsigned int io_size, size_t off)
{
	ASSERT(abd_is_gang(abd));

	for (abd_t *cabd = abd_gang_get_offset(abd, &off);
	    cabd != NULL;
	    cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
		ASSERT3U(off, <, cabd->abd_size);
		int size = MIN(io_size, cabd->abd_size - off);
		int remainder = abd_bio_map_off(bio, cabd, size, off);
		io_size -= (size - remainder);
		if (io_size == 0 || remainder > 0)
			return (io_size);
		off = 0;
	}
	ASSERT0(io_size);
	return (io_size);
}

/*
 * bio_map for ABD.
 * @off is the offset in @abd
 * Remaining IO size is returned
 */
unsigned int
abd_bio_map_off(struct bio *bio, abd_t *abd,
    unsigned int io_size, size_t off)
{
	int i;
	struct abd_iter aiter;

	ASSERT3U(io_size, <=, abd->abd_size - off);
	if (abd_is_linear(abd))
		return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size));

	ASSERT(!abd_is_linear(abd));
	if (abd_is_gang(abd))
		return (abd_gang_bio_map_off(bio, abd, io_size, off));

	abd_iter_init(&aiter, abd);
	abd_iter_advance(&aiter, off);

	for (i = 0; i < bio->bi_max_vecs; i++) {
		struct page *pg;
		size_t len, sgoff, pgoff;
		struct scatterlist *sg;

		if (io_size <= 0)
			break;

		sg = aiter.iter_sg;
		sgoff = aiter.iter_offset;
		pgoff = sgoff & (PAGESIZE - 1);
		len = MIN(io_size, PAGESIZE - pgoff);
		ASSERT(len > 0);

		pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT);
		if (bio_add_page(bio, pg, len, pgoff) != len)
			break;

		io_size -= len;
		abd_iter_advance(&aiter, len);
	}

	return (io_size);
}

/* Tunable Parameters */
module_param(zfs_abd_scatter_enabled, int, 0644);
MODULE_PARM_DESC(zfs_abd_scatter_enabled,
	"Toggle whether ABD allocations must be linear.");
module_param(zfs_abd_scatter_min_size, int, 0644);
MODULE_PARM_DESC(zfs_abd_scatter_min_size,
	"Minimum size of scatter allocations.");
/* CSTYLED */
module_param(zfs_abd_scatter_max_order, uint, 0644);
MODULE_PARM_DESC(zfs_abd_scatter_max_order,
	"Maximum order allocation used for a scatter ABD.");
#endif