/*-
* SPDX-License-Identifier: ISC
*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_eeprom_v14.h"
#include "ar5416/ar5416.h"
#include "ar5416/ar5416reg.h"
#include "ar5416/ar5416phy.h"
#define N(a) (sizeof(a)/sizeof(a[0]))
struct ar2133State {
RF_HAL_FUNCS base; /* public state, must be first */
uint16_t pcdacTable[1];
uint32_t *Bank0Data;
uint32_t *Bank1Data;
uint32_t *Bank2Data;
uint32_t *Bank3Data;
uint32_t *Bank6Data;
uint32_t *Bank7Data;
/* NB: Bank*Data storage follows */
};
#define AR2133(ah) ((struct ar2133State *) AH5212(ah)->ah_rfHal)
#define ar5416ModifyRfBuffer ar5212ModifyRfBuffer /*XXX*/
void ar5416ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
uint32_t numBits, uint32_t firstBit, uint32_t column);
static void
ar2133WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
int writes)
{
(void) ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_bb_rfgain,
freqIndex, writes);
}
/*
* Fix on 2.4 GHz band for orientation sensitivity issue by increasing
* rf_pwd_icsyndiv.
*
* Theoretical Rules:
* if 2 GHz band
* if forceBiasAuto
* if synth_freq < 2412
* bias = 0
* else if 2412 <= synth_freq <= 2422
* bias = 1
* else // synth_freq > 2422
* bias = 2
* else if forceBias > 0
* bias = forceBias & 7
* else
* no change, use value from ini file
* else
* no change, invalid band
*
* 1st Mod:
* 2422 also uses value of 2
* <approved>
*
* 2nd Mod:
* Less than 2412 uses value of 0, 2412 and above uses value of 2
*/
static void
ar2133ForceBias(struct ath_hal *ah, uint16_t synth_freq)
{
uint32_t tmp_reg;
int reg_writes = 0;
uint32_t new_bias = 0;
struct ar2133State *priv = AR2133(ah);
/* XXX this is a bit of a silly check for 2.4ghz channels -adrian */
if (synth_freq >= 3000)
return;
if (synth_freq < 2412)
new_bias = 0;
else if (synth_freq < 2422)
new_bias = 1;
else
new_bias = 2;
/* pre-reverse this field */
tmp_reg = ath_hal_reverseBits(new_bias, 3);
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Force rf_pwd_icsyndiv to %1d on %4d\n",
__func__, new_bias, synth_freq);
/* swizzle rf_pwd_icsyndiv */
ar5416ModifyRfBuffer(priv->Bank6Data, tmp_reg, 3, 181, 3);
/* write Bank 6 with new params */
ath_hal_ini_bank_write(ah, &AH5416(ah)->ah_ini_bank6, priv->Bank6Data, reg_writes);
}
/*
* Take the MHz channel value and set the Channel value
*
* ASSUMES: Writes enabled to analog bus
*/
static HAL_BOOL
ar2133SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
uint32_t channelSel = 0;
uint32_t bModeSynth = 0;
uint32_t aModeRefSel = 0;
uint32_t reg32 = 0;
uint16_t freq;
CHAN_CENTERS centers;
OS_MARK(ah, AH_MARK_SETCHANNEL, chan->ic_freq);
ar5416GetChannelCenters(ah, chan, ¢ers);
freq = centers.synth_center;
if (freq < 4800) {
uint32_t txctl;
if (((freq - 2192) % 5) == 0) {
channelSel = ((freq - 672) * 2 - 3040)/10;
bModeSynth = 0;
} else if (((freq - 2224) % 5) == 0) {
channelSel = ((freq - 704) * 2 - 3040) / 10;
bModeSynth = 1;
} else {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: invalid channel %u MHz\n", __func__, freq);
return AH_FALSE;
}
channelSel = (channelSel << 2) & 0xff;
channelSel = ath_hal_reverseBits(channelSel, 8);
txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
if (freq == 2484) {
/* Enable channel spreading for channel 14 */
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
} else {
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
}
/*
* Handle programming the RF synth for odd frequencies in the
* 4.9->5GHz range. This matches the programming from the
* later model 802.11abg RF synths.
*
* This interoperates on the quarter rate channels with the
* AR5112 and later RF synths. Please note that the synthesiser
* isn't able to completely accurately represent these frequencies
* (as the resolution in this reference is 2.5MHz) and thus it will
* be slightly "off centre." This matches the same slightly
* incorrect * centre frequency behaviour that the AR5112 and later
* channel selection code has.
*
* This is disabled because it hasn't been tested for regulatory
* compliance and neither have the NICs which would use it.
* So if you enable this code, you must first ensure that you've
* re-certified the NICs in question beforehand or you will be
* violating your local regulatory rules and breaking the law.
*/
#if 0
} else if (((freq % 5) == 2) && (freq <= 5435)) {
freq = freq - 2;
channelSel = ath_hal_reverseBits(
(uint32_t) (((freq - 4800) * 10) / 25 + 1), 8);
/* XXX what about for Howl/Sowl? */
aModeRefSel = ath_hal_reverseBits(0, 2);
#endif
} else if ((freq % 20) == 0 && freq >= 5120) {
channelSel = ath_hal_reverseBits(((freq - 4800) / 20 << 2), 8);
if (AR_SREV_HOWL(ah) || AR_SREV_SOWL_10_OR_LATER(ah))
aModeRefSel = ath_hal_reverseBits(3, 2);
else
aModeRefSel = ath_hal_reverseBits(1, 2);
} else if ((freq % 10) == 0) {
channelSel = ath_hal_reverseBits(((freq - 4800) / 10 << 1), 8);
if (AR_SREV_HOWL(ah) || AR_SREV_SOWL_10_OR_LATER(ah))
aModeRefSel = ath_hal_reverseBits(2, 2);
else
aModeRefSel = ath_hal_reverseBits(1, 2);
} else if ((freq % 5) == 0) {
channelSel = ath_hal_reverseBits((freq - 4800) / 5, 8);
aModeRefSel = ath_hal_reverseBits(1, 2);
} else {
HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
"%s: invalid channel %u MHz\n",
__func__, freq);
return AH_FALSE;
}
/* Workaround for hw bug - AR5416 specific */
if (AR_SREV_OWL(ah) && ah->ah_config.ah_ar5416_biasadj)
ar2133ForceBias(ah, freq);
reg32 = (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
(1 << 5) | 0x1;
OS_REG_WRITE(ah, AR_PHY(0x37), reg32);
AH_PRIVATE(ah)->ah_curchan = chan;
return AH_TRUE;
}
/*
* Return a reference to the requested RF Bank.
*/
static uint32_t *
ar2133GetRfBank(struct ath_hal *ah, int bank)
{
struct ar2133State *priv = AR2133(ah);
HALASSERT(priv != AH_NULL);
switch (bank) {
case 1: return priv->Bank1Data;
case 2: return priv->Bank2Data;
case 3: return priv->Bank3Data;
case 6: return priv->Bank6Data;
case 7: return priv->Bank7Data;
}
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
__func__, bank);
return AH_NULL;
}
/*
* Reads EEPROM header info from device structure and programs
* all rf registers
*
* REQUIRES: Access to the analog rf device
*/
static HAL_BOOL
ar2133SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
uint16_t modesIndex, uint16_t *rfXpdGain)
{
struct ar2133State *priv = AR2133(ah);
int writes;
HALASSERT(priv);
/* Setup Bank 0 Write */
ath_hal_ini_bank_setup(priv->Bank0Data, &AH5416(ah)->ah_ini_bank0, 1);
/* Setup Bank 1 Write */
ath_hal_ini_bank_setup(priv->Bank1Data, &AH5416(ah)->ah_ini_bank1, 1);
/* Setup Bank 2 Write */
ath_hal_ini_bank_setup(priv->Bank2Data, &AH5416(ah)->ah_ini_bank2, 1);
/* Setup Bank 3 Write */
ath_hal_ini_bank_setup(priv->Bank3Data, &AH5416(ah)->ah_ini_bank3, modesIndex);
/* Setup Bank 6 Write */
ath_hal_ini_bank_setup(priv->Bank6Data, &AH5416(ah)->ah_ini_bank6, modesIndex);
/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: 2ghz: OB_2:%d, DB_2:%d\n",
__func__,
ath_hal_eepromGet(ah, AR_EEP_OB_2, AH_NULL),
ath_hal_eepromGet(ah, AR_EEP_DB_2, AH_NULL));
ar5416ModifyRfBuffer(priv->Bank6Data,
ath_hal_eepromGet(ah, AR_EEP_OB_2, AH_NULL), 3, 197, 0);
ar5416ModifyRfBuffer(priv->Bank6Data,
ath_hal_eepromGet(ah, AR_EEP_DB_2, AH_NULL), 3, 194, 0);
} else {
HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: 5ghz: OB_5:%d, DB_5:%d\n",
__func__,
ath_hal_eepromGet(ah, AR_EEP_OB_5, AH_NULL),
ath_hal_eepromGet(ah, AR_EEP_DB_5, AH_NULL));
ar5416ModifyRfBuffer(priv->Bank6Data,
ath_hal_eepromGet(ah, AR_EEP_OB_5, AH_NULL), 3, 203, 0);
ar5416ModifyRfBuffer(priv->Bank6Data,
ath_hal_eepromGet(ah, AR_EEP_DB_5, AH_NULL), 3, 200, 0);
}
/* Setup Bank 7 Setup */
ath_hal_ini_bank_setup(priv->Bank7Data, &AH5416(ah)->ah_ini_bank7, 1);
/* Write Analog registers */
writes = ath_hal_ini_bank_write(ah, &AH5416(ah)->ah_ini_bank0,
priv->Bank0Data, 0);
writes = ath_hal_ini_bank_write(ah, &AH5416(ah)->ah_ini_bank1,
priv->Bank1Data, writes);
writes = ath_hal_ini_bank_write(ah, &AH5416(ah)->ah_ini_bank2,
priv->Bank2Data, writes);
writes = ath_hal_ini_bank_write(ah, &AH5416(ah)->ah_ini_bank3,
priv->Bank3Data, writes);
writes = ath_hal_ini_bank_write(ah, &AH5416(ah)->ah_ini_bank6,
priv->Bank6Data, writes);
(void) ath_hal_ini_bank_write(ah, &AH5416(ah)->ah_ini_bank7,
priv->Bank7Data, writes);
return AH_TRUE;
#undef RF_BANK_SETUP
}
/*
* Read the transmit power levels from the structures taken from EEPROM
* Interpolate read transmit power values for this channel
* Organize the transmit power values into a table for writing into the hardware
*/
static HAL_BOOL
ar2133SetPowerTable(struct ath_hal *ah, int16_t *pPowerMin, int16_t *pPowerMax,
const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
{
return AH_TRUE;
}
#if 0
static int16_t
ar2133GetMinPower(struct ath_hal *ah, EXPN_DATA_PER_CHANNEL_5112 *data)
{
int i, minIndex;
int16_t minGain,minPwr,minPcdac,retVal;
/* Assume NUM_POINTS_XPD0 > 0 */
minGain = data->pDataPerXPD[0].xpd_gain;
for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) {
if (data->pDataPerXPD[i].xpd_gain < minGain) {
minIndex = i;
minGain = data->pDataPerXPD[i].xpd_gain;
}
}
minPwr = data->pDataPerXPD[minIndex].pwr_t4[0];
minPcdac = data->pDataPerXPD[minIndex].pcdac[0];
for (i=1; i<NUM_POINTS_XPD0; i++) {
if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) {
minPwr = data->pDataPerXPD[minIndex].pwr_t4[i];
minPcdac = data->pDataPerXPD[minIndex].pcdac[i];
}
}
retVal = minPwr - (minPcdac*2);
return(retVal);
}
#endif
static HAL_BOOL
ar2133GetChannelMaxMinPower(struct ath_hal *ah,
const struct ieee80211_channel *chan,
int16_t *maxPow, int16_t *minPow)
{
#if 0
struct ath_hal_5212 *ahp = AH5212(ah);
int numChannels=0,i,last;
int totalD, totalF,totalMin;
EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL;
EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL;
*maxPow = 0;
if (IS_CHAN_A(chan)) {
powerArray = ahp->ah_modePowerArray5112;
data = powerArray[headerInfo11A].pDataPerChannel;
numChannels = powerArray[headerInfo11A].numChannels;
} else if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) {
/* XXX - is this correct? Should we also use the same power for turbo G? */
powerArray = ahp->ah_modePowerArray5112;
data = powerArray[headerInfo11G].pDataPerChannel;
numChannels = powerArray[headerInfo11G].numChannels;
} else if (IS_CHAN_B(chan)) {
powerArray = ahp->ah_modePowerArray5112;
data = powerArray[headerInfo11B].pDataPerChannel;
numChannels = powerArray[headerInfo11B].numChannels;
} else {
return (AH_TRUE);
}
/* Make sure the channel is in the range of the TP values
* (freq piers)
*/
if ((numChannels < 1) ||
(chan->channel < data[0].channelValue) ||
(chan->channel > data[numChannels-1].channelValue))
return(AH_FALSE);
/* Linearly interpolate the power value now */
for (last=0,i=0;
(i<numChannels) && (chan->channel > data[i].channelValue);
last=i++);
totalD = data[i].channelValue - data[last].channelValue;
if (totalD > 0) {
totalF = data[i].maxPower_t4 - data[last].maxPower_t4;
*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD);
totalMin = ar2133GetMinPower(ah,&data[i]) - ar2133GetMinPower(ah, &data[last]);
*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + ar2133GetMinPower(ah, &data[last])*totalD)/totalD);
return (AH_TRUE);
} else {
if (chan->channel == data[i].channelValue) {
*maxPow = data[i].maxPower_t4;
*minPow = ar2133GetMinPower(ah, &data[i]);
return(AH_TRUE);
} else
return(AH_FALSE);
}
#else
// XXX TODO: actually go implement for 11n chips!
*maxPow = *minPow = 0;
return AH_FALSE;
#endif
}
/*
* The ordering of nfarray is thus:
*
* nfarray[0]: Chain 0 ctl
* nfarray[1]: Chain 1 ctl
* nfarray[2]: Chain 2 ctl
* nfarray[3]: Chain 0 ext
* nfarray[4]: Chain 1 ext
* nfarray[5]: Chain 2 ext
*/
static void
ar2133GetNoiseFloor(struct ath_hal *ah, int16_t nfarray[])
{
struct ath_hal_5416 *ahp = AH5416(ah);
int16_t nf;
/*
* Blank nf array - some chips may only
* have one or two RX chainmasks enabled.
*/
nfarray[0] = nfarray[1] = nfarray[2] = 0;
nfarray[3] = nfarray[4] = nfarray[5] = 0;
switch (ahp->ah_rx_chainmask) {
case 0x7:
nf = MS(OS_REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"NF calibrated [ctl] [chain 2] is %d\n", nf);
nfarray[2] = nf;
nf = MS(OS_REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"NF calibrated [ext] [chain 2] is %d\n", nf);
nfarray[5] = nf;
/* fall thru... */
case 0x3:
case 0x5:
nf = MS(OS_REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"NF calibrated [ctl] [chain 1] is %d\n", nf);
nfarray[1] = nf;
nf = MS(OS_REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"NF calibrated [ext] [chain 1] is %d\n", nf);
nfarray[4] = nf;
/* fall thru... */
case 0x1:
nf = MS(OS_REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"NF calibrated [ctl] [chain 0] is %d\n", nf);
nfarray[0] = nf;
nf = MS(OS_REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"NF calibrated [ext] [chain 0] is %d\n", nf);
nfarray[3] = nf;
break;
}
}
/*
* Adjust NF based on statistical values for 5GHz frequencies.
* Stubbed:Not used by Fowl
*/
static int16_t
ar2133GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
{
return 0;
}
/*
* Free memory for analog bank scratch buffers
*/
static void
ar2133RfDetach(struct ath_hal *ah)
{
struct ath_hal_5212 *ahp = AH5212(ah);
HALASSERT(ahp->ah_rfHal != AH_NULL);
ath_hal_free(ahp->ah_rfHal);
ahp->ah_rfHal = AH_NULL;
}
/*
* Allocate memory for analog bank scratch buffers
* Scratch Buffer will be reinitialized every reset so no need to zero now
*/
HAL_BOOL
ar2133RfAttach(struct ath_hal *ah, HAL_STATUS *status)
{
struct ath_hal_5212 *ahp = AH5212(ah);
struct ar2133State *priv;
uint32_t *bankData;
HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: attach AR2133 radio\n", __func__);
HALASSERT(ahp->ah_rfHal == AH_NULL);
priv = ath_hal_malloc(sizeof(struct ar2133State)
+ AH5416(ah)->ah_ini_bank0.rows * sizeof(uint32_t)
+ AH5416(ah)->ah_ini_bank1.rows * sizeof(uint32_t)
+ AH5416(ah)->ah_ini_bank2.rows * sizeof(uint32_t)
+ AH5416(ah)->ah_ini_bank3.rows * sizeof(uint32_t)
+ AH5416(ah)->ah_ini_bank6.rows * sizeof(uint32_t)
+ AH5416(ah)->ah_ini_bank7.rows * sizeof(uint32_t)
);
if (priv == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: cannot allocate private state\n", __func__);
*status = HAL_ENOMEM; /* XXX */
return AH_FALSE;
}
priv->base.rfDetach = ar2133RfDetach;
priv->base.writeRegs = ar2133WriteRegs;
priv->base.getRfBank = ar2133GetRfBank;
priv->base.setChannel = ar2133SetChannel;
priv->base.setRfRegs = ar2133SetRfRegs;
priv->base.setPowerTable = ar2133SetPowerTable;
priv->base.getChannelMaxMinPower = ar2133GetChannelMaxMinPower;
priv->base.getNfAdjust = ar2133GetNfAdjust;
bankData = (uint32_t *) &priv[1];
priv->Bank0Data = bankData, bankData += AH5416(ah)->ah_ini_bank0.rows;
priv->Bank1Data = bankData, bankData += AH5416(ah)->ah_ini_bank1.rows;
priv->Bank2Data = bankData, bankData += AH5416(ah)->ah_ini_bank2.rows;
priv->Bank3Data = bankData, bankData += AH5416(ah)->ah_ini_bank3.rows;
priv->Bank6Data = bankData, bankData += AH5416(ah)->ah_ini_bank6.rows;
priv->Bank7Data = bankData, bankData += AH5416(ah)->ah_ini_bank7.rows;
ahp->ah_pcdacTable = priv->pcdacTable;
ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
ahp->ah_rfHal = &priv->base;
/*
* Set noise floor adjust method; we arrange a
* direct call instead of thunking.
*/
AH_PRIVATE(ah)->ah_getNfAdjust = priv->base.getNfAdjust;
AH_PRIVATE(ah)->ah_getNoiseFloor = ar2133GetNoiseFloor;
return AH_TRUE;
}
static HAL_BOOL
ar2133Probe(struct ath_hal *ah)
{
return (AR_SREV_OWL(ah) || AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah));
}
AH_RF(RF2133, ar2133Probe, ar2133RfAttach);