Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
/*-
 * SPDX-License-Identifier: BSD-3-Clause
 *
 * Copyright (c) 1986, 1988, 1991, 1993
 *	The Regents of the University of California.  All rights reserved.
 * (c) UNIX System Laboratories, Inc.
 * All or some portions of this file are derived from material licensed
 * to the University of California by American Telephone and Telegraph
 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
 * the permission of UNIX System Laboratories, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)kern_shutdown.c	8.3 (Berkeley) 1/21/94
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_ddb.h"
#include "opt_ekcd.h"
#include "opt_kdb.h"
#include "opt_panic.h"
#include "opt_printf.h"
#include "opt_sched.h"
#include "opt_watchdog.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/compressor.h>
#include <sys/cons.h>
#include <sys/disk.h>
#include <sys/eventhandler.h>
#include <sys/filedesc.h>
#include <sys/jail.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/kerneldump.h>
#include <sys/kthread.h>
#include <sys/ktr.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mount.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/resourcevar.h>
#include <sys/rwlock.h>
#include <sys/sbuf.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/taskqueue.h>
#include <sys/vnode.h>
#include <sys/watchdog.h>

#include <crypto/chacha20/chacha.h>
#include <crypto/rijndael/rijndael-api-fst.h>
#include <crypto/sha2/sha256.h>

#include <ddb/ddb.h>

#include <machine/cpu.h>
#include <machine/dump.h>
#include <machine/pcb.h>
#include <machine/smp.h>

#include <security/mac/mac_framework.h>

#include <vm/vm.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/swap_pager.h>

#include <sys/signalvar.h>

static MALLOC_DEFINE(M_DUMPER, "dumper", "dumper block buffer");

#ifndef PANIC_REBOOT_WAIT_TIME
#define PANIC_REBOOT_WAIT_TIME 15 /* default to 15 seconds */
#endif
static int panic_reboot_wait_time = PANIC_REBOOT_WAIT_TIME;
SYSCTL_INT(_kern, OID_AUTO, panic_reboot_wait_time, CTLFLAG_RWTUN,
    &panic_reboot_wait_time, 0,
    "Seconds to wait before rebooting after a panic");

/*
 * Note that stdarg.h and the ANSI style va_start macro is used for both
 * ANSI and traditional C compilers.
 */
#include <machine/stdarg.h>

#ifdef KDB
#ifdef KDB_UNATTENDED
int debugger_on_panic = 0;
#else
int debugger_on_panic = 1;
#endif
SYSCTL_INT(_debug, OID_AUTO, debugger_on_panic,
    CTLFLAG_RWTUN | CTLFLAG_SECURE,
    &debugger_on_panic, 0, "Run debugger on kernel panic");

int debugger_on_trap = 0;
SYSCTL_INT(_debug, OID_AUTO, debugger_on_trap,
    CTLFLAG_RWTUN | CTLFLAG_SECURE,
    &debugger_on_trap, 0, "Run debugger on kernel trap before panic");

#ifdef KDB_TRACE
static int trace_on_panic = 1;
static bool trace_all_panics = true;
#else
static int trace_on_panic = 0;
static bool trace_all_panics = false;
#endif
SYSCTL_INT(_debug, OID_AUTO, trace_on_panic,
    CTLFLAG_RWTUN | CTLFLAG_SECURE,
    &trace_on_panic, 0, "Print stack trace on kernel panic");
SYSCTL_BOOL(_debug, OID_AUTO, trace_all_panics, CTLFLAG_RWTUN,
    &trace_all_panics, 0, "Print stack traces on secondary kernel panics");
#endif /* KDB */

static int sync_on_panic = 0;
SYSCTL_INT(_kern, OID_AUTO, sync_on_panic, CTLFLAG_RWTUN,
	&sync_on_panic, 0, "Do a sync before rebooting from a panic");

static bool poweroff_on_panic = 0;
SYSCTL_BOOL(_kern, OID_AUTO, poweroff_on_panic, CTLFLAG_RWTUN,
	&poweroff_on_panic, 0, "Do a power off instead of a reboot on a panic");

static bool powercycle_on_panic = 0;
SYSCTL_BOOL(_kern, OID_AUTO, powercycle_on_panic, CTLFLAG_RWTUN,
	&powercycle_on_panic, 0, "Do a power cycle instead of a reboot on a panic");

static SYSCTL_NODE(_kern, OID_AUTO, shutdown, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
    "Shutdown environment");

#ifndef DIAGNOSTIC
static int show_busybufs;
#else
static int show_busybufs = 1;
#endif
SYSCTL_INT(_kern_shutdown, OID_AUTO, show_busybufs, CTLFLAG_RW,
    &show_busybufs, 0,
    "Show busy buffers during shutdown");

int suspend_blocked = 0;
SYSCTL_INT(_kern, OID_AUTO, suspend_blocked, CTLFLAG_RW,
	&suspend_blocked, 0, "Block suspend due to a pending shutdown");

#ifdef EKCD
FEATURE(ekcd, "Encrypted kernel crash dumps support");

MALLOC_DEFINE(M_EKCD, "ekcd", "Encrypted kernel crash dumps data");

struct kerneldumpcrypto {
	uint8_t			kdc_encryption;
	uint8_t			kdc_iv[KERNELDUMP_IV_MAX_SIZE];
	union {
		struct {
			keyInstance	aes_ki;
			cipherInstance	aes_ci;
		} u_aes;
		struct chacha_ctx	u_chacha;
	} u;
#define	kdc_ki	u.u_aes.aes_ki
#define	kdc_ci	u.u_aes.aes_ci
#define	kdc_chacha	u.u_chacha
	uint32_t		kdc_dumpkeysize;
	struct kerneldumpkey	kdc_dumpkey[];
};
#endif

struct kerneldumpcomp {
	uint8_t			kdc_format;
	struct compressor	*kdc_stream;
	uint8_t			*kdc_buf;
	size_t			kdc_resid;
};

static struct kerneldumpcomp *kerneldumpcomp_create(struct dumperinfo *di,
		    uint8_t compression);
static void	kerneldumpcomp_destroy(struct dumperinfo *di);
static int	kerneldumpcomp_write_cb(void *base, size_t len, off_t off, void *arg);

static int kerneldump_gzlevel = 6;
SYSCTL_INT(_kern, OID_AUTO, kerneldump_gzlevel, CTLFLAG_RWTUN,
    &kerneldump_gzlevel, 0,
    "Kernel crash dump compression level");

/*
 * Variable panicstr contains argument to first call to panic; used as flag
 * to indicate that the kernel has already called panic.
 */
const char *panicstr;
bool __read_frequently panicked;

int __read_mostly dumping;		/* system is dumping */
int rebooting;				/* system is rebooting */
/*
 * Used to serialize between sysctl kern.shutdown.dumpdevname and list
 * modifications via ioctl.
 */
static struct mtx dumpconf_list_lk;
MTX_SYSINIT(dumper_configs, &dumpconf_list_lk, "dumper config list", MTX_DEF);

/* Our selected dumper(s). */
static TAILQ_HEAD(dumpconflist, dumperinfo) dumper_configs =
    TAILQ_HEAD_INITIALIZER(dumper_configs);

/* Context information for dump-debuggers. */
static struct pcb dumppcb;		/* Registers. */
lwpid_t dumptid;			/* Thread ID. */

static struct cdevsw reroot_cdevsw = {
     .d_version = D_VERSION,
     .d_name    = "reroot",
};

static void poweroff_wait(void *, int);
static void shutdown_halt(void *junk, int howto);
static void shutdown_panic(void *junk, int howto);
static void shutdown_reset(void *junk, int howto);
static int kern_reroot(void);

/* register various local shutdown events */
static void
shutdown_conf(void *unused)
{

	EVENTHANDLER_REGISTER(shutdown_final, poweroff_wait, NULL,
	    SHUTDOWN_PRI_FIRST);
	EVENTHANDLER_REGISTER(shutdown_final, shutdown_halt, NULL,
	    SHUTDOWN_PRI_LAST + 100);
	EVENTHANDLER_REGISTER(shutdown_final, shutdown_panic, NULL,
	    SHUTDOWN_PRI_LAST + 100);
	EVENTHANDLER_REGISTER(shutdown_final, shutdown_reset, NULL,
	    SHUTDOWN_PRI_LAST + 200);
}

SYSINIT(shutdown_conf, SI_SUB_INTRINSIC, SI_ORDER_ANY, shutdown_conf, NULL);

/*
 * The only reason this exists is to create the /dev/reroot/ directory,
 * used by reroot code in init(8) as a mountpoint for tmpfs.
 */
static void
reroot_conf(void *unused)
{
	int error;
	struct cdev *cdev;

	error = make_dev_p(MAKEDEV_CHECKNAME | MAKEDEV_WAITOK, &cdev,
	    &reroot_cdevsw, NULL, UID_ROOT, GID_WHEEL, 0600, "reroot/reroot");
	if (error != 0) {
		printf("%s: failed to create device node, error %d",
		    __func__, error);
	}
}

SYSINIT(reroot_conf, SI_SUB_DEVFS, SI_ORDER_ANY, reroot_conf, NULL);

/*
 * The system call that results in a reboot.
 */
/* ARGSUSED */
int
sys_reboot(struct thread *td, struct reboot_args *uap)
{
	int error;

	error = 0;
#ifdef MAC
	error = mac_system_check_reboot(td->td_ucred, uap->opt);
#endif
	if (error == 0)
		error = priv_check(td, PRIV_REBOOT);
	if (error == 0) {
		if (uap->opt & RB_REROOT)
			error = kern_reroot();
		else
			kern_reboot(uap->opt);
	}
	return (error);
}

static void
shutdown_nice_task_fn(void *arg, int pending __unused)
{
	int howto;

	howto = (uintptr_t)arg;
	/* Send a signal to init(8) and have it shutdown the world. */
	PROC_LOCK(initproc);
	if (howto & RB_POWEROFF)
		kern_psignal(initproc, SIGUSR2);
	else if (howto & RB_POWERCYCLE)
		kern_psignal(initproc, SIGWINCH);
	else if (howto & RB_HALT)
		kern_psignal(initproc, SIGUSR1);
	else
		kern_psignal(initproc, SIGINT);
	PROC_UNLOCK(initproc);
}

static struct task shutdown_nice_task = TASK_INITIALIZER(0,
    &shutdown_nice_task_fn, NULL);

/*
 * Called by events that want to shut down.. e.g  <CTL><ALT><DEL> on a PC
 */
void
shutdown_nice(int howto)
{

	if (initproc != NULL && !SCHEDULER_STOPPED()) {
		shutdown_nice_task.ta_context = (void *)(uintptr_t)howto;
		taskqueue_enqueue(taskqueue_fast, &shutdown_nice_task);
	} else {
		/*
		 * No init(8) running, or scheduler would not allow it
		 * to run, so simply reboot.
		 */
		kern_reboot(howto | RB_NOSYNC);
	}
}

static void
print_uptime(void)
{
	int f;
	struct timespec ts;

	getnanouptime(&ts);
	printf("Uptime: ");
	f = 0;
	if (ts.tv_sec >= 86400) {
		printf("%ldd", (long)ts.tv_sec / 86400);
		ts.tv_sec %= 86400;
		f = 1;
	}
	if (f || ts.tv_sec >= 3600) {
		printf("%ldh", (long)ts.tv_sec / 3600);
		ts.tv_sec %= 3600;
		f = 1;
	}
	if (f || ts.tv_sec >= 60) {
		printf("%ldm", (long)ts.tv_sec / 60);
		ts.tv_sec %= 60;
		f = 1;
	}
	printf("%lds\n", (long)ts.tv_sec);
}

int
doadump(boolean_t textdump)
{
	boolean_t coredump;
	int error;

	error = 0;
	if (dumping)
		return (EBUSY);
	if (TAILQ_EMPTY(&dumper_configs))
		return (ENXIO);

	savectx(&dumppcb);
	dumptid = curthread->td_tid;
	dumping++;

	coredump = TRUE;
#ifdef DDB
	if (textdump && textdump_pending) {
		coredump = FALSE;
		textdump_dumpsys(TAILQ_FIRST(&dumper_configs));
	}
#endif
	if (coredump) {
		struct dumperinfo *di;

		TAILQ_FOREACH(di, &dumper_configs, di_next) {
			error = dumpsys(di);
			if (error == 0)
				break;
		}
	}

	dumping--;
	return (error);
}

/*
 * Shutdown the system cleanly to prepare for reboot, halt, or power off.
 */
void
kern_reboot(int howto)
{
	static int once = 0;

	/*
	 * Normal paths here don't hold Giant, but we can wind up here
	 * unexpectedly with it held.  Drop it now so we don't have to
	 * drop and pick it up elsewhere. The paths it is locking will
	 * never be returned to, and it is preferable to preclude
	 * deadlock than to lock against code that won't ever
	 * continue.
	 */
	while (mtx_owned(&Giant))
		mtx_unlock(&Giant);

#if defined(SMP)
	/*
	 * Bind us to the first CPU so that all shutdown code runs there.  Some
	 * systems don't shutdown properly (i.e., ACPI power off) if we
	 * run on another processor.
	 */
	if (!SCHEDULER_STOPPED()) {
		thread_lock(curthread);
		sched_bind(curthread, CPU_FIRST());
		thread_unlock(curthread);
		KASSERT(PCPU_GET(cpuid) == CPU_FIRST(),
		    ("boot: not running on cpu 0"));
	}
#endif
	/* We're in the process of rebooting. */
	rebooting = 1;

	/* We are out of the debugger now. */
	kdb_active = 0;

	/*
	 * Do any callouts that should be done BEFORE syncing the filesystems.
	 */
	EVENTHANDLER_INVOKE(shutdown_pre_sync, howto);

	/* 
	 * Now sync filesystems
	 */
	if (!cold && (howto & RB_NOSYNC) == 0 && once == 0) {
		once = 1;
		bufshutdown(show_busybufs);
	}

	print_uptime();

	cngrab();

	/*
	 * Ok, now do things that assume all filesystem activity has
	 * been completed.
	 */
	EVENTHANDLER_INVOKE(shutdown_post_sync, howto);

	if ((howto & (RB_HALT|RB_DUMP)) == RB_DUMP && !cold && !dumping) 
		doadump(TRUE);

	/* Now that we're going to really halt the system... */
	EVENTHANDLER_INVOKE(shutdown_final, howto);

	for(;;) ;	/* safety against shutdown_reset not working */
	/* NOTREACHED */
}

/*
 * The system call that results in changing the rootfs.
 */
static int
kern_reroot(void)
{
	struct vnode *oldrootvnode, *vp;
	struct mount *mp, *devmp;
	int error;

	if (curproc != initproc)
		return (EPERM);

	/*
	 * Mark the filesystem containing currently-running executable
	 * (the temporary copy of init(8)) busy.
	 */
	vp = curproc->p_textvp;
	error = vn_lock(vp, LK_SHARED);
	if (error != 0)
		return (error);
	mp = vp->v_mount;
	error = vfs_busy(mp, MBF_NOWAIT);
	if (error != 0) {
		vfs_ref(mp);
		VOP_UNLOCK(vp);
		error = vfs_busy(mp, 0);
		vn_lock(vp, LK_SHARED | LK_RETRY);
		vfs_rel(mp);
		if (error != 0) {
			VOP_UNLOCK(vp);
			return (ENOENT);
		}
		if (VN_IS_DOOMED(vp)) {
			VOP_UNLOCK(vp);
			vfs_unbusy(mp);
			return (ENOENT);
		}
	}
	VOP_UNLOCK(vp);

	/*
	 * Remove the filesystem containing currently-running executable
	 * from the mount list, to prevent it from being unmounted
	 * by vfs_unmountall(), and to avoid confusing vfs_mountroot().
	 *
	 * Also preserve /dev - forcibly unmounting it could cause driver
	 * reinitialization.
	 */

	vfs_ref(rootdevmp);
	devmp = rootdevmp;
	rootdevmp = NULL;

	mtx_lock(&mountlist_mtx);
	TAILQ_REMOVE(&mountlist, mp, mnt_list);
	TAILQ_REMOVE(&mountlist, devmp, mnt_list);
	mtx_unlock(&mountlist_mtx);

	oldrootvnode = rootvnode;

	/*
	 * Unmount everything except for the two filesystems preserved above.
	 */
	vfs_unmountall();

	/*
	 * Add /dev back; vfs_mountroot() will move it into its new place.
	 */
	mtx_lock(&mountlist_mtx);
	TAILQ_INSERT_HEAD(&mountlist, devmp, mnt_list);
	mtx_unlock(&mountlist_mtx);
	rootdevmp = devmp;
	vfs_rel(rootdevmp);

	/*
	 * Mount the new rootfs.
	 */
	vfs_mountroot();

	/*
	 * Update all references to the old rootvnode.
	 */
	mountcheckdirs(oldrootvnode, rootvnode);

	/*
	 * Add the temporary filesystem back and unbusy it.
	 */
	mtx_lock(&mountlist_mtx);
	TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
	mtx_unlock(&mountlist_mtx);
	vfs_unbusy(mp);

	return (0);
}

/*
 * If the shutdown was a clean halt, behave accordingly.
 */
static void
shutdown_halt(void *junk, int howto)
{

	if (howto & RB_HALT) {
		printf("\n");
		printf("The operating system has halted.\n");
		printf("Please press any key to reboot.\n\n");

		wdog_kern_pat(WD_TO_NEVER);

		switch (cngetc()) {
		case -1:		/* No console, just die */
			cpu_halt();
			/* NOTREACHED */
		default:
			break;
		}
	}
}

/*
 * Check to see if the system paniced, pause and then reboot
 * according to the specified delay.
 */
static void
shutdown_panic(void *junk, int howto)
{
	int loop;

	if (howto & RB_DUMP) {
		if (panic_reboot_wait_time != 0) {
			if (panic_reboot_wait_time != -1) {
				printf("Automatic reboot in %d seconds - "
				       "press a key on the console to abort\n",
					panic_reboot_wait_time);
				for (loop = panic_reboot_wait_time * 10;
				     loop > 0; --loop) {
					DELAY(1000 * 100); /* 1/10th second */
					/* Did user type a key? */
					if (cncheckc() != -1)
						break;
				}
				if (!loop)
					return;
			}
		} else { /* zero time specified - reboot NOW */
			return;
		}
		printf("--> Press a key on the console to reboot,\n");
		printf("--> or switch off the system now.\n");
		cngetc();
	}
}

/*
 * Everything done, now reset
 */
static void
shutdown_reset(void *junk, int howto)
{

	printf("Rebooting...\n");
	DELAY(1000000);	/* wait 1 sec for printf's to complete and be read */

	/*
	 * Acquiring smp_ipi_mtx here has a double effect:
	 * - it disables interrupts avoiding CPU0 preemption
	 *   by fast handlers (thus deadlocking  against other CPUs)
	 * - it avoids deadlocks against smp_rendezvous() or, more 
	 *   generally, threads busy-waiting, with this spinlock held,
	 *   and waiting for responses by threads on other CPUs
	 *   (ie. smp_tlb_shootdown()).
	 *
	 * For the !SMP case it just needs to handle the former problem.
	 */
#ifdef SMP
	mtx_lock_spin(&smp_ipi_mtx);
#else
	spinlock_enter();
#endif

	cpu_reset();
	/* NOTREACHED */ /* assuming reset worked */
}

#if defined(WITNESS) || defined(INVARIANT_SUPPORT)
static int kassert_warn_only = 0;
#ifdef KDB
static int kassert_do_kdb = 0;
#endif
#ifdef KTR
static int kassert_do_ktr = 0;
#endif
static int kassert_do_log = 1;
static int kassert_log_pps_limit = 4;
static int kassert_log_mute_at = 0;
static int kassert_log_panic_at = 0;
static int kassert_suppress_in_panic = 0;
static int kassert_warnings = 0;

SYSCTL_NODE(_debug, OID_AUTO, kassert, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
    "kassert options");

#ifdef KASSERT_PANIC_OPTIONAL
#define KASSERT_RWTUN	CTLFLAG_RWTUN
#else
#define KASSERT_RWTUN	CTLFLAG_RDTUN
#endif

SYSCTL_INT(_debug_kassert, OID_AUTO, warn_only, KASSERT_RWTUN,
    &kassert_warn_only, 0,
    "KASSERT triggers a panic (0) or just a warning (1)");

#ifdef KDB
SYSCTL_INT(_debug_kassert, OID_AUTO, do_kdb, KASSERT_RWTUN,
    &kassert_do_kdb, 0, "KASSERT will enter the debugger");
#endif

#ifdef KTR
SYSCTL_UINT(_debug_kassert, OID_AUTO, do_ktr, KASSERT_RWTUN,
    &kassert_do_ktr, 0,
    "KASSERT does a KTR, set this to the KTRMASK you want");
#endif

SYSCTL_INT(_debug_kassert, OID_AUTO, do_log, KASSERT_RWTUN,
    &kassert_do_log, 0,
    "If warn_only is enabled, log (1) or do not log (0) assertion violations");

SYSCTL_INT(_debug_kassert, OID_AUTO, warnings, CTLFLAG_RD | CTLFLAG_STATS,
    &kassert_warnings, 0, "number of KASSERTs that have been triggered");

SYSCTL_INT(_debug_kassert, OID_AUTO, log_panic_at, KASSERT_RWTUN,
    &kassert_log_panic_at, 0, "max number of KASSERTS before we will panic");

SYSCTL_INT(_debug_kassert, OID_AUTO, log_pps_limit, KASSERT_RWTUN,
    &kassert_log_pps_limit, 0, "limit number of log messages per second");

SYSCTL_INT(_debug_kassert, OID_AUTO, log_mute_at, KASSERT_RWTUN,
    &kassert_log_mute_at, 0, "max number of KASSERTS to log");

SYSCTL_INT(_debug_kassert, OID_AUTO, suppress_in_panic, KASSERT_RWTUN,
    &kassert_suppress_in_panic, 0,
    "KASSERTs will be suppressed while handling a panic");
#undef KASSERT_RWTUN

static int kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS);

SYSCTL_PROC(_debug_kassert, OID_AUTO, kassert,
    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE | CTLFLAG_NEEDGIANT, NULL, 0,
    kassert_sysctl_kassert, "I",
    "set to trigger a test kassert");

static int
kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS)
{
	int error, i;

	error = sysctl_wire_old_buffer(req, sizeof(int));
	if (error == 0) {
		i = 0;
		error = sysctl_handle_int(oidp, &i, 0, req);
	}
	if (error != 0 || req->newptr == NULL)
		return (error);
	KASSERT(0, ("kassert_sysctl_kassert triggered kassert %d", i));
	return (0);
}

#ifdef KASSERT_PANIC_OPTIONAL
/*
 * Called by KASSERT, this decides if we will panic
 * or if we will log via printf and/or ktr.
 */
void
kassert_panic(const char *fmt, ...)
{
	static char buf[256];
	va_list ap;

	va_start(ap, fmt);
	(void)vsnprintf(buf, sizeof(buf), fmt, ap);
	va_end(ap);

	/*
	 * If we are suppressing secondary panics, log the warning but do not
	 * re-enter panic/kdb.
	 */
	if (panicstr != NULL && kassert_suppress_in_panic) {
		if (kassert_do_log) {
			printf("KASSERT failed: %s\n", buf);
#ifdef KDB
			if (trace_all_panics && trace_on_panic)
				kdb_backtrace();
#endif
		}
		return;
	}

	/*
	 * panic if we're not just warning, or if we've exceeded
	 * kassert_log_panic_at warnings.
	 */
	if (!kassert_warn_only ||
	    (kassert_log_panic_at > 0 &&
	     kassert_warnings >= kassert_log_panic_at)) {
		va_start(ap, fmt);
		vpanic(fmt, ap);
		/* NORETURN */
	}
#ifdef KTR
	if (kassert_do_ktr)
		CTR0(ktr_mask, buf);
#endif /* KTR */
	/*
	 * log if we've not yet met the mute limit.
	 */
	if (kassert_do_log &&
	    (kassert_log_mute_at == 0 ||
	     kassert_warnings < kassert_log_mute_at)) {
		static  struct timeval lasterr;
		static  int curerr;

		if (ppsratecheck(&lasterr, &curerr, kassert_log_pps_limit)) {
			printf("KASSERT failed: %s\n", buf);
			kdb_backtrace();
		}
	}
#ifdef KDB
	if (kassert_do_kdb) {
		kdb_enter(KDB_WHY_KASSERT, buf);
	}
#endif
	atomic_add_int(&kassert_warnings, 1);
}
#endif /* KASSERT_PANIC_OPTIONAL */
#endif

/*
 * Panic is called on unresolvable fatal errors.  It prints "panic: mesg",
 * and then reboots.  If we are called twice, then we avoid trying to sync
 * the disks as this often leads to recursive panics.
 */
void
panic(const char *fmt, ...)
{
	va_list ap;

	va_start(ap, fmt);
	vpanic(fmt, ap);
}

void
vpanic(const char *fmt, va_list ap)
{
#ifdef SMP
	cpuset_t other_cpus;
#endif
	struct thread *td = curthread;
	int bootopt, newpanic;
	static char buf[256];

	spinlock_enter();

#ifdef SMP
	/*
	 * stop_cpus_hard(other_cpus) should prevent multiple CPUs from
	 * concurrently entering panic.  Only the winner will proceed
	 * further.
	 */
	if (panicstr == NULL && !kdb_active) {
		other_cpus = all_cpus;
		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
		stop_cpus_hard(other_cpus);
	}
#endif

	/*
	 * Ensure that the scheduler is stopped while panicking, even if panic
	 * has been entered from kdb.
	 */
	td->td_stopsched = 1;

	bootopt = RB_AUTOBOOT;
	newpanic = 0;
	if (panicstr)
		bootopt |= RB_NOSYNC;
	else {
		bootopt |= RB_DUMP;
		panicstr = fmt;
		panicked = true;
		newpanic = 1;
	}

	if (newpanic) {
		(void)vsnprintf(buf, sizeof(buf), fmt, ap);
		panicstr = buf;
		cngrab();
		printf("panic: %s\n", buf);
	} else {
		printf("panic: ");
		vprintf(fmt, ap);
		printf("\n");
	}
#ifdef SMP
	printf("cpuid = %d\n", PCPU_GET(cpuid));
#endif
	printf("time = %jd\n", (intmax_t )time_second);
#ifdef KDB
	if ((newpanic || trace_all_panics) && trace_on_panic)
		kdb_backtrace();
	if (debugger_on_panic)
		kdb_enter(KDB_WHY_PANIC, "panic");
#endif
	/*thread_lock(td); */
	td->td_flags |= TDF_INPANIC;
	/* thread_unlock(td); */
	if (!sync_on_panic)
		bootopt |= RB_NOSYNC;
	if (poweroff_on_panic)
		bootopt |= RB_POWEROFF;
	if (powercycle_on_panic)
		bootopt |= RB_POWERCYCLE;
	kern_reboot(bootopt);
}

/*
 * Support for poweroff delay.
 *
 * Please note that setting this delay too short might power off your machine
 * before the write cache on your hard disk has been flushed, leading to
 * soft-updates inconsistencies.
 */
#ifndef POWEROFF_DELAY
# define POWEROFF_DELAY 5000
#endif
static int poweroff_delay = POWEROFF_DELAY;

SYSCTL_INT(_kern_shutdown, OID_AUTO, poweroff_delay, CTLFLAG_RW,
    &poweroff_delay, 0, "Delay before poweroff to write disk caches (msec)");

static void
poweroff_wait(void *junk, int howto)
{

	if ((howto & (RB_POWEROFF | RB_POWERCYCLE)) == 0 || poweroff_delay <= 0)
		return;
	DELAY(poweroff_delay * 1000);
}

/*
 * Some system processes (e.g. syncer) need to be stopped at appropriate
 * points in their main loops prior to a system shutdown, so that they
 * won't interfere with the shutdown process (e.g. by holding a disk buf
 * to cause sync to fail).  For each of these system processes, register
 * shutdown_kproc() as a handler for one of shutdown events.
 */
static int kproc_shutdown_wait = 60;
SYSCTL_INT(_kern_shutdown, OID_AUTO, kproc_shutdown_wait, CTLFLAG_RW,
    &kproc_shutdown_wait, 0, "Max wait time (sec) to stop for each process");

void
kproc_shutdown(void *arg, int howto)
{
	struct proc *p;
	int error;

	if (panicstr)
		return;

	p = (struct proc *)arg;
	printf("Waiting (max %d seconds) for system process `%s' to stop... ",
	    kproc_shutdown_wait, p->p_comm);
	error = kproc_suspend(p, kproc_shutdown_wait * hz);

	if (error == EWOULDBLOCK)
		printf("timed out\n");
	else
		printf("done\n");
}

void
kthread_shutdown(void *arg, int howto)
{
	struct thread *td;
	int error;

	if (panicstr)
		return;

	td = (struct thread *)arg;
	printf("Waiting (max %d seconds) for system thread `%s' to stop... ",
	    kproc_shutdown_wait, td->td_name);
	error = kthread_suspend(td, kproc_shutdown_wait * hz);

	if (error == EWOULDBLOCK)
		printf("timed out\n");
	else
		printf("done\n");
}

static int
dumpdevname_sysctl_handler(SYSCTL_HANDLER_ARGS)
{
	char buf[256];
	struct dumperinfo *di;
	struct sbuf sb;
	int error;

	error = sysctl_wire_old_buffer(req, 0);
	if (error != 0)
		return (error);

	sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);

	mtx_lock(&dumpconf_list_lk);
	TAILQ_FOREACH(di, &dumper_configs, di_next) {
		if (di != TAILQ_FIRST(&dumper_configs))
			sbuf_putc(&sb, ',');
		sbuf_cat(&sb, di->di_devname);
	}
	mtx_unlock(&dumpconf_list_lk);

	error = sbuf_finish(&sb);
	sbuf_delete(&sb);
	return (error);
}
SYSCTL_PROC(_kern_shutdown, OID_AUTO, dumpdevname,
    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &dumper_configs, 0,
    dumpdevname_sysctl_handler, "A",
    "Device(s) for kernel dumps");

static int	_dump_append(struct dumperinfo *di, void *virtual,
		    vm_offset_t physical, size_t length);

#ifdef EKCD
static struct kerneldumpcrypto *
kerneldumpcrypto_create(size_t blocksize, uint8_t encryption,
    const uint8_t *key, uint32_t encryptedkeysize, const uint8_t *encryptedkey)
{
	struct kerneldumpcrypto *kdc;
	struct kerneldumpkey *kdk;
	uint32_t dumpkeysize;

	dumpkeysize = roundup2(sizeof(*kdk) + encryptedkeysize, blocksize);
	kdc = malloc(sizeof(*kdc) + dumpkeysize, M_EKCD, M_WAITOK | M_ZERO);

	arc4rand(kdc->kdc_iv, sizeof(kdc->kdc_iv), 0);

	kdc->kdc_encryption = encryption;
	switch (kdc->kdc_encryption) {
	case KERNELDUMP_ENC_AES_256_CBC:
		if (rijndael_makeKey(&kdc->kdc_ki, DIR_ENCRYPT, 256, key) <= 0)
			goto failed;
		break;
	case KERNELDUMP_ENC_CHACHA20:
		chacha_keysetup(&kdc->kdc_chacha, key, 256);
		break;
	default:
		goto failed;
	}

	kdc->kdc_dumpkeysize = dumpkeysize;
	kdk = kdc->kdc_dumpkey;
	kdk->kdk_encryption = kdc->kdc_encryption;
	memcpy(kdk->kdk_iv, kdc->kdc_iv, sizeof(kdk->kdk_iv));
	kdk->kdk_encryptedkeysize = htod32(encryptedkeysize);
	memcpy(kdk->kdk_encryptedkey, encryptedkey, encryptedkeysize);

	return (kdc);
failed:
	zfree(kdc, M_EKCD);
	return (NULL);
}

static int
kerneldumpcrypto_init(struct kerneldumpcrypto *kdc)
{
	uint8_t hash[SHA256_DIGEST_LENGTH];
	SHA256_CTX ctx;
	struct kerneldumpkey *kdk;
	int error;

	error = 0;

	if (kdc == NULL)
		return (0);

	/*
	 * When a user enters ddb it can write a crash dump multiple times.
	 * Each time it should be encrypted using a different IV.
	 */
	SHA256_Init(&ctx);
	SHA256_Update(&ctx, kdc->kdc_iv, sizeof(kdc->kdc_iv));
	SHA256_Final(hash, &ctx);
	bcopy(hash, kdc->kdc_iv, sizeof(kdc->kdc_iv));

	switch (kdc->kdc_encryption) {
	case KERNELDUMP_ENC_AES_256_CBC:
		if (rijndael_cipherInit(&kdc->kdc_ci, MODE_CBC,
		    kdc->kdc_iv) <= 0) {
			error = EINVAL;
			goto out;
		}
		break;
	case KERNELDUMP_ENC_CHACHA20:
		chacha_ivsetup(&kdc->kdc_chacha, kdc->kdc_iv, NULL);
		break;
	default:
		error = EINVAL;
		goto out;
	}

	kdk = kdc->kdc_dumpkey;
	memcpy(kdk->kdk_iv, kdc->kdc_iv, sizeof(kdk->kdk_iv));
out:
	explicit_bzero(hash, sizeof(hash));
	return (error);
}

static uint32_t
kerneldumpcrypto_dumpkeysize(const struct kerneldumpcrypto *kdc)
{

	if (kdc == NULL)
		return (0);
	return (kdc->kdc_dumpkeysize);
}
#endif /* EKCD */

static struct kerneldumpcomp *
kerneldumpcomp_create(struct dumperinfo *di, uint8_t compression)
{
	struct kerneldumpcomp *kdcomp;
	int format;

	switch (compression) {
	case KERNELDUMP_COMP_GZIP:
		format = COMPRESS_GZIP;
		break;
	case KERNELDUMP_COMP_ZSTD:
		format = COMPRESS_ZSTD;
		break;
	default:
		return (NULL);
	}

	kdcomp = malloc(sizeof(*kdcomp), M_DUMPER, M_WAITOK | M_ZERO);
	kdcomp->kdc_format = compression;
	kdcomp->kdc_stream = compressor_init(kerneldumpcomp_write_cb,
	    format, di->maxiosize, kerneldump_gzlevel, di);
	if (kdcomp->kdc_stream == NULL) {
		free(kdcomp, M_DUMPER);
		return (NULL);
	}
	kdcomp->kdc_buf = malloc(di->maxiosize, M_DUMPER, M_WAITOK | M_NODUMP);
	return (kdcomp);
}

static void
kerneldumpcomp_destroy(struct dumperinfo *di)
{
	struct kerneldumpcomp *kdcomp;

	kdcomp = di->kdcomp;
	if (kdcomp == NULL)
		return;
	compressor_fini(kdcomp->kdc_stream);
	zfree(kdcomp->kdc_buf, M_DUMPER);
	free(kdcomp, M_DUMPER);
}

/*
 * Must not be present on global list.
 */
static void
free_single_dumper(struct dumperinfo *di)
{

	if (di == NULL)
		return;

	zfree(di->blockbuf, M_DUMPER);

	kerneldumpcomp_destroy(di);

#ifdef EKCD
	zfree(di->kdcrypto, M_EKCD);
#endif
	zfree(di, M_DUMPER);
}

/* Registration of dumpers */
int
dumper_insert(const struct dumperinfo *di_template, const char *devname,
    const struct diocskerneldump_arg *kda)
{
	struct dumperinfo *newdi, *listdi;
	bool inserted;
	uint8_t index;
	int error;

	index = kda->kda_index;
	MPASS(index != KDA_REMOVE && index != KDA_REMOVE_DEV &&
	    index != KDA_REMOVE_ALL);

	error = priv_check(curthread, PRIV_SETDUMPER);
	if (error != 0)
		return (error);

	newdi = malloc(sizeof(*newdi) + strlen(devname) + 1, M_DUMPER, M_WAITOK
	    | M_ZERO);
	memcpy(newdi, di_template, sizeof(*newdi));
	newdi->blockbuf = NULL;
	newdi->kdcrypto = NULL;
	newdi->kdcomp = NULL;
	strcpy(newdi->di_devname, devname);

	if (kda->kda_encryption != KERNELDUMP_ENC_NONE) {
#ifdef EKCD
		newdi->kdcrypto = kerneldumpcrypto_create(di_template->blocksize,
		    kda->kda_encryption, kda->kda_key,
		    kda->kda_encryptedkeysize, kda->kda_encryptedkey);
		if (newdi->kdcrypto == NULL) {
			error = EINVAL;
			goto cleanup;
		}
#else
		error = EOPNOTSUPP;
		goto cleanup;
#endif
	}
	if (kda->kda_compression != KERNELDUMP_COMP_NONE) {
#ifdef EKCD
		/*
		 * We can't support simultaneous unpadded block cipher
		 * encryption and compression because there is no guarantee the
		 * length of the compressed result is exactly a multiple of the
		 * cipher block size.
		 */
		if (kda->kda_encryption == KERNELDUMP_ENC_AES_256_CBC) {
			error = EOPNOTSUPP;
			goto cleanup;
		}
#endif
		newdi->kdcomp = kerneldumpcomp_create(newdi,
		    kda->kda_compression);
		if (newdi->kdcomp == NULL) {
			error = EINVAL;
			goto cleanup;
		}
	}

	newdi->blockbuf = malloc(newdi->blocksize, M_DUMPER, M_WAITOK | M_ZERO);

	/* Add the new configuration to the queue */
	mtx_lock(&dumpconf_list_lk);
	inserted = false;
	TAILQ_FOREACH(listdi, &dumper_configs, di_next) {
		if (index == 0) {
			TAILQ_INSERT_BEFORE(listdi, newdi, di_next);
			inserted = true;
			break;
		}
		index--;
	}
	if (!inserted)
		TAILQ_INSERT_TAIL(&dumper_configs, newdi, di_next);
	mtx_unlock(&dumpconf_list_lk);

	return (0);

cleanup:
	free_single_dumper(newdi);
	return (error);
}

#ifdef DDB
void
dumper_ddb_insert(struct dumperinfo *newdi)
{
	TAILQ_INSERT_HEAD(&dumper_configs, newdi, di_next);
}

void
dumper_ddb_remove(struct dumperinfo *di)
{
	TAILQ_REMOVE(&dumper_configs, di, di_next);
}
#endif

static bool
dumper_config_match(const struct dumperinfo *di, const char *devname,
    const struct diocskerneldump_arg *kda)
{
	if (kda->kda_index == KDA_REMOVE_ALL)
		return (true);

	if (strcmp(di->di_devname, devname) != 0)
		return (false);

	/*
	 * Allow wildcard removal of configs matching a device on g_dev_orphan.
	 */
	if (kda->kda_index == KDA_REMOVE_DEV)
		return (true);

	if (di->kdcomp != NULL) {
		if (di->kdcomp->kdc_format != kda->kda_compression)
			return (false);
	} else if (kda->kda_compression != KERNELDUMP_COMP_NONE)
		return (false);
#ifdef EKCD
	if (di->kdcrypto != NULL) {
		if (di->kdcrypto->kdc_encryption != kda->kda_encryption)
			return (false);
		/*
		 * Do we care to verify keys match to delete?  It seems weird
		 * to expect multiple fallback dump configurations on the same
		 * device that only differ in crypto key.
		 */
	} else
#endif
		if (kda->kda_encryption != KERNELDUMP_ENC_NONE)
			return (false);

	return (true);
}

int
dumper_remove(const char *devname, const struct diocskerneldump_arg *kda)
{
	struct dumperinfo *di, *sdi;
	bool found;
	int error;

	error = priv_check(curthread, PRIV_SETDUMPER);
	if (error != 0)
		return (error);

	/*
	 * Try to find a matching configuration, and kill it.
	 *
	 * NULL 'kda' indicates remove any configuration matching 'devname',
	 * which may remove multiple configurations in atypical configurations.
	 */
	found = false;
	mtx_lock(&dumpconf_list_lk);
	TAILQ_FOREACH_SAFE(di, &dumper_configs, di_next, sdi) {
		if (dumper_config_match(di, devname, kda)) {
			found = true;
			TAILQ_REMOVE(&dumper_configs, di, di_next);
			free_single_dumper(di);
		}
	}
	mtx_unlock(&dumpconf_list_lk);

	/* Only produce ENOENT if a more targeted match didn't match. */
	if (!found && kda->kda_index == KDA_REMOVE)
		return (ENOENT);
	return (0);
}

static int
dump_check_bounds(struct dumperinfo *di, off_t offset, size_t length)
{

	if (di->mediasize > 0 && length != 0 && (offset < di->mediaoffset ||
	    offset - di->mediaoffset + length > di->mediasize)) {
		if (di->kdcomp != NULL && offset >= di->mediaoffset) {
			printf(
		    "Compressed dump failed to fit in device boundaries.\n");
			return (E2BIG);
		}

		printf("Attempt to write outside dump device boundaries.\n"
	    "offset(%jd), mediaoffset(%jd), length(%ju), mediasize(%jd).\n",
		    (intmax_t)offset, (intmax_t)di->mediaoffset,
		    (uintmax_t)length, (intmax_t)di->mediasize);
		return (ENOSPC);
	}
	if (length % di->blocksize != 0) {
		printf("Attempt to write partial block of length %ju.\n",
		    (uintmax_t)length);
		return (EINVAL);
	}
	if (offset % di->blocksize != 0) {
		printf("Attempt to write at unaligned offset %jd.\n",
		    (intmax_t)offset);
		return (EINVAL);
	}

	return (0);
}

#ifdef EKCD
static int
dump_encrypt(struct kerneldumpcrypto *kdc, uint8_t *buf, size_t size)
{

	switch (kdc->kdc_encryption) {
	case KERNELDUMP_ENC_AES_256_CBC:
		if (rijndael_blockEncrypt(&kdc->kdc_ci, &kdc->kdc_ki, buf,
		    8 * size, buf) <= 0) {
			return (EIO);
		}
		if (rijndael_cipherInit(&kdc->kdc_ci, MODE_CBC,
		    buf + size - 16 /* IV size for AES-256-CBC */) <= 0) {
			return (EIO);
		}
		break;
	case KERNELDUMP_ENC_CHACHA20:
		chacha_encrypt_bytes(&kdc->kdc_chacha, buf, buf, size);
		break;
	default:
		return (EINVAL);
	}

	return (0);
}

/* Encrypt data and call dumper. */
static int
dump_encrypted_write(struct dumperinfo *di, void *virtual,
    vm_offset_t physical, off_t offset, size_t length)
{
	static uint8_t buf[KERNELDUMP_BUFFER_SIZE];
	struct kerneldumpcrypto *kdc;
	int error;
	size_t nbytes;

	kdc = di->kdcrypto;

	while (length > 0) {
		nbytes = MIN(length, sizeof(buf));
		bcopy(virtual, buf, nbytes);

		if (dump_encrypt(kdc, buf, nbytes) != 0)
			return (EIO);

		error = dump_write(di, buf, physical, offset, nbytes);
		if (error != 0)
			return (error);

		offset += nbytes;
		virtual = (void *)((uint8_t *)virtual + nbytes);
		length -= nbytes;
	}

	return (0);
}
#endif /* EKCD */

static int
kerneldumpcomp_write_cb(void *base, size_t length, off_t offset, void *arg)
{
	struct dumperinfo *di;
	size_t resid, rlength;
	int error;

	di = arg;

	if (length % di->blocksize != 0) {
		/*
		 * This must be the final write after flushing the compression
		 * stream. Write as many full blocks as possible and stash the
		 * residual data in the dumper's block buffer. It will be
		 * padded and written in dump_finish().
		 */
		rlength = rounddown(length, di->blocksize);
		if (rlength != 0) {
			error = _dump_append(di, base, 0, rlength);
			if (error != 0)
				return (error);
		}
		resid = length - rlength;
		memmove(di->blockbuf, (uint8_t *)base + rlength, resid);
		bzero((uint8_t *)di->blockbuf + resid, di->blocksize - resid);
		di->kdcomp->kdc_resid = resid;
		return (EAGAIN);
	}
	return (_dump_append(di, base, 0, length));
}

/*
 * Write kernel dump headers at the beginning and end of the dump extent.
 * Write the kernel dump encryption key after the leading header if we were
 * configured to do so.
 */
static int
dump_write_headers(struct dumperinfo *di, struct kerneldumpheader *kdh)
{
#ifdef EKCD
	struct kerneldumpcrypto *kdc;
#endif
	void *buf, *key;
	size_t hdrsz;
	uint64_t extent;
	uint32_t keysize;
	int error;

	hdrsz = sizeof(*kdh);
	if (hdrsz > di->blocksize)
		return (ENOMEM);

#ifdef EKCD
	kdc = di->kdcrypto;
	key = kdc->kdc_dumpkey;
	keysize = kerneldumpcrypto_dumpkeysize(kdc);
#else
	key = NULL;
	keysize = 0;
#endif

	/*
	 * If the dump device has special handling for headers, let it take care
	 * of writing them out.
	 */
	if (di->dumper_hdr != NULL)
		return (di->dumper_hdr(di, kdh, key, keysize));

	if (hdrsz == di->blocksize)
		buf = kdh;
	else {
		buf = di->blockbuf;
		memset(buf, 0, di->blocksize);
		memcpy(buf, kdh, hdrsz);
	}

	extent = dtoh64(kdh->dumpextent);
#ifdef EKCD
	if (kdc != NULL) {
		error = dump_write(di, kdc->kdc_dumpkey, 0,
		    di->mediaoffset + di->mediasize - di->blocksize - extent -
		    keysize, keysize);
		if (error != 0)
			return (error);
	}
#endif

	error = dump_write(di, buf, 0,
	    di->mediaoffset + di->mediasize - 2 * di->blocksize - extent -
	    keysize, di->blocksize);
	if (error == 0)
		error = dump_write(di, buf, 0, di->mediaoffset + di->mediasize -
		    di->blocksize, di->blocksize);
	return (error);
}

/*
 * Don't touch the first SIZEOF_METADATA bytes on the dump device.  This is to
 * protect us from metadata and metadata from us.
 */
#define	SIZEOF_METADATA		(64 * 1024)

/*
 * Do some preliminary setup for a kernel dump: initialize state for encryption,
 * if requested, and make sure that we have enough space on the dump device.
 *
 * We set things up so that the dump ends before the last sector of the dump
 * device, at which the trailing header is written.
 *
 *     +-----------+------+-----+----------------------------+------+
 *     |           | lhdr | key |    ... kernel dump ...     | thdr |
 *     +-----------+------+-----+----------------------------+------+
 *                   1 blk  opt <------- dump extent --------> 1 blk
 *
 * Dumps written using dump_append() start at the beginning of the extent.
 * Uncompressed dumps will use the entire extent, but compressed dumps typically
 * will not. The true length of the dump is recorded in the leading and trailing
 * headers once the dump has been completed.
 *
 * The dump device may provide a callback, in which case it will initialize
 * dumpoff and take care of laying out the headers.
 */
int
dump_start(struct dumperinfo *di, struct kerneldumpheader *kdh)
{
	uint64_t dumpextent, span;
	uint32_t keysize;
	int error;

#ifdef EKCD
	error = kerneldumpcrypto_init(di->kdcrypto);
	if (error != 0)
		return (error);
	keysize = kerneldumpcrypto_dumpkeysize(di->kdcrypto);
#else
	error = 0;
	keysize = 0;
#endif

	if (di->dumper_start != NULL) {
		error = di->dumper_start(di);
	} else {
		dumpextent = dtoh64(kdh->dumpextent);
		span = SIZEOF_METADATA + dumpextent + 2 * di->blocksize +
		    keysize;
		if (di->mediasize < span) {
			if (di->kdcomp == NULL)
				return (E2BIG);

			/*
			 * We don't yet know how much space the compressed dump
			 * will occupy, so try to use the whole swap partition
			 * (minus the first 64KB) in the hope that the
			 * compressed dump will fit. If that doesn't turn out to
			 * be enough, the bounds checking in dump_write()
			 * will catch us and cause the dump to fail.
			 */
			dumpextent = di->mediasize - span + dumpextent;
			kdh->dumpextent = htod64(dumpextent);
		}

		/*
		 * The offset at which to begin writing the dump.
		 */
		di->dumpoff = di->mediaoffset + di->mediasize - di->blocksize -
		    dumpextent;
	}
	di->origdumpoff = di->dumpoff;
	return (error);
}

static int
_dump_append(struct dumperinfo *di, void *virtual, vm_offset_t physical,
    size_t length)
{
	int error;

#ifdef EKCD
	if (di->kdcrypto != NULL)
		error = dump_encrypted_write(di, virtual, physical, di->dumpoff,
		    length);
	else
#endif
		error = dump_write(di, virtual, physical, di->dumpoff, length);
	if (error == 0)
		di->dumpoff += length;
	return (error);
}

/*
 * Write to the dump device starting at dumpoff. When compression is enabled,
 * writes to the device will be performed using a callback that gets invoked
 * when the compression stream's output buffer is full.
 */
int
dump_append(struct dumperinfo *di, void *virtual, vm_offset_t physical,
    size_t length)
{
	void *buf;

	if (di->kdcomp != NULL) {
		/* Bounce through a buffer to avoid CRC errors. */
		if (length > di->maxiosize)
			return (EINVAL);
		buf = di->kdcomp->kdc_buf;
		memmove(buf, virtual, length);
		return (compressor_write(di->kdcomp->kdc_stream, buf, length));
	}
	return (_dump_append(di, virtual, physical, length));
}

/*
 * Write to the dump device at the specified offset.
 */
int
dump_write(struct dumperinfo *di, void *virtual, vm_offset_t physical,
    off_t offset, size_t length)
{
	int error;

	error = dump_check_bounds(di, offset, length);
	if (error != 0)
		return (error);
	return (di->dumper(di->priv, virtual, physical, offset, length));
}

/*
 * Perform kernel dump finalization: flush the compression stream, if necessary,
 * write the leading and trailing kernel dump headers now that we know the true
 * length of the dump, and optionally write the encryption key following the
 * leading header.
 */
int
dump_finish(struct dumperinfo *di, struct kerneldumpheader *kdh)
{
	int error;

	if (di->kdcomp != NULL) {
		error = compressor_flush(di->kdcomp->kdc_stream);
		if (error == EAGAIN) {
			/* We have residual data in di->blockbuf. */
			error = _dump_append(di, di->blockbuf, 0, di->blocksize);
			if (error == 0)
				/* Compensate for _dump_append()'s adjustment. */
				di->dumpoff -= di->blocksize - di->kdcomp->kdc_resid;
			di->kdcomp->kdc_resid = 0;
		}
		if (error != 0)
			return (error);

		/*
		 * We now know the size of the compressed dump, so update the
		 * header accordingly and recompute parity.
		 */
		kdh->dumplength = htod64(di->dumpoff - di->origdumpoff);
		kdh->parity = 0;
		kdh->parity = kerneldump_parity(kdh);

		compressor_reset(di->kdcomp->kdc_stream);
	}

	error = dump_write_headers(di, kdh);
	if (error != 0)
		return (error);

	(void)dump_write(di, NULL, 0, 0, 0);
	return (0);
}

void
dump_init_header(const struct dumperinfo *di, struct kerneldumpheader *kdh,
    const char *magic, uint32_t archver, uint64_t dumplen)
{
	size_t dstsize;

	bzero(kdh, sizeof(*kdh));
	strlcpy(kdh->magic, magic, sizeof(kdh->magic));
	strlcpy(kdh->architecture, MACHINE_ARCH, sizeof(kdh->architecture));
	kdh->version = htod32(KERNELDUMPVERSION);
	kdh->architectureversion = htod32(archver);
	kdh->dumplength = htod64(dumplen);
	kdh->dumpextent = kdh->dumplength;
	kdh->dumptime = htod64(time_second);
#ifdef EKCD
	kdh->dumpkeysize = htod32(kerneldumpcrypto_dumpkeysize(di->kdcrypto));
#else
	kdh->dumpkeysize = 0;
#endif
	kdh->blocksize = htod32(di->blocksize);
	strlcpy(kdh->hostname, prison0.pr_hostname, sizeof(kdh->hostname));
	dstsize = sizeof(kdh->versionstring);
	if (strlcpy(kdh->versionstring, version, dstsize) >= dstsize)
		kdh->versionstring[dstsize - 2] = '\n';
	if (panicstr != NULL)
		strlcpy(kdh->panicstring, panicstr, sizeof(kdh->panicstring));
	if (di->kdcomp != NULL)
		kdh->compression = di->kdcomp->kdc_format;
	kdh->parity = kerneldump_parity(kdh);
}

#ifdef DDB
DB_SHOW_COMMAND(panic, db_show_panic)
{

	if (panicstr == NULL)
		db_printf("panicstr not set\n");
	else
		db_printf("panic: %s\n", panicstr);
}
#endif