Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
/* Last non-groff version: hgraph.c  1.14 (Berkeley) 84/11/27
 *
 * This file contains the graphics routines for converting gremlin pictures
 * to troff input.
 */

#include "lib.h"

#include "gprint.h"

#define MAXVECT	40
#define MAXPOINTS	200
#define LINELENGTH	1
#define PointsPerInterval 64
#define pi		3.14159265358979324
#define twopi		(2.0 * pi)
#define len(a, b)	groff_hypot((double)(b.x-a.x), (double)(b.y-a.y))


extern int dotshifter;		/* for the length of dotted curves */

extern int style[];		/* line and character styles */
extern double thick[];
extern char *tfont[];
extern int tsize[];
extern int stipple_index[];	/* stipple font index for stipples 0 - 16 */
extern char *stipple;		/* stipple type (cf or ug) */


extern double troffscale;	/* imports from main.c */
extern double linethickness;
extern int linmod;
extern int lastx;
extern int lasty;
extern int lastyline;
extern int ytop;
extern int ybottom;
extern int xleft;
extern int xright;
extern enum E {
  OUTLINE, FILL, BOTH
} polyfill;

extern double adj1;
extern double adj2;
extern double adj3;
extern double adj4;
extern int res;

void HGSetFont(int font, int size);
void HGPutText(int justify, POINT pnt, register char *string);
void HGSetBrush(int mode);
void tmove2(int px, int py);
void doarc(POINT cp, POINT sp, int angle);
void tmove(POINT * ptr);
void cr();
void drawwig(POINT * ptr, int type);
void HGtline(int x1, int y1);
void deltax(double x);
void deltay(double y);
void HGArc(register int cx, register int cy, int px, int py, int angle);
void picurve(register int *x, register int *y, int npts);
void HGCurve(int *x, int *y, int numpoints);
void Paramaterize(int x[], int y[], double h[], int n);
void PeriodicSpline(double h[], int z[],
		    double dz[], double d2z[], double d3z[],
		    int npoints);
void NaturalEndSpline(double h[], int z[],
		      double dz[], double d2z[], double d3z[],
		      int npoints);



/*----------------------------------------------------------------------------*
 | Routine:	HGPrintElt (element_pointer, baseline)
 |
 | Results:	Examines a picture element and calls the appropriate
 |		routine(s) to print them according to their type.  After the
 |		picture is drawn, current position is (lastx, lasty).
 *----------------------------------------------------------------------------*/

void
HGPrintElt(ELT *element,
	   int /* baseline */)
{
  register POINT *p1;
  register POINT *p2;
  register int length;
  register int graylevel;

  if (!DBNullelt(element) && !Nullpoint((p1 = element->ptlist))) {
    /* p1 always has first point */
    if (TEXT(element->type)) {
      HGSetFont(element->brushf, element->size);
      switch (element->size) {
      case 1:
	p1->y += adj1;
	break;
      case 2:
	p1->y += adj2;
	break;
      case 3:
	p1->y += adj3;
	break;
      case 4:
	p1->y += adj4;
	break;
      default:
	break;
      }
      HGPutText(element->type, *p1, element->textpt);
    } else {
      if (element->brushf)		/* if there is a brush, the */
	HGSetBrush(element->brushf);	/* graphics need it set     */

      switch (element->type) {

      case ARC:
	p2 = PTNextPoint(p1);
	tmove(p2);
	doarc(*p1, *p2, element->size);
	cr();
	break;

      case CURVE:
	length = 0;	/* keep track of line length */
	drawwig(p1, CURVE);
	cr();
	break;

      case BSPLINE:
	length = 0;	/* keep track of line length */
	drawwig(p1, BSPLINE);
	cr();
	break;

      case VECTOR:
	length = 0;		/* keep track of line length so */
	tmove(p1);		/* single lines don't get long  */
	while (!Nullpoint((p1 = PTNextPoint(p1)))) {
	  HGtline((int) (p1->x * troffscale),
		  (int) (p1->y * troffscale));
	  if (length++ > LINELENGTH) {
	    length = 0;
	    printf("\\\n");
	  }
	}			/* end while */
	cr();
	break;

      case POLYGON:
	{
	  /* brushf = style of outline; size = color of fill:
	   * on first pass (polyfill=FILL), do the interior using 'P'
	   *    unless size=0
	   * on second pass (polyfill=OUTLINE), do the outline using a series
	   *    of vectors. It might make more sense to use \D'p ...',
	   *    but there is no uniform way to specify a 'fill character'
	   *    that prints as 'no fill' on all output devices (and
	   *    stipple fonts).
	   * If polyfill=BOTH, just use the \D'p ...' command.
	   */
	  double firstx = p1->x;
	  double firsty = p1->y;

	  length = 0;		/* keep track of line length so */
				/* single lines don't get long  */

	  if (polyfill == FILL || polyfill == BOTH) {
	    /* do the interior */
	    char command = (polyfill == BOTH && element->brushf) ? 'p' : 'P';

	    /* include outline, if there is one and */
	    /* the -p flag was set                  */

	    /* switch based on what gremlin gives */
	    switch (element->size) {
	    case 1:
	      graylevel = 1;
	      break;
	    case 3:
	      graylevel = 2;
	      break;
	    case 12:
	      graylevel = 3;
	      break;
	    case 14:
	      graylevel = 4;
	      break;
	    case 16:
	      graylevel = 5;
	      break;
	    case 19:
	      graylevel = 6;
	      break;
	    case 21:
	      graylevel = 7;
	      break;
	    case 23:
	      graylevel = 8;
	      break;
	    default:		/* who's giving something else? */
	      graylevel = NSTIPPLES;
	      break;
	    }
	    /* int graylevel = element->size; */

	    if (graylevel < 0)
	      break;
	    if (graylevel > NSTIPPLES)
	      graylevel = NSTIPPLES;
	    printf("\\D'Fg %.3f'",
		   double(1000 - stipple_index[graylevel]) / 1000.0);
	    cr();
	    tmove(p1);
	    printf("\\D'%c", command);

	    while (!Nullpoint((PTNextPoint(p1)))) {
	      p1 = PTNextPoint(p1);
	      deltax((double) p1->x);
	      deltay((double) p1->y);
	      if (length++ > LINELENGTH) {
		length = 0;
		printf("\\\n");
	      }
	    } /* end while */

	    /* close polygon if not done so by user */
	    if ((firstx != p1->x) || (firsty != p1->y)) {
	      deltax((double) firstx);
	      deltay((double) firsty);
	    }
	    putchar('\'');
	    cr();
	    break;
	  }
	  /* else polyfill == OUTLINE; only draw the outline */
	  if (!(element->brushf))
	    break;
	  length = 0;		/* keep track of line length */
	  tmove(p1);

	  while (!Nullpoint((PTNextPoint(p1)))) {
	    p1 = PTNextPoint(p1);
	    HGtline((int) (p1->x * troffscale),
		    (int) (p1->y * troffscale));
	    if (length++ > LINELENGTH) {
	      length = 0;
	      printf("\\\n");
	    }
	  }			/* end while */

	  /* close polygon if not done so by user */
	  if ((firstx != p1->x) || (firsty != p1->y)) {
	    HGtline((int) (firstx * troffscale),
		    (int) (firsty * troffscale));
	  }
	  cr();
	  break;
	}			/* end case POLYGON */
      }				/* end switch */
    }				/* end else Text */
  }				/* end if */
}				/* end PrintElt */


/*----------------------------------------------------------------------------*
 | Routine:	HGPutText (justification, position_point, string)
 |
 | Results:	Given the justification, a point to position with, and a
 |		string to put, HGPutText first sends the string into a
 |		diversion, moves to the positioning point, then outputs
 |		local vertical and horizontal motions as needed to justify
 |		the text.  After all motions are done, the diversion is
 |		printed out.
 *----------------------------------------------------------------------------*/

void
HGPutText(int justify,
	  POINT pnt,
	  register char *string)
{
  int savelasty = lasty;	/* vertical motion for text is to be */
				/* ignored.  Save current y here     */

  printf(".nr g8 \\n(.d\n");	/* save current vertical position. */
  printf(".ds g9 \"");		/* define string containing the text. */
  while (*string) {		/* put out the string */
    if (*string == '\\' &&
	*(string + 1) == '\\') {	/* one character at a */
      printf("\\\\\\");			/* time replacing //  */
      string++;				/* by //// to prevent */
    }					/* interpretation at  */
    printf("%c", *(string++));		/* printout time      */
  }
  printf("\n");

  tmove(&pnt);			/* move to positioning point */

  switch (justify) {
    /* local vertical motions                                            */
    /* (the numbers here are used to be somewhat compatible with gprint) */
  case CENTLEFT:
  case CENTCENT:
  case CENTRIGHT:
    printf("\\v'0.85n'");	/* down half */
    break;

  case TOPLEFT:
  case TOPCENT:
  case TOPRIGHT:
    printf("\\v'1.7n'");	/* down whole */
  }

  switch (justify) {
    /* local horizontal motions */
  case BOTCENT:
  case CENTCENT:
  case TOPCENT:
    printf("\\h'-\\w'\\*(g9'u/2u'");	/* back half */
    break;

  case BOTRIGHT:
  case CENTRIGHT:
  case TOPRIGHT:
    printf("\\h'-\\w'\\*(g9'u'");	/* back whole */
  }

  printf("\\&\\*(g9\n");	/* now print the text. */
  printf(".sp |\\n(g8u\n");	/* restore vertical position */
  lasty = savelasty;		/* vertical position restored to where it */
  lastx = xleft;		/* was before text, also horizontal is at */
				/* left                                   */
}				/* end HGPutText */


/*----------------------------------------------------------------------------*
 | Routine:	doarc (center_point, start_point, angle)
 |
 | Results:	Produces either drawarc command or a drawcircle command
 |		depending on the angle needed to draw through.
 *----------------------------------------------------------------------------*/

void
doarc(POINT cp,
      POINT sp,
      int angle)
{
  if (angle)			/* arc with angle */
    HGArc((int) (cp.x * troffscale), (int) (cp.y * troffscale),
	  (int) (sp.x * troffscale), (int) (sp.y * troffscale), angle);
  else				/* a full circle (angle == 0) */
    HGArc((int) (cp.x * troffscale), (int) (cp.y * troffscale),
	  (int) (sp.x * troffscale), (int) (sp.y * troffscale), 0);
}


/*----------------------------------------------------------------------------*
 | Routine:	HGSetFont (font_number, Point_size)
 |
 | Results:	ALWAYS outputs a .ft and .ps directive to troff.  This is
 |		done because someone may change stuff inside a text string. 
 |		Changes thickness back to default thickness.  Default
 |		thickness depends on font and pointsize.
 *----------------------------------------------------------------------------*/

void
HGSetFont(int font,
	  int size)
{
  printf(".ft %s\n"
	 ".ps %d\n", tfont[font - 1], tsize[size - 1]);
  linethickness = DEFTHICK;
}


/*----------------------------------------------------------------------------*
 | Routine:	HGSetBrush (line_mode)
 |
 | Results:	Generates the troff commands to set up the line width and
 |		style of subsequent lines.  Does nothing if no change is
 |              needed.
 |
 | Side Efct:	Sets `linmode' and `linethicknes'.
 *----------------------------------------------------------------------------*/

void
HGSetBrush(int mode)
{
  register int printed = 0;

  if (linmod != style[--mode]) {
    /* Groff doesn't understand \Ds, so we take it out */
    /* printf ("\\D's %du'", linmod = style[mode]); */
    linmod = style[mode];
    printed = 1;
  }
  if (linethickness != thick[mode]) {
    linethickness = thick[mode];
    printf("\\h'-%.2fp'\\D't %.2fp'", linethickness, linethickness);
    printed = 1;
  }
  if (printed)
    cr();
}


/*----------------------------------------------------------------------------*
 | Routine:	deltax (x_destination)
 |
 | Results:	Scales and outputs a number for delta x (with a leading
 |		space) given `lastx' and x_destination.
 |
 | Side Efct:	Resets `lastx' to x_destination.
 *----------------------------------------------------------------------------*/

void
deltax(double x)
{
  register int ix = (int) (x * troffscale);

  printf(" %du", ix - lastx);
  lastx = ix;
}


/*----------------------------------------------------------------------------*
 | Routine:	deltay (y_destination)
 |
 | Results:	Scales and outputs a number for delta y (with a leading
 |		space) given `lastyline' and y_destination.
 |
 | Side Efct:	Resets `lastyline' to y_destination.  Since `line' vertical
 |		motions don't affect `page' ones, `lasty' isn't updated.
 *----------------------------------------------------------------------------*/

void
deltay(double y)
{
  register int iy = (int) (y * troffscale);

  printf(" %du", iy - lastyline);
  lastyline = iy;
}


/*----------------------------------------------------------------------------*
 | Routine:	tmove2 (px, py)
 |
 | Results:	Produces horizontal and vertical moves for troff given the
 |		pair of points to move to and knowing the current position. 
 |		Also puts out a horizontal move to start the line.  This is
 |		a variation without the .sp command.
 *----------------------------------------------------------------------------*/

void
tmove2(int px,
       int py)
{
  register int dx;
  register int dy;

  if ((dy = py - lasty)) {
    printf("\\v'%du'", dy);
  }
  lastyline = lasty = py;	/* lasty is always set to current */
  if ((dx = px - lastx)) {
    printf("\\h'%du'", dx);
    lastx = px;
  }
}


/*----------------------------------------------------------------------------*
 | Routine:	tmove (point_pointer)
 |
 | Results:	Produces horizontal and vertical moves for troff given the
 |		pointer of a point to move to and knowing the current
 |		position.  Also puts out a horizontal move to start the
 |		line.
 *----------------------------------------------------------------------------*/

void
tmove(POINT * ptr)
{
  register int ix = (int) (ptr->x * troffscale);
  register int iy = (int) (ptr->y * troffscale);
  register int dx;
  register int dy;

  if ((dy = iy - lasty)) {
    printf(".sp %du\n", dy);
  }
  lastyline = lasty = iy;	/* lasty is always set to current */
  if ((dx = ix - lastx)) {
    printf("\\h'%du'", dx);
    lastx = ix;
  }
}


/*----------------------------------------------------------------------------*
 | Routine:	cr ( )
 |
 | Results:	Ends off an input line.  `.sp -1' is also added to counteract
 |		the vertical move done at the end of text lines.
 |
 | Side Efct:	Sets `lastx' to `xleft' for troff's return to left margin.
 *----------------------------------------------------------------------------*/

void
cr()
{
  printf("\n.sp -1\n");
  lastx = xleft;
}


/*----------------------------------------------------------------------------*
 | Routine:	line ( )
 |
 | Results:	Draws a single solid line to (x,y).
 *----------------------------------------------------------------------------*/

void
line(int px,
     int py)
{
  printf("\\D'l");
  printf(" %du", px - lastx);
  printf(" %du'", py - lastyline);
  lastx = px;
  lastyline = lasty = py;
}


/*----------------------------------------------------------------------------
 | Routine:	drawwig (ptr, type)
 |
 | Results:	The point sequence found in the structure pointed by ptr is
 |		placed in integer arrays for further manipulation by the
 |		existing routing.  With the corresponding type parameter,
 |		either picurve or HGCurve are called.
 *----------------------------------------------------------------------------*/

void
drawwig(POINT * ptr,
	int type)
{
  register int npts;			/* point list index */
  int x[MAXPOINTS], y[MAXPOINTS];	/* point list */

  for (npts = 1; !Nullpoint(ptr); ptr = PTNextPoint(ptr), npts++) {
    x[npts] = (int) (ptr->x * troffscale);
    y[npts] = (int) (ptr->y * troffscale);
  }
  if (--npts) {
    if (type == CURVE) /* Use the 2 different types of curves */
      HGCurve(&x[0], &y[0], npts);
    else
      picurve(&x[0], &y[0], npts);
  }
}


/*----------------------------------------------------------------------------
 | Routine:	HGArc (xcenter, ycenter, xstart, ystart, angle)
 |
 | Results:	This routine plots an arc centered about (cx, cy) counter
 |		clockwise starting from the point (px, py) through `angle'
 |		degrees.  If angle is 0, a full circle is drawn.  It does so
 |		by creating a draw-path around the arc whose density of
 |		points depends on the size of the arc.
 *----------------------------------------------------------------------------*/

void
HGArc(register int cx,
      register int cy,
      int px,
      int py,
      int angle)
{
  double xs, ys, resolution, fullcircle;
  int m;
  register int mask;
  register int extent;
  register int nx;
  register int ny;
  register int length;
  register double epsilon;

  xs = px - cx;
  ys = py - cy;

  length = 0;

  resolution = (1.0 + groff_hypot(xs, ys) / res) * PointsPerInterval;
  /* mask = (1 << (int) log10(resolution + 1.0)) - 1; */
  (void) frexp(resolution, &m);		/* A bit more elegant than log10 */
  for (mask = 1; mask < m; mask = mask << 1);
  mask -= 1;

  epsilon = 1.0 / resolution;
  fullcircle = (2.0 * pi) * resolution;
  if (angle == 0)
    extent = (int) fullcircle;
  else
    extent = (int) (angle * fullcircle / 360.0);

  HGtline(px, py);
  while (--extent >= 0) {
    xs += epsilon * ys;
    nx = cx + (int) (xs + 0.5);
    ys -= epsilon * xs;
    ny = cy + (int) (ys + 0.5);
    if (!(extent & mask)) {
      HGtline(nx, ny);		/* put out a point on circle */
      if (length++ > LINELENGTH) {
	length = 0;
	printf("\\\n");
      }
    }
  }				/* end for */
}				/* end HGArc */


/*----------------------------------------------------------------------------
 | Routine:	picurve (xpoints, ypoints, num_of_points)
 |
 | Results:	Draws a curve delimited by (not through) the line segments
 |		traced by (xpoints, ypoints) point list.  This is the `Pic'
 |		style curve.
 *----------------------------------------------------------------------------*/

void
picurve(register int *x,
	register int *y,
	int npts)
{
  register int nseg;		/* effective resolution for each curve */
  register int xp;		/* current point (and temporary) */
  register int yp;
  int pxp, pyp;			/* previous point (to make lines from) */
  int i;			/* inner curve segment traverser */
  int length = 0;
  double w;			/* position factor */
  double t1, t2, t3;		/* calculation temps */

  if (x[1] == x[npts] && y[1] == y[npts]) {
    x[0] = x[npts - 1];		/* if the lines' ends meet, make */
    y[0] = y[npts - 1];		/* sure the curve meets          */
    x[npts + 1] = x[2];
    y[npts + 1] = y[2];
  } else {			/* otherwise, make the ends of the  */
    x[0] = x[1];		/* curve touch the ending points of */
    y[0] = y[1];		/* the line segments                */
    x[npts + 1] = x[npts];
    y[npts + 1] = y[npts];
  }

  pxp = (x[0] + x[1]) / 2;	/* make the last point pointers       */
  pyp = (y[0] + y[1]) / 2;	/* point to the start of the 1st line */
  tmove2(pxp, pyp);

  for (; npts--; x++, y++) {	/* traverse the line segments */
    xp = x[0] - x[1];
    yp = y[0] - y[1];
    nseg = (int) groff_hypot((double) xp, (double) yp);
    xp = x[1] - x[2];
    yp = y[1] - y[2];
				/* `nseg' is the number of line    */
				/* segments that will be drawn for */
				/* each curve segment.             */
    nseg = (int) ((double) (nseg + (int) groff_hypot((double) xp, (double) yp)) /
		  res * PointsPerInterval);

    for (i = 1; i < nseg; i++) {
      w = (double) i / (double) nseg;
      t1 = w * w;
      t3 = t1 + 1.0 - (w + w);
      t2 = 2.0 - (t3 + t1);
      xp = (((int) (t1 * x[2] + t2 * x[1] + t3 * x[0])) + 1) / 2;
      yp = (((int) (t1 * y[2] + t2 * y[1] + t3 * y[0])) + 1) / 2;

      HGtline(xp, yp);
      if (length++ > LINELENGTH) {
	length = 0;
	printf("\\\n");
      }
    }
  }
}


/*----------------------------------------------------------------------------
 | Routine:	HGCurve(xpoints, ypoints, num_points)
 |
 | Results:	This routine generates a smooth curve through a set of
 |		points.  The method used is the parametric spline curve on
 |		unit knot mesh described in `Spline Curve Techniques' by
 |		Patrick Baudelaire, Robert Flegal, and Robert Sproull --
 |		Xerox Parc.
 *----------------------------------------------------------------------------*/

void
HGCurve(int *x,
	int *y,
	int numpoints)
{
  double h[MAXPOINTS], dx[MAXPOINTS], dy[MAXPOINTS];
  double d2x[MAXPOINTS], d2y[MAXPOINTS], d3x[MAXPOINTS], d3y[MAXPOINTS];
  double t, t2, t3;
  register int j;
  register int k;
  register int nx;
  register int ny;
  int lx, ly;
  int length = 0;

  lx = x[1];
  ly = y[1];
  tmove2(lx, ly);

  /*
   * Solve for derivatives of the curve at each point separately for x and y
   * (parametric).
   */
  Paramaterize(x, y, h, numpoints);

  /* closed curve */
  if ((x[1] == x[numpoints]) && (y[1] == y[numpoints])) {
    PeriodicSpline(h, x, dx, d2x, d3x, numpoints);
    PeriodicSpline(h, y, dy, d2y, d3y, numpoints);
  } else {
    NaturalEndSpline(h, x, dx, d2x, d3x, numpoints);
    NaturalEndSpline(h, y, dy, d2y, d3y, numpoints);
  }

  /*
   * generate the curve using the above information and PointsPerInterval
   * vectors between each specified knot.
   */

  for (j = 1; j < numpoints; ++j) {
    if ((x[j] == x[j + 1]) && (y[j] == y[j + 1]))
      continue;
    for (k = 0; k <= PointsPerInterval; ++k) {
      t = (double) k *h[j] / (double) PointsPerInterval;
      t2 = t * t;
      t3 = t * t * t;
      nx = x[j] + (int) (t * dx[j] + t2 * d2x[j] / 2 + t3 * d3x[j] / 6);
      ny = y[j] + (int) (t * dy[j] + t2 * d2y[j] / 2 + t3 * d3y[j] / 6);
      HGtline(nx, ny);
      if (length++ > LINELENGTH) {
	length = 0;
	printf("\\\n");
      }
    }				/* end for k */
  }				/* end for j */
}				/* end HGCurve */


/*----------------------------------------------------------------------------
 | Routine:	Paramaterize (xpoints, ypoints, hparams, num_points)
 |
 | Results:	This routine calculates parameteric values for use in
 |		calculating curves.  The parametric values are returned
 |		in the array h.  The values are an approximation of
 |		cumulative arc lengths of the curve (uses cord length).
 |		For additional information, see paper cited below.
 *----------------------------------------------------------------------------*/

void
Paramaterize(int x[],
	     int y[],
	     double h[],
	     int n)
{
  register int dx;
  register int dy;
  register int i;
  register int j;
  double u[MAXPOINTS];

  for (i = 1; i <= n; ++i) {
    u[i] = 0;
    for (j = 1; j < i; j++) {
      dx = x[j + 1] - x[j];
      dy = y[j + 1] - y[j];
      /* Here was overflowing, so I changed it.       */
      /* u[i] += sqrt ((double) (dx * dx + dy * dy)); */
      u[i] += groff_hypot((double) dx, (double) dy);
    }
  }
  for (i = 1; i < n; ++i)
    h[i] = u[i + 1] - u[i];
}				/* end Paramaterize */


/*----------------------------------------------------------------------------
 | Routine:	PeriodicSpline (h, z, dz, d2z, d3z, npoints)
 |
 | Results:	This routine solves for the cubic polynomial to fit a spline
 |		curve to the the points specified by the list of values. 
 |		The Curve generated is periodic.  The algorithms for this
 |		curve are from the `Spline Curve Techniques' paper cited
 |		above.
 *----------------------------------------------------------------------------*/

void
PeriodicSpline(double h[],	/* paramaterization  */
	       int z[],		/* point list */
	       double dz[],	/* to return the 1st derivative */
	       double d2z[],	/* 2nd derivative */
	       double d3z[],	/* 3rd derivative */
	       int npoints)	/* number of valid points */
{
  double d[MAXPOINTS];
  double deltaz[MAXPOINTS], a[MAXPOINTS], b[MAXPOINTS];
  double c[MAXPOINTS], r[MAXPOINTS], s[MAXPOINTS];
  int i;

  /* step 1 */
  for (i = 1; i < npoints; ++i) {
    deltaz[i] = h[i] ? ((double) (z[i + 1] - z[i])) / h[i] : 0;
  }
  h[0] = h[npoints - 1];
  deltaz[0] = deltaz[npoints - 1];

  /* step 2 */
  for (i = 1; i < npoints - 1; ++i) {
    d[i] = deltaz[i + 1] - deltaz[i];
  }
  d[0] = deltaz[1] - deltaz[0];

  /* step 3a */
  a[1] = 2 * (h[0] + h[1]);
  b[1] = d[0];
  c[1] = h[0];
  for (i = 2; i < npoints - 1; ++i) {
    a[i] = 2 * (h[i - 1] + h[i]) -
	   pow((double) h[i - 1], (double) 2.0) / a[i - 1];
    b[i] = d[i - 1] - h[i - 1] * b[i - 1] / a[i - 1];
    c[i] = -h[i - 1] * c[i - 1] / a[i - 1];
  }

  /* step 3b */
  r[npoints - 1] = 1;
  s[npoints - 1] = 0;
  for (i = npoints - 2; i > 0; --i) {
    r[i] = -(h[i] * r[i + 1] + c[i]) / a[i];
    s[i] = (6 * b[i] - h[i] * s[i + 1]) / a[i];
  }

  /* step 4 */
  d2z[npoints - 1] = (6 * d[npoints - 2] - h[0] * s[1]
		      - h[npoints - 1] * s[npoints - 2])
		     / (h[0] * r[1] + h[npoints - 1] * r[npoints - 2]
		      + 2 * (h[npoints - 2] + h[0]));
  for (i = 1; i < npoints - 1; ++i) {
    d2z[i] = r[i] * d2z[npoints - 1] + s[i];
  }
  d2z[npoints] = d2z[1];

  /* step 5 */
  for (i = 1; i < npoints; ++i) {
    dz[i] = deltaz[i] - h[i] * (2 * d2z[i] + d2z[i + 1]) / 6;
    d3z[i] = h[i] ? (d2z[i + 1] - d2z[i]) / h[i] : 0;
  }
}				/* end PeriodicSpline */


/*----------------------------------------------------------------------------
 | Routine:	NaturalEndSpline (h, z, dz, d2z, d3z, npoints)
 |
 | Results:	This routine solves for the cubic polynomial to fit a spline
 |		curve the the points specified by the list of values.  The
 |		alogrithms for this curve are from the `Spline Curve
 |		Techniques' paper cited above.
 *----------------------------------------------------------------------------*/

void
NaturalEndSpline(double h[],	/* parameterization */
		 int z[],	/* Point list */
		 double dz[],	/* to return the 1st derivative */
		 double d2z[],	/* 2nd derivative */
		 double d3z[],	/* 3rd derivative */
		 int npoints)	/* number of valid points */
{
  double d[MAXPOINTS];
  double deltaz[MAXPOINTS], a[MAXPOINTS], b[MAXPOINTS];
  int i;

  /* step 1 */
  for (i = 1; i < npoints; ++i) {
    deltaz[i] = h[i] ? ((double) (z[i + 1] - z[i])) / h[i] : 0;
  }
  deltaz[0] = deltaz[npoints - 1];

  /* step 2 */
  for (i = 1; i < npoints - 1; ++i) {
    d[i] = deltaz[i + 1] - deltaz[i];
  }
  d[0] = deltaz[1] - deltaz[0];

  /* step 3 */
  a[0] = 2 * (h[2] + h[1]);
  b[0] = d[1];
  for (i = 1; i < npoints - 2; ++i) {
    a[i] = 2 * (h[i + 1] + h[i + 2]) -
	    pow((double) h[i + 1], (double) 2.0) / a[i - 1];
    b[i] = d[i + 1] - h[i + 1] * b[i - 1] / a[i - 1];
  }

  /* step 4 */
  d2z[npoints] = d2z[1] = 0;
  for (i = npoints - 1; i > 1; --i) {
    d2z[i] = (6 * b[i - 2] - h[i] * d2z[i + 1]) / a[i - 2];
  }

  /* step 5 */
  for (i = 1; i < npoints; ++i) {
    dz[i] = deltaz[i] - h[i] * (2 * d2z[i] + d2z[i + 1]) / 6;
    d3z[i] = h[i] ? (d2z[i + 1] - d2z[i]) / h[i] : 0;
  }
}				/* end NaturalEndSpline */


/*----------------------------------------------------------------------------*
 | Routine:	change (x_position, y_position, visible_flag)
 |
 | Results:	As HGtline passes from the invisible to visible (or vice
 |		versa) portion of a line, change is called to either draw
 |		the line, or initialize the beginning of the next one.
 |		Change calls line to draw segments if visible_flag is set
 |		(which means we're leaving a visible area).
 *----------------------------------------------------------------------------*/

void
change(register int x,
       register int y,
       register int vis)
{
  static int length = 0;

  if (vis) {			/* leaving a visible area, draw it. */
    line(x, y);
    if (length++ > LINELENGTH) {
      length = 0;
      printf("\\\n");
    }
  } else {			/* otherwise, we're entering one, remember */
				/* beginning                               */
    tmove2(x, y);
  }
}


/*----------------------------------------------------------------------------
 | Routine:	HGtline (xstart, ystart, xend, yend)
 |
 | Results:	Draws a line from current position to (x1,y1) using line(x1,
 |		y1) to place individual segments of dotted or dashed lines.
 *----------------------------------------------------------------------------*/

void
HGtline(int x_1,
	int y_1)
{
  register int x_0 = lastx;
  register int y_0 = lasty;
  register int dx;
  register int dy;
  register int oldcoord;
  register int res1;
  register int visible;
  register int res2;
  register int xinc;
  register int yinc;
  register int dotcounter;

  if (linmod == SOLID) {
    line(x_1, y_1);
    return;
  }

  /* for handling different resolutions */
  dotcounter = linmod << dotshifter;

  xinc = 1;
  yinc = 1;
  if ((dx = x_1 - x_0) < 0) {
    xinc = -xinc;
    dx = -dx;
  }
  if ((dy = y_1 - y_0) < 0) {
    yinc = -yinc;
    dy = -dy;
  }
  res1 = 0;
  res2 = 0;
  visible = 0;
  if (dx >= dy) {
    oldcoord = y_0;
    while (x_0 != x_1) {
      if ((x_0 & dotcounter) && !visible) {
	change(x_0, y_0, 0);
	visible = 1;
      } else if (visible && !(x_0 & dotcounter)) {
	change(x_0 - xinc, oldcoord, 1);
	visible = 0;
      }
      if (res1 > res2) {
	oldcoord = y_0;
	res2 += dx - res1;
	res1 = 0;
	y_0 += yinc;
      }
      res1 += dy;
      x_0 += xinc;
    }
  } else {
    oldcoord = x_0;
    while (y_0 != y_1) {
      if ((y_0 & dotcounter) && !visible) {
	change(x_0, y_0, 0);
	visible = 1;
      } else if (visible && !(y_0 & dotcounter)) {
	change(oldcoord, y_0 - yinc, 1);
	visible = 0;
      }
      if (res1 > res2) {
	oldcoord = x_0;
	res2 += dy - res1;
	res1 = 0;
	x_0 += xinc;
      }
      res1 += dx;
      y_0 += yinc;
    }
  }
  if (visible)
    change(x_1, y_1, 1);
  else
    change(x_1, y_1, 0);
}

/* EOF */