// Locale support -*- C++ -*-
// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
// 2006, 2007, 2008
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/** @file locale_facets.tcc
* This is an internal header file, included by other library headers.
* You should not attempt to use it directly.
*/
#ifndef _LOCALE_FACETS_TCC
#define _LOCALE_FACETS_TCC 1
#pragma GCC system_header
#include <limits> // For numeric_limits
#include <typeinfo> // For bad_cast.
#include <bits/streambuf_iterator.h>
#include <ext/type_traits.h>
_GLIBCXX_BEGIN_NAMESPACE(std)
template<typename _Facet>
locale
locale::combine(const locale& __other) const
{
_Impl* __tmp = new _Impl(*_M_impl, 1);
try
{
__tmp->_M_replace_facet(__other._M_impl, &_Facet::id);
}
catch(...)
{
__tmp->_M_remove_reference();
__throw_exception_again;
}
return locale(__tmp);
}
template<typename _CharT, typename _Traits, typename _Alloc>
bool
locale::operator()(const basic_string<_CharT, _Traits, _Alloc>& __s1,
const basic_string<_CharT, _Traits, _Alloc>& __s2) const
{
typedef std::collate<_CharT> __collate_type;
const __collate_type& __collate = use_facet<__collate_type>(*this);
return (__collate.compare(__s1.data(), __s1.data() + __s1.length(),
__s2.data(), __s2.data() + __s2.length()) < 0);
}
/**
* @brief Test for the presence of a facet.
*
* has_facet tests the locale argument for the presence of the facet type
* provided as the template parameter. Facets derived from the facet
* parameter will also return true.
*
* @param Facet The facet type to test the presence of.
* @param locale The locale to test.
* @return true if locale contains a facet of type Facet, else false.
*/
template<typename _Facet>
inline bool
has_facet(const locale& __loc) throw()
{
const size_t __i = _Facet::id._M_id();
const locale::facet** __facets = __loc._M_impl->_M_facets;
return (__i < __loc._M_impl->_M_facets_size && __facets[__i]);
}
/**
* @brief Return a facet.
*
* use_facet looks for and returns a reference to a facet of type Facet
* where Facet is the template parameter. If has_facet(locale) is true,
* there is a suitable facet to return. It throws std::bad_cast if the
* locale doesn't contain a facet of type Facet.
*
* @param Facet The facet type to access.
* @param locale The locale to use.
* @return Reference to facet of type Facet.
* @throw std::bad_cast if locale doesn't contain a facet of type Facet.
*/
template<typename _Facet>
inline const _Facet&
use_facet(const locale& __loc)
{
const size_t __i = _Facet::id._M_id();
const locale::facet** __facets = __loc._M_impl->_M_facets;
if (!(__i < __loc._M_impl->_M_facets_size && __facets[__i]))
__throw_bad_cast();
return static_cast<const _Facet&>(*__facets[__i]);
}
// Routine to access a cache for the facet. If the cache didn't
// exist before, it gets constructed on the fly.
template<typename _Facet>
struct __use_cache
{
const _Facet*
operator() (const locale& __loc) const;
};
// Specializations.
template<typename _CharT>
struct __use_cache<__numpunct_cache<_CharT> >
{
const __numpunct_cache<_CharT>*
operator() (const locale& __loc) const
{
const size_t __i = numpunct<_CharT>::id._M_id();
const locale::facet** __caches = __loc._M_impl->_M_caches;
if (!__caches[__i])
{
__numpunct_cache<_CharT>* __tmp = NULL;
try
{
__tmp = new __numpunct_cache<_CharT>;
__tmp->_M_cache(__loc);
}
catch(...)
{
delete __tmp;
__throw_exception_again;
}
__loc._M_impl->_M_install_cache(__tmp, __i);
}
return static_cast<const __numpunct_cache<_CharT>*>(__caches[__i]);
}
};
template<typename _CharT, bool _Intl>
struct __use_cache<__moneypunct_cache<_CharT, _Intl> >
{
const __moneypunct_cache<_CharT, _Intl>*
operator() (const locale& __loc) const
{
const size_t __i = moneypunct<_CharT, _Intl>::id._M_id();
const locale::facet** __caches = __loc._M_impl->_M_caches;
if (!__caches[__i])
{
__moneypunct_cache<_CharT, _Intl>* __tmp = NULL;
try
{
__tmp = new __moneypunct_cache<_CharT, _Intl>;
__tmp->_M_cache(__loc);
}
catch(...)
{
delete __tmp;
__throw_exception_again;
}
__loc._M_impl->_M_install_cache(__tmp, __i);
}
return static_cast<
const __moneypunct_cache<_CharT, _Intl>*>(__caches[__i]);
}
};
template<typename _CharT>
void
__numpunct_cache<_CharT>::_M_cache(const locale& __loc)
{
_M_allocated = true;
const numpunct<_CharT>& __np = use_facet<numpunct<_CharT> >(__loc);
_M_grouping_size = __np.grouping().size();
char* __grouping = new char[_M_grouping_size];
__np.grouping().copy(__grouping, _M_grouping_size);
_M_grouping = __grouping;
_M_use_grouping = (_M_grouping_size
&& static_cast<signed char>(__np.grouping()[0]) > 0);
_M_truename_size = __np.truename().size();
_CharT* __truename = new _CharT[_M_truename_size];
__np.truename().copy(__truename, _M_truename_size);
_M_truename = __truename;
_M_falsename_size = __np.falsename().size();
_CharT* __falsename = new _CharT[_M_falsename_size];
__np.falsename().copy(__falsename, _M_falsename_size);
_M_falsename = __falsename;
_M_decimal_point = __np.decimal_point();
_M_thousands_sep = __np.thousands_sep();
const ctype<_CharT>& __ct = use_facet<ctype<_CharT> >(__loc);
__ct.widen(__num_base::_S_atoms_out,
__num_base::_S_atoms_out + __num_base::_S_oend, _M_atoms_out);
__ct.widen(__num_base::_S_atoms_in,
__num_base::_S_atoms_in + __num_base::_S_iend, _M_atoms_in);
}
template<typename _CharT, bool _Intl>
void
__moneypunct_cache<_CharT, _Intl>::_M_cache(const locale& __loc)
{
_M_allocated = true;
const moneypunct<_CharT, _Intl>& __mp =
use_facet<moneypunct<_CharT, _Intl> >(__loc);
_M_grouping_size = __mp.grouping().size();
char* __grouping = new char[_M_grouping_size];
__mp.grouping().copy(__grouping, _M_grouping_size);
_M_grouping = __grouping;
_M_use_grouping = (_M_grouping_size
&& static_cast<signed char>(__mp.grouping()[0]) > 0);
_M_decimal_point = __mp.decimal_point();
_M_thousands_sep = __mp.thousands_sep();
_M_frac_digits = __mp.frac_digits();
_M_curr_symbol_size = __mp.curr_symbol().size();
_CharT* __curr_symbol = new _CharT[_M_curr_symbol_size];
__mp.curr_symbol().copy(__curr_symbol, _M_curr_symbol_size);
_M_curr_symbol = __curr_symbol;
_M_positive_sign_size = __mp.positive_sign().size();
_CharT* __positive_sign = new _CharT[_M_positive_sign_size];
__mp.positive_sign().copy(__positive_sign, _M_positive_sign_size);
_M_positive_sign = __positive_sign;
_M_negative_sign_size = __mp.negative_sign().size();
_CharT* __negative_sign = new _CharT[_M_negative_sign_size];
__mp.negative_sign().copy(__negative_sign, _M_negative_sign_size);
_M_negative_sign = __negative_sign;
_M_pos_format = __mp.pos_format();
_M_neg_format = __mp.neg_format();
const ctype<_CharT>& __ct = use_facet<ctype<_CharT> >(__loc);
__ct.widen(money_base::_S_atoms,
money_base::_S_atoms + money_base::_S_end, _M_atoms);
}
// Used by both numeric and monetary facets.
// Check to make sure that the __grouping_tmp string constructed in
// money_get or num_get matches the canonical grouping for a given
// locale.
// __grouping_tmp is parsed L to R
// 1,222,444 == __grouping_tmp of "\1\3\3"
// __grouping is parsed R to L
// 1,222,444 == __grouping of "\3" == "\3\3\3"
static bool
__verify_grouping(const char* __grouping, size_t __grouping_size,
const string& __grouping_tmp);
_GLIBCXX_BEGIN_LDBL_NAMESPACE
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
_M_extract_float(_InIter __beg, _InIter __end, ios_base& __io,
ios_base::iostate& __err, string& __xtrc) const
{
typedef char_traits<_CharT> __traits_type;
typedef __numpunct_cache<_CharT> __cache_type;
__use_cache<__cache_type> __uc;
const locale& __loc = __io._M_getloc();
const __cache_type* __lc = __uc(__loc);
const _CharT* __lit = __lc->_M_atoms_in;
char_type __c = char_type();
// True if __beg becomes equal to __end.
bool __testeof = __beg == __end;
// First check for sign.
if (!__testeof)
{
__c = *__beg;
const bool __plus = __c == __lit[__num_base::_S_iplus];
if ((__plus || __c == __lit[__num_base::_S_iminus])
&& !(__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
&& !(__c == __lc->_M_decimal_point))
{
__xtrc += __plus ? '+' : '-';
if (++__beg != __end)
__c = *__beg;
else
__testeof = true;
}
}
// Next, look for leading zeros.
bool __found_mantissa = false;
int __sep_pos = 0;
while (!__testeof)
{
if ((__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
|| __c == __lc->_M_decimal_point)
break;
else if (__c == __lit[__num_base::_S_izero])
{
if (!__found_mantissa)
{
__xtrc += '0';
__found_mantissa = true;
}
++__sep_pos;
if (++__beg != __end)
__c = *__beg;
else
__testeof = true;
}
else
break;
}
// Only need acceptable digits for floating point numbers.
bool __found_dec = false;
bool __found_sci = false;
string __found_grouping;
if (__lc->_M_use_grouping)
__found_grouping.reserve(32);
const char_type* __lit_zero = __lit + __num_base::_S_izero;
if (!__lc->_M_allocated)
// "C" locale
while (!__testeof)
{
const int __digit = _M_find(__lit_zero, 10, __c);
if (__digit != -1)
{
__xtrc += '0' + __digit;
__found_mantissa = true;
}
else if (__c == __lc->_M_decimal_point
&& !__found_dec && !__found_sci)
{
__xtrc += '.';
__found_dec = true;
}
else if ((__c == __lit[__num_base::_S_ie]
|| __c == __lit[__num_base::_S_iE])
&& !__found_sci && __found_mantissa)
{
// Scientific notation.
__xtrc += 'e';
__found_sci = true;
// Remove optional plus or minus sign, if they exist.
if (++__beg != __end)
{
__c = *__beg;
const bool __plus = __c == __lit[__num_base::_S_iplus];
if (__plus || __c == __lit[__num_base::_S_iminus])
__xtrc += __plus ? '+' : '-';
else
continue;
}
else
{
__testeof = true;
break;
}
}
else
break;
if (++__beg != __end)
__c = *__beg;
else
__testeof = true;
}
else
while (!__testeof)
{
// According to 22.2.2.1.2, p8-9, first look for thousands_sep
// and decimal_point.
if (__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
{
if (!__found_dec && !__found_sci)
{
// NB: Thousands separator at the beginning of a string
// is a no-no, as is two consecutive thousands separators.
if (__sep_pos)
{
__found_grouping += static_cast<char>(__sep_pos);
__sep_pos = 0;
}
else
{
// NB: __convert_to_v will not assign __v and will
// set the failbit.
__xtrc.clear();
break;
}
}
else
break;
}
else if (__c == __lc->_M_decimal_point)
{
if (!__found_dec && !__found_sci)
{
// If no grouping chars are seen, no grouping check
// is applied. Therefore __found_grouping is adjusted
// only if decimal_point comes after some thousands_sep.
if (__found_grouping.size())
__found_grouping += static_cast<char>(__sep_pos);
__xtrc += '.';
__found_dec = true;
}
else
break;
}
else
{
const char_type* __q =
__traits_type::find(__lit_zero, 10, __c);
if (__q)
{
__xtrc += '0' + (__q - __lit_zero);
__found_mantissa = true;
++__sep_pos;
}
else if ((__c == __lit[__num_base::_S_ie]
|| __c == __lit[__num_base::_S_iE])
&& !__found_sci && __found_mantissa)
{
// Scientific notation.
if (__found_grouping.size() && !__found_dec)
__found_grouping += static_cast<char>(__sep_pos);
__xtrc += 'e';
__found_sci = true;
// Remove optional plus or minus sign, if they exist.
if (++__beg != __end)
{
__c = *__beg;
const bool __plus = __c == __lit[__num_base::_S_iplus];
if ((__plus || __c == __lit[__num_base::_S_iminus])
&& !(__lc->_M_use_grouping
&& __c == __lc->_M_thousands_sep)
&& !(__c == __lc->_M_decimal_point))
__xtrc += __plus ? '+' : '-';
else
continue;
}
else
{
__testeof = true;
break;
}
}
else
break;
}
if (++__beg != __end)
__c = *__beg;
else
__testeof = true;
}
// Digit grouping is checked. If grouping and found_grouping don't
// match, then get very very upset, and set failbit.
if (__found_grouping.size())
{
// Add the ending grouping if a decimal or 'e'/'E' wasn't found.
if (!__found_dec && !__found_sci)
__found_grouping += static_cast<char>(__sep_pos);
if (!std::__verify_grouping(__lc->_M_grouping,
__lc->_M_grouping_size,
__found_grouping))
__err |= ios_base::failbit;
}
// Finish up.
if (__testeof)
__err |= ios_base::eofbit;
return __beg;
}
_GLIBCXX_END_LDBL_NAMESPACE
_GLIBCXX_BEGIN_LDBL_NAMESPACE
template<typename _CharT, typename _InIter>
template<typename _ValueT>
_InIter
num_get<_CharT, _InIter>::
_M_extract_int(_InIter __beg, _InIter __end, ios_base& __io,
ios_base::iostate& __err, _ValueT& __v) const
{
typedef char_traits<_CharT> __traits_type;
using __gnu_cxx::__add_unsigned;
typedef typename __add_unsigned<_ValueT>::__type __unsigned_type;
typedef __numpunct_cache<_CharT> __cache_type;
__use_cache<__cache_type> __uc;
const locale& __loc = __io._M_getloc();
const __cache_type* __lc = __uc(__loc);
const _CharT* __lit = __lc->_M_atoms_in;
char_type __c = char_type();
// NB: Iff __basefield == 0, __base can change based on contents.
const ios_base::fmtflags __basefield = __io.flags()
& ios_base::basefield;
const bool __oct = __basefield == ios_base::oct;
int __base = __oct ? 8 : (__basefield == ios_base::hex ? 16 : 10);
// True if __beg becomes equal to __end.
bool __testeof = __beg == __end;
// First check for sign.
bool __negative = false;
if (!__testeof)
{
__c = *__beg;
if (numeric_limits<_ValueT>::is_signed)
__negative = __c == __lit[__num_base::_S_iminus];
if ((__negative || __c == __lit[__num_base::_S_iplus])
&& !(__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
&& !(__c == __lc->_M_decimal_point))
{
if (++__beg != __end)
__c = *__beg;
else
__testeof = true;
}
}
// Next, look for leading zeros and check required digits
// for base formats.
bool __found_zero = false;
int __sep_pos = 0;
while (!__testeof)
{
if ((__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
|| __c == __lc->_M_decimal_point)
break;
else if (__c == __lit[__num_base::_S_izero]
&& (!__found_zero || __base == 10))
{
__found_zero = true;
++__sep_pos;
if (__basefield == 0)
__base = 8;
if (__base == 8)
__sep_pos = 0;
}
else if (__found_zero
&& (__c == __lit[__num_base::_S_ix]
|| __c == __lit[__num_base::_S_iX]))
{
if (__basefield == 0)
__base = 16;
if (__base == 16)
{
__found_zero = false;
__sep_pos = 0;
}
else
break;
}
else
break;
if (++__beg != __end)
{
__c = *__beg;
if (!__found_zero)
break;
}
else
__testeof = true;
}
// At this point, base is determined. If not hex, only allow
// base digits as valid input.
const size_t __len = (__base == 16 ? __num_base::_S_iend
- __num_base::_S_izero : __base);
// Extract.
string __found_grouping;
if (__lc->_M_use_grouping)
__found_grouping.reserve(32);
bool __testfail = false;
const __unsigned_type __max = __negative ?
-numeric_limits<_ValueT>::min() : numeric_limits<_ValueT>::max();
const __unsigned_type __smax = __max / __base;
__unsigned_type __result = 0;
int __digit = 0;
const char_type* __lit_zero = __lit + __num_base::_S_izero;
if (!__lc->_M_allocated)
// "C" locale
while (!__testeof)
{
__digit = _M_find(__lit_zero, __len, __c);
if (__digit == -1)
break;
if (__result > __smax)
__testfail = true;
else
{
__result *= __base;
__testfail |= __result > __max - __digit;
__result += __digit;
++__sep_pos;
}
if (++__beg != __end)
__c = *__beg;
else
__testeof = true;
}
else
while (!__testeof)
{
// According to 22.2.2.1.2, p8-9, first look for thousands_sep
// and decimal_point.
if (__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
{
// NB: Thousands separator at the beginning of a string
// is a no-no, as is two consecutive thousands separators.
if (__sep_pos)
{
__found_grouping += static_cast<char>(__sep_pos);
__sep_pos = 0;
}
else
{
__testfail = true;
break;
}
}
else if (__c == __lc->_M_decimal_point)
break;
else
{
const char_type* __q =
__traits_type::find(__lit_zero, __len, __c);
if (!__q)
break;
__digit = __q - __lit_zero;
if (__digit > 15)
__digit -= 6;
if (__result > __smax)
__testfail = true;
else
{
__result *= __base;
__testfail |= __result > __max - __digit;
__result += __digit;
++__sep_pos;
}
}
if (++__beg != __end)
__c = *__beg;
else
__testeof = true;
}
// Digit grouping is checked. If grouping and found_grouping don't
// match, then get very very upset, and set failbit.
if (__found_grouping.size())
{
// Add the ending grouping.
__found_grouping += static_cast<char>(__sep_pos);
if (!std::__verify_grouping(__lc->_M_grouping,
__lc->_M_grouping_size,
__found_grouping))
__err |= ios_base::failbit;
}
if (!__testfail && (__sep_pos || __found_zero
|| __found_grouping.size()))
__v = __negative ? -__result : __result;
else
__err |= ios_base::failbit;
if (__testeof)
__err |= ios_base::eofbit;
return __beg;
}
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 17. Bad bool parsing
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, bool& __v) const
{
if (!(__io.flags() & ios_base::boolalpha))
{
// Parse bool values as long.
// NB: We can't just call do_get(long) here, as it might
// refer to a derived class.
long __l = -1;
__beg = _M_extract_int(__beg, __end, __io, __err, __l);
if (__l == 0 || __l == 1)
__v = __l;
else
__err |= ios_base::failbit;
}
else
{
// Parse bool values as alphanumeric.
typedef __numpunct_cache<_CharT> __cache_type;
__use_cache<__cache_type> __uc;
const locale& __loc = __io._M_getloc();
const __cache_type* __lc = __uc(__loc);
bool __testf = true;
bool __testt = true;
size_t __n;
bool __testeof = __beg == __end;
for (__n = 0; !__testeof; ++__n)
{
const char_type __c = *__beg;
if (__testf)
{
if (__n < __lc->_M_falsename_size)
__testf = __c == __lc->_M_falsename[__n];
else
break;
}
if (__testt)
{
if (__n < __lc->_M_truename_size)
__testt = __c == __lc->_M_truename[__n];
else
break;
}
if (!__testf && !__testt)
break;
if (++__beg == __end)
__testeof = true;
}
if (__testf && __n == __lc->_M_falsename_size)
__v = 0;
else if (__testt && __n == __lc->_M_truename_size)
__v = 1;
else
__err |= ios_base::failbit;
if (__testeof)
__err |= ios_base::eofbit;
}
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, long& __v) const
{ return _M_extract_int(__beg, __end, __io, __err, __v); }
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, unsigned short& __v) const
{ return _M_extract_int(__beg, __end, __io, __err, __v); }
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, unsigned int& __v) const
{ return _M_extract_int(__beg, __end, __io, __err, __v); }
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, unsigned long& __v) const
{ return _M_extract_int(__beg, __end, __io, __err, __v); }
#ifdef _GLIBCXX_USE_LONG_LONG
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, long long& __v) const
{ return _M_extract_int(__beg, __end, __io, __err, __v); }
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, unsigned long long& __v) const
{ return _M_extract_int(__beg, __end, __io, __err, __v); }
#endif
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, float& __v) const
{
string __xtrc;
__xtrc.reserve(32);
__beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale());
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, double& __v) const
{
string __xtrc;
__xtrc.reserve(32);
__beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale());
return __beg;
}
#if defined _GLIBCXX_LONG_DOUBLE_COMPAT && defined __LONG_DOUBLE_128__
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
__do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, double& __v) const
{
string __xtrc;
__xtrc.reserve(32);
__beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale());
return __beg;
}
#endif
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, long double& __v) const
{
string __xtrc;
__xtrc.reserve(32);
__beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale());
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, void*& __v) const
{
// Prepare for hex formatted input.
typedef ios_base::fmtflags fmtflags;
const fmtflags __fmt = __io.flags();
__io.flags(__fmt & ~ios_base::basefield | ios_base::hex);
typedef __gnu_cxx::__conditional_type<(sizeof(void*)
<= sizeof(unsigned long)),
unsigned long, unsigned long long>::__type _UIntPtrType;
_UIntPtrType __ul;
__beg = _M_extract_int(__beg, __end, __io, __err, __ul);
// Reset from hex formatted input.
__io.flags(__fmt);
if (!(__err & ios_base::failbit))
__v = reinterpret_cast<void*>(__ul);
return __beg;
}
// For use by integer and floating-point types after they have been
// converted into a char_type string.
template<typename _CharT, typename _OutIter>
void
num_put<_CharT, _OutIter>::
_M_pad(_CharT __fill, streamsize __w, ios_base& __io,
_CharT* __new, const _CharT* __cs, int& __len) const
{
// [22.2.2.2.2] Stage 3.
// If necessary, pad.
__pad<_CharT, char_traits<_CharT> >::_S_pad(__io, __fill, __new, __cs,
__w, __len, true);
__len = static_cast<int>(__w);
}
_GLIBCXX_END_LDBL_NAMESPACE
template<typename _CharT, typename _ValueT>
int
__int_to_char(_CharT* __bufend, _ValueT __v, const _CharT* __lit,
ios_base::fmtflags __flags, bool __dec)
{
_CharT* __buf = __bufend;
if (__builtin_expect(__dec, true))
{
// Decimal.
do
{
*--__buf = __lit[(__v % 10) + __num_base::_S_odigits];
__v /= 10;
}
while (__v != 0);
}
else if ((__flags & ios_base::basefield) == ios_base::oct)
{
// Octal.
do
{
*--__buf = __lit[(__v & 0x7) + __num_base::_S_odigits];
__v >>= 3;
}
while (__v != 0);
}
else
{
// Hex.
const bool __uppercase = __flags & ios_base::uppercase;
const int __case_offset = __uppercase ? __num_base::_S_oudigits
: __num_base::_S_odigits;
do
{
*--__buf = __lit[(__v & 0xf) + __case_offset];
__v >>= 4;
}
while (__v != 0);
}
return __bufend - __buf;
}
_GLIBCXX_BEGIN_LDBL_NAMESPACE
template<typename _CharT, typename _OutIter>
void
num_put<_CharT, _OutIter>::
_M_group_int(const char* __grouping, size_t __grouping_size, _CharT __sep,
ios_base&, _CharT* __new, _CharT* __cs, int& __len) const
{
_CharT* __p = std::__add_grouping(__new, __sep, __grouping,
__grouping_size, __cs, __cs + __len);
__len = __p - __new;
}
template<typename _CharT, typename _OutIter>
template<typename _ValueT>
_OutIter
num_put<_CharT, _OutIter>::
_M_insert_int(_OutIter __s, ios_base& __io, _CharT __fill,
_ValueT __v) const
{
using __gnu_cxx::__add_unsigned;
typedef typename __add_unsigned<_ValueT>::__type __unsigned_type;
typedef __numpunct_cache<_CharT> __cache_type;
__use_cache<__cache_type> __uc;
const locale& __loc = __io._M_getloc();
const __cache_type* __lc = __uc(__loc);
const _CharT* __lit = __lc->_M_atoms_out;
const ios_base::fmtflags __flags = __io.flags();
// Long enough to hold hex, dec, and octal representations.
const int __ilen = 5 * sizeof(_ValueT);
_CharT* __cs = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __ilen));
// [22.2.2.2.2] Stage 1, numeric conversion to character.
// Result is returned right-justified in the buffer.
const ios_base::fmtflags __basefield = __flags & ios_base::basefield;
const bool __dec = (__basefield != ios_base::oct
&& __basefield != ios_base::hex);
const __unsigned_type __u = (__v > 0 || !__dec) ? __v : -__v;
int __len = __int_to_char(__cs + __ilen, __u, __lit, __flags, __dec);
__cs += __ilen - __len;
// Add grouping, if necessary.
if (__lc->_M_use_grouping)
{
// Grouping can add (almost) as many separators as the number
// of digits + space is reserved for numeric base or sign.
_CharT* __cs2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* (__len + 1)
* 2));
_M_group_int(__lc->_M_grouping, __lc->_M_grouping_size,
__lc->_M_thousands_sep, __io, __cs2 + 2, __cs, __len);
__cs = __cs2 + 2;
}
// Complete Stage 1, prepend numeric base or sign.
if (__builtin_expect(__dec, true))
{
// Decimal.
if (__v >= 0)
{
if (__flags & ios_base::showpos
&& numeric_limits<_ValueT>::is_signed)
*--__cs = __lit[__num_base::_S_oplus], ++__len;
}
else
*--__cs = __lit[__num_base::_S_ominus], ++__len;
}
else if (__flags & ios_base::showbase && __v)
{
if (__basefield == ios_base::oct)
*--__cs = __lit[__num_base::_S_odigits], ++__len;
else
{
// 'x' or 'X'
const bool __uppercase = __flags & ios_base::uppercase;
*--__cs = __lit[__num_base::_S_ox + __uppercase];
// '0'
*--__cs = __lit[__num_base::_S_odigits];
__len += 2;
}
}
// Pad.
const streamsize __w = __io.width();
if (__w > static_cast<streamsize>(__len))
{
_CharT* __cs3 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __w));
_M_pad(__fill, __w, __io, __cs3, __cs, __len);
__cs = __cs3;
}
__io.width(0);
// [22.2.2.2.2] Stage 4.
// Write resulting, fully-formatted string to output iterator.
return std::__write(__s, __cs, __len);
}
template<typename _CharT, typename _OutIter>
void
num_put<_CharT, _OutIter>::
_M_group_float(const char* __grouping, size_t __grouping_size,
_CharT __sep, const _CharT* __p, _CharT* __new,
_CharT* __cs, int& __len) const
{
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 282. What types does numpunct grouping refer to?
// Add grouping, if necessary.
const int __declen = __p ? __p - __cs : __len;
_CharT* __p2 = std::__add_grouping(__new, __sep, __grouping,
__grouping_size,
__cs, __cs + __declen);
// Tack on decimal part.
int __newlen = __p2 - __new;
if (__p)
{
char_traits<_CharT>::copy(__p2, __p, __len - __declen);
__newlen += __len - __declen;
}
__len = __newlen;
}
// The following code uses vsnprintf (or vsprintf(), when
// _GLIBCXX_USE_C99 is not defined) to convert floating point values
// for insertion into a stream. An optimization would be to replace
// them with code that works directly on a wide buffer and then use
// __pad to do the padding. It would be good to replace them anyway
// to gain back the efficiency that C++ provides by knowing up front
// the type of the values to insert. Also, sprintf is dangerous
// since may lead to accidental buffer overruns. This
// implementation follows the C++ standard fairly directly as
// outlined in 22.2.2.2 [lib.locale.num.put]
template<typename _CharT, typename _OutIter>
template<typename _ValueT>
_OutIter
num_put<_CharT, _OutIter>::
_M_insert_float(_OutIter __s, ios_base& __io, _CharT __fill, char __mod,
_ValueT __v) const
{
typedef __numpunct_cache<_CharT> __cache_type;
__use_cache<__cache_type> __uc;
const locale& __loc = __io._M_getloc();
const __cache_type* __lc = __uc(__loc);
// Use default precision if out of range.
const streamsize __prec = __io.precision() < 0 ? 6 : __io.precision();
const int __max_digits = numeric_limits<_ValueT>::digits10;
// [22.2.2.2.2] Stage 1, numeric conversion to character.
int __len;
// Long enough for the max format spec.
char __fbuf[16];
__num_base::_S_format_float(__io, __fbuf, __mod);
#ifdef _GLIBCXX_USE_C99
// First try a buffer perhaps big enough (most probably sufficient
// for non-ios_base::fixed outputs)
int __cs_size = __max_digits * 3;
char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
__len = std::__convert_from_v(_S_get_c_locale(), __cs, __cs_size,
__fbuf, __prec, __v);
// If the buffer was not large enough, try again with the correct size.
if (__len >= __cs_size)
{
__cs_size = __len + 1;
__cs = static_cast<char*>(__builtin_alloca(__cs_size));
__len = std::__convert_from_v(_S_get_c_locale(), __cs, __cs_size,
__fbuf, __prec, __v);
}
#else
// Consider the possibility of long ios_base::fixed outputs
const bool __fixed = __io.flags() & ios_base::fixed;
const int __max_exp = numeric_limits<_ValueT>::max_exponent10;
// The size of the output string is computed as follows.
// ios_base::fixed outputs may need up to __max_exp + 1 chars
// for the integer part + __prec chars for the fractional part
// + 3 chars for sign, decimal point, '\0'. On the other hand,
// for non-fixed outputs __max_digits * 2 + __prec chars are
// largely sufficient.
const int __cs_size = __fixed ? __max_exp + __prec + 4
: __max_digits * 2 + __prec;
char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
__len = std::__convert_from_v(_S_get_c_locale(), __cs, 0, __fbuf,
__prec, __v);
#endif
// [22.2.2.2.2] Stage 2, convert to char_type, using correct
// numpunct.decimal_point() values for '.' and adding grouping.
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
_CharT* __ws = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __len));
__ctype.widen(__cs, __cs + __len, __ws);
// Replace decimal point.
_CharT* __wp = 0;
const char* __p = char_traits<char>::find(__cs, __len, '.');
if (__p)
{
__wp = __ws + (__p - __cs);
*__wp = __lc->_M_decimal_point;
}
// Add grouping, if necessary.
// N.B. Make sure to not group things like 2e20, i.e., no decimal
// point, scientific notation.
if (__lc->_M_use_grouping
&& (__wp || __len < 3 || (__cs[1] <= '9' && __cs[2] <= '9'
&& __cs[1] >= '0' && __cs[2] >= '0')))
{
// Grouping can add (almost) as many separators as the
// number of digits, but no more.
_CharT* __ws2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __len * 2));
streamsize __off = 0;
if (__cs[0] == '-' || __cs[0] == '+')
{
__off = 1;
__ws2[0] = __ws[0];
__len -= 1;
}
_M_group_float(__lc->_M_grouping, __lc->_M_grouping_size,
__lc->_M_thousands_sep, __wp, __ws2 + __off,
__ws + __off, __len);
__len += __off;
__ws = __ws2;
}
// Pad.
const streamsize __w = __io.width();
if (__w > static_cast<streamsize>(__len))
{
_CharT* __ws3 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __w));
_M_pad(__fill, __w, __io, __ws3, __ws, __len);
__ws = __ws3;
}
__io.width(0);
// [22.2.2.2.2] Stage 4.
// Write resulting, fully-formatted string to output iterator.
return std::__write(__s, __ws, __len);
}
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill, bool __v) const
{
const ios_base::fmtflags __flags = __io.flags();
if ((__flags & ios_base::boolalpha) == 0)
{
const long __l = __v;
__s = _M_insert_int(__s, __io, __fill, __l);
}
else
{
typedef __numpunct_cache<_CharT> __cache_type;
__use_cache<__cache_type> __uc;
const locale& __loc = __io._M_getloc();
const __cache_type* __lc = __uc(__loc);
const _CharT* __name = __v ? __lc->_M_truename
: __lc->_M_falsename;
int __len = __v ? __lc->_M_truename_size
: __lc->_M_falsename_size;
const streamsize __w = __io.width();
if (__w > static_cast<streamsize>(__len))
{
_CharT* __cs
= static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __w));
_M_pad(__fill, __w, __io, __cs, __name, __len);
__name = __cs;
}
__io.width(0);
__s = std::__write(__s, __name, __len);
}
return __s;
}
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill, long __v) const
{ return _M_insert_int(__s, __io, __fill, __v); }
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill,
unsigned long __v) const
{ return _M_insert_int(__s, __io, __fill, __v); }
#ifdef _GLIBCXX_USE_LONG_LONG
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill, long long __v) const
{ return _M_insert_int(__s, __io, __fill, __v); }
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill,
unsigned long long __v) const
{ return _M_insert_int(__s, __io, __fill, __v); }
#endif
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill, double __v) const
{ return _M_insert_float(__s, __io, __fill, char(), __v); }
#if defined _GLIBCXX_LONG_DOUBLE_COMPAT && defined __LONG_DOUBLE_128__
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
__do_put(iter_type __s, ios_base& __io, char_type __fill, double __v) const
{ return _M_insert_float(__s, __io, __fill, char(), __v); }
#endif
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill,
long double __v) const
{ return _M_insert_float(__s, __io, __fill, 'L', __v); }
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill,
const void* __v) const
{
const ios_base::fmtflags __flags = __io.flags();
const ios_base::fmtflags __fmt = ~(ios_base::basefield
| ios_base::uppercase
| ios_base::internal);
__io.flags(__flags & __fmt | (ios_base::hex | ios_base::showbase));
typedef __gnu_cxx::__conditional_type<(sizeof(const void*)
<= sizeof(unsigned long)),
unsigned long, unsigned long long>::__type _UIntPtrType;
__s = _M_insert_int(__s, __io, __fill,
reinterpret_cast<_UIntPtrType>(__v));
__io.flags(__flags);
return __s;
}
template<typename _CharT, typename _InIter>
template<bool _Intl>
_InIter
money_get<_CharT, _InIter>::
_M_extract(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, string& __units) const
{
typedef char_traits<_CharT> __traits_type;
typedef typename string_type::size_type size_type;
typedef money_base::part part;
typedef __moneypunct_cache<_CharT, _Intl> __cache_type;
const locale& __loc = __io._M_getloc();
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
__use_cache<__cache_type> __uc;
const __cache_type* __lc = __uc(__loc);
const char_type* __lit = __lc->_M_atoms;
// Deduced sign.
bool __negative = false;
// Sign size.
size_type __sign_size = 0;
// True if sign is mandatory.
const bool __mandatory_sign = (__lc->_M_positive_sign_size
&& __lc->_M_negative_sign_size);
// String of grouping info from thousands_sep plucked from __units.
string __grouping_tmp;
if (__lc->_M_use_grouping)
__grouping_tmp.reserve(32);
// Last position before the decimal point.
int __last_pos = 0;
// Separator positions, then, possibly, fractional digits.
int __n = 0;
// If input iterator is in a valid state.
bool __testvalid = true;
// Flag marking when a decimal point is found.
bool __testdecfound = false;
// The tentative returned string is stored here.
string __res;
__res.reserve(32);
const char_type* __lit_zero = __lit + money_base::_S_zero;
const money_base::pattern __p = __lc->_M_neg_format;
for (int __i = 0; __i < 4 && __testvalid; ++__i)
{
const part __which = static_cast<part>(__p.field[__i]);
switch (__which)
{
case money_base::symbol:
// According to 22.2.6.1.2, p2, symbol is required
// if (__io.flags() & ios_base::showbase), otherwise
// is optional and consumed only if other characters
// are needed to complete the format.
if (__io.flags() & ios_base::showbase || __sign_size > 1
|| __i == 0
|| (__i == 1 && (__mandatory_sign
|| (static_cast<part>(__p.field[0])
== money_base::sign)
|| (static_cast<part>(__p.field[2])
== money_base::space)))
|| (__i == 2 && ((static_cast<part>(__p.field[3])
== money_base::value)
|| (__mandatory_sign
&& (static_cast<part>(__p.field[3])
== money_base::sign)))))
{
const size_type __len = __lc->_M_curr_symbol_size;
size_type __j = 0;
for (; __beg != __end && __j < __len
&& *__beg == __lc->_M_curr_symbol[__j];
++__beg, ++__j);
if (__j != __len
&& (__j || __io.flags() & ios_base::showbase))
__testvalid = false;
}
break;
case money_base::sign:
// Sign might not exist, or be more than one character long.
if (__lc->_M_positive_sign_size && __beg != __end
&& *__beg == __lc->_M_positive_sign[0])
{
__sign_size = __lc->_M_positive_sign_size;
++__beg;
}
else if (__lc->_M_negative_sign_size && __beg != __end
&& *__beg == __lc->_M_negative_sign[0])
{
__negative = true;
__sign_size = __lc->_M_negative_sign_size;
++__beg;
}
else if (__lc->_M_positive_sign_size
&& !__lc->_M_negative_sign_size)
// "... if no sign is detected, the result is given the sign
// that corresponds to the source of the empty string"
__negative = true;
else if (__mandatory_sign)
__testvalid = false;
break;
case money_base::value:
// Extract digits, remove and stash away the
// grouping of found thousands separators.
for (; __beg != __end; ++__beg)
{
const char_type __c = *__beg;
const char_type* __q = __traits_type::find(__lit_zero,
10, __c);
if (__q != 0)
{
__res += money_base::_S_atoms[__q - __lit];
++__n;
}
else if (__c == __lc->_M_decimal_point
&& !__testdecfound)
{
__last_pos = __n;
__n = 0;
__testdecfound = true;
}
else if (__lc->_M_use_grouping
&& __c == __lc->_M_thousands_sep
&& !__testdecfound)
{
if (__n)
{
// Mark position for later analysis.
__grouping_tmp += static_cast<char>(__n);
__n = 0;
}
else
{
__testvalid = false;
break;
}
}
else
break;
}
if (__res.empty())
__testvalid = false;
break;
case money_base::space:
// At least one space is required.
if (__beg != __end && __ctype.is(ctype_base::space, *__beg))
++__beg;
else
__testvalid = false;
case money_base::none:
// Only if not at the end of the pattern.
if (__i != 3)
for (; __beg != __end
&& __ctype.is(ctype_base::space, *__beg); ++__beg);
break;
}
}
// Need to get the rest of the sign characters, if they exist.
if (__sign_size > 1 && __testvalid)
{
const char_type* __sign = __negative ? __lc->_M_negative_sign
: __lc->_M_positive_sign;
size_type __i = 1;
for (; __beg != __end && __i < __sign_size
&& *__beg == __sign[__i]; ++__beg, ++__i);
if (__i != __sign_size)
__testvalid = false;
}
if (__testvalid)
{
// Strip leading zeros.
if (__res.size() > 1)
{
const size_type __first = __res.find_first_not_of('0');
const bool __only_zeros = __first == string::npos;
if (__first)
__res.erase(0, __only_zeros ? __res.size() - 1 : __first);
}
// 22.2.6.1.2, p4
if (__negative && __res[0] != '0')
__res.insert(__res.begin(), '-');
// Test for grouping fidelity.
if (__grouping_tmp.size())
{
// Add the ending grouping.
__grouping_tmp += static_cast<char>(__testdecfound ? __last_pos
: __n);
if (!std::__verify_grouping(__lc->_M_grouping,
__lc->_M_grouping_size,
__grouping_tmp))
__err |= ios_base::failbit;
}
// Iff not enough digits were supplied after the decimal-point.
if (__testdecfound && __lc->_M_frac_digits > 0
&& __n != __lc->_M_frac_digits)
__testvalid = false;
}
// Iff valid sequence is not recognized.
if (!__testvalid)
__err |= ios_base::failbit;
else
__units.swap(__res);
// Iff no more characters are available.
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
#if defined _GLIBCXX_LONG_DOUBLE_COMPAT && defined __LONG_DOUBLE_128__
template<typename _CharT, typename _InIter>
_InIter
money_get<_CharT, _InIter>::
__do_get(iter_type __beg, iter_type __end, bool __intl, ios_base& __io,
ios_base::iostate& __err, double& __units) const
{
string __str;
__beg = __intl ? _M_extract<true>(__beg, __end, __io, __err, __str)
: _M_extract<false>(__beg, __end, __io, __err, __str);
std::__convert_to_v(__str.c_str(), __units, __err, _S_get_c_locale());
return __beg;
}
#endif
template<typename _CharT, typename _InIter>
_InIter
money_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, bool __intl, ios_base& __io,
ios_base::iostate& __err, long double& __units) const
{
string __str;
__beg = __intl ? _M_extract<true>(__beg, __end, __io, __err, __str)
: _M_extract<false>(__beg, __end, __io, __err, __str);
std::__convert_to_v(__str.c_str(), __units, __err, _S_get_c_locale());
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
money_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, bool __intl, ios_base& __io,
ios_base::iostate& __err, string_type& __digits) const
{
typedef typename string::size_type size_type;
const locale& __loc = __io._M_getloc();
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
string __str;
__beg = __intl ? _M_extract<true>(__beg, __end, __io, __err, __str)
: _M_extract<false>(__beg, __end, __io, __err, __str);
const size_type __len = __str.size();
if (__len)
{
__digits.resize(__len);
__ctype.widen(__str.data(), __str.data() + __len, &__digits[0]);
}
return __beg;
}
template<typename _CharT, typename _OutIter>
template<bool _Intl>
_OutIter
money_put<_CharT, _OutIter>::
_M_insert(iter_type __s, ios_base& __io, char_type __fill,
const string_type& __digits) const
{
typedef typename string_type::size_type size_type;
typedef money_base::part part;
typedef __moneypunct_cache<_CharT, _Intl> __cache_type;
const locale& __loc = __io._M_getloc();
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
__use_cache<__cache_type> __uc;
const __cache_type* __lc = __uc(__loc);
const char_type* __lit = __lc->_M_atoms;
// Determine if negative or positive formats are to be used, and
// discard leading negative_sign if it is present.
const char_type* __beg = __digits.data();
money_base::pattern __p;
const char_type* __sign;
size_type __sign_size;
if (!(*__beg == __lit[money_base::_S_minus]))
{
__p = __lc->_M_pos_format;
__sign = __lc->_M_positive_sign;
__sign_size = __lc->_M_positive_sign_size;
}
else
{
__p = __lc->_M_neg_format;
__sign = __lc->_M_negative_sign;
__sign_size = __lc->_M_negative_sign_size;
if (__digits.size())
++__beg;
}
// Look for valid numbers in the ctype facet within input digits.
size_type __len = __ctype.scan_not(ctype_base::digit, __beg,
__beg + __digits.size()) - __beg;
if (__len)
{
// Assume valid input, and attempt to format.
// Break down input numbers into base components, as follows:
// final_value = grouped units + (decimal point) + (digits)
string_type __value;
__value.reserve(2 * __len);
// Add thousands separators to non-decimal digits, per
// grouping rules.
long __paddec = __len - __lc->_M_frac_digits;
if (__paddec > 0)
{
if (__lc->_M_frac_digits < 0)
__paddec = __len;
if (__lc->_M_grouping_size)
{
__value.assign(2 * __paddec, char_type());
_CharT* __vend =
std::__add_grouping(&__value[0], __lc->_M_thousands_sep,
__lc->_M_grouping,
__lc->_M_grouping_size,
__beg, __beg + __paddec);
__value.erase(__vend - &__value[0]);
}
else
__value.assign(__beg, __paddec);
}
// Deal with decimal point, decimal digits.
if (__lc->_M_frac_digits > 0)
{
__value += __lc->_M_decimal_point;
if (__paddec >= 0)
__value.append(__beg + __paddec, __lc->_M_frac_digits);
else
{
// Have to pad zeros in the decimal position.
__value.append(-__paddec, __lit[money_base::_S_zero]);
__value.append(__beg, __len);
}
}
// Calculate length of resulting string.
const ios_base::fmtflags __f = __io.flags()
& ios_base::adjustfield;
__len = __value.size() + __sign_size;
__len += ((__io.flags() & ios_base::showbase)
? __lc->_M_curr_symbol_size : 0);
string_type __res;
__res.reserve(2 * __len);
const size_type __width = static_cast<size_type>(__io.width());
const bool __testipad = (__f == ios_base::internal
&& __len < __width);
// Fit formatted digits into the required pattern.
for (int __i = 0; __i < 4; ++__i)
{
const part __which = static_cast<part>(__p.field[__i]);
switch (__which)
{
case money_base::symbol:
if (__io.flags() & ios_base::showbase)
__res.append(__lc->_M_curr_symbol,
__lc->_M_curr_symbol_size);
break;
case money_base::sign:
// Sign might not exist, or be more than one
// charater long. In that case, add in the rest
// below.
if (__sign_size)
__res += __sign[0];
break;
case money_base::value:
__res += __value;
break;
case money_base::space:
// At least one space is required, but if internal
// formatting is required, an arbitrary number of
// fill spaces will be necessary.
if (__testipad)
__res.append(__width - __len, __fill);
else
__res += __fill;
break;
case money_base::none:
if (__testipad)
__res.append(__width - __len, __fill);
break;
}
}
// Special case of multi-part sign parts.
if (__sign_size > 1)
__res.append(__sign + 1, __sign_size - 1);
// Pad, if still necessary.
__len = __res.size();
if (__width > __len)
{
if (__f == ios_base::left)
// After.
__res.append(__width - __len, __fill);
else
// Before.
__res.insert(0, __width - __len, __fill);
__len = __width;
}
// Write resulting, fully-formatted string to output iterator.
__s = std::__write(__s, __res.data(), __len);
}
__io.width(0);
return __s;
}
#if defined _GLIBCXX_LONG_DOUBLE_COMPAT && defined __LONG_DOUBLE_128__
template<typename _CharT, typename _OutIter>
_OutIter
money_put<_CharT, _OutIter>::
__do_put(iter_type __s, bool __intl, ios_base& __io, char_type __fill,
double __units) const
{ return this->do_put(__s, __intl, __io, __fill, (long double) __units); }
#endif
template<typename _CharT, typename _OutIter>
_OutIter
money_put<_CharT, _OutIter>::
do_put(iter_type __s, bool __intl, ios_base& __io, char_type __fill,
long double __units) const
{
const locale __loc = __io.getloc();
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
#ifdef _GLIBCXX_USE_C99
// First try a buffer perhaps big enough.
int __cs_size = 64;
char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 328. Bad sprintf format modifier in money_put<>::do_put()
int __len = std::__convert_from_v(_S_get_c_locale(), __cs, __cs_size,
"%.*Lf", 0, __units);
// If the buffer was not large enough, try again with the correct size.
if (__len >= __cs_size)
{
__cs_size = __len + 1;
__cs = static_cast<char*>(__builtin_alloca(__cs_size));
__len = std::__convert_from_v(_S_get_c_locale(), __cs, __cs_size,
"%.*Lf", 0, __units);
}
#else
// max_exponent10 + 1 for the integer part, + 2 for sign and '\0'.
const int __cs_size = numeric_limits<long double>::max_exponent10 + 3;
char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
int __len = std::__convert_from_v(_S_get_c_locale(), __cs, 0, "%.*Lf",
0, __units);
#endif
string_type __digits(__len, char_type());
__ctype.widen(__cs, __cs + __len, &__digits[0]);
return __intl ? _M_insert<true>(__s, __io, __fill, __digits)
: _M_insert<false>(__s, __io, __fill, __digits);
}
template<typename _CharT, typename _OutIter>
_OutIter
money_put<_CharT, _OutIter>::
do_put(iter_type __s, bool __intl, ios_base& __io, char_type __fill,
const string_type& __digits) const
{ return __intl ? _M_insert<true>(__s, __io, __fill, __digits)
: _M_insert<false>(__s, __io, __fill, __digits); }
_GLIBCXX_END_LDBL_NAMESPACE
// NB: Not especially useful. Without an ios_base object or some
// kind of locale reference, we are left clawing at the air where
// the side of the mountain used to be...
template<typename _CharT, typename _InIter>
time_base::dateorder
time_get<_CharT, _InIter>::do_date_order() const
{ return time_base::no_order; }
// Expand a strftime format string and parse it. E.g., do_get_date() may
// pass %m/%d/%Y => extracted characters.
template<typename _CharT, typename _InIter>
_InIter
time_get<_CharT, _InIter>::
_M_extract_via_format(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, tm* __tm,
const _CharT* __format) const
{
const locale& __loc = __io._M_getloc();
const __timepunct<_CharT>& __tp = use_facet<__timepunct<_CharT> >(__loc);
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
const size_t __len = char_traits<_CharT>::length(__format);
ios_base::iostate __tmperr = ios_base::goodbit;
for (size_t __i = 0; __beg != __end && __i < __len && !__tmperr; ++__i)
{
if (__ctype.narrow(__format[__i], 0) == '%')
{
// Verify valid formatting code, attempt to extract.
char __c = __ctype.narrow(__format[++__i], 0);
int __mem = 0;
if (__c == 'E' || __c == 'O')
__c = __ctype.narrow(__format[++__i], 0);
switch (__c)
{
const char* __cs;
_CharT __wcs[10];
case 'a':
// Abbreviated weekday name [tm_wday]
const char_type* __days1[7];
__tp._M_days_abbreviated(__days1);
__beg = _M_extract_name(__beg, __end, __tm->tm_wday, __days1,
7, __io, __tmperr);
break;
case 'A':
// Weekday name [tm_wday].
const char_type* __days2[7];
__tp._M_days(__days2);
__beg = _M_extract_name(__beg, __end, __tm->tm_wday, __days2,
7, __io, __tmperr);
break;
case 'h':
case 'b':
// Abbreviated month name [tm_mon]
const char_type* __months1[12];
__tp._M_months_abbreviated(__months1);
__beg = _M_extract_name(__beg, __end, __tm->tm_mon,
__months1, 12, __io, __tmperr);
break;
case 'B':
// Month name [tm_mon].
const char_type* __months2[12];
__tp._M_months(__months2);
__beg = _M_extract_name(__beg, __end, __tm->tm_mon,
__months2, 12, __io, __tmperr);
break;
case 'c':
// Default time and date representation.
const char_type* __dt[2];
__tp._M_date_time_formats(__dt);
__beg = _M_extract_via_format(__beg, __end, __io, __tmperr,
__tm, __dt[0]);
break;
case 'd':
// Day [01, 31]. [tm_mday]
__beg = _M_extract_num(__beg, __end, __tm->tm_mday, 1, 31, 2,
__io, __tmperr);
break;
case 'e':
// Day [1, 31], with single digits preceded by
// space. [tm_mday]
if (__ctype.is(ctype_base::space, *__beg))
__beg = _M_extract_num(++__beg, __end, __tm->tm_mday, 1, 9,
1, __io, __tmperr);
else
__beg = _M_extract_num(__beg, __end, __tm->tm_mday, 10, 31,
2, __io, __tmperr);
break;
case 'D':
// Equivalent to %m/%d/%y.[tm_mon, tm_mday, tm_year]
__cs = "%m/%d/%y";
__ctype.widen(__cs, __cs + 9, __wcs);
__beg = _M_extract_via_format(__beg, __end, __io, __tmperr,
__tm, __wcs);
break;
case 'H':
// Hour [00, 23]. [tm_hour]
__beg = _M_extract_num(__beg, __end, __tm->tm_hour, 0, 23, 2,
__io, __tmperr);
break;
case 'I':
// Hour [01, 12]. [tm_hour]
__beg = _M_extract_num(__beg, __end, __tm->tm_hour, 1, 12, 2,
__io, __tmperr);
break;
case 'm':
// Month [01, 12]. [tm_mon]
__beg = _M_extract_num(__beg, __end, __mem, 1, 12, 2,
__io, __tmperr);
if (!__tmperr)
__tm->tm_mon = __mem - 1;
break;
case 'M':
// Minute [00, 59]. [tm_min]
__beg = _M_extract_num(__beg, __end, __tm->tm_min, 0, 59, 2,
__io, __tmperr);
break;
case 'n':
if (__ctype.narrow(*__beg, 0) == '\n')
++__beg;
else
__tmperr |= ios_base::failbit;
break;
case 'R':
// Equivalent to (%H:%M).
__cs = "%H:%M";
__ctype.widen(__cs, __cs + 6, __wcs);
__beg = _M_extract_via_format(__beg, __end, __io, __tmperr,
__tm, __wcs);
break;
case 'S':
// Seconds. [tm_sec]
// [00, 60] in C99 (one leap-second), [00, 61] in C89.
#ifdef _GLIBCXX_USE_C99
__beg = _M_extract_num(__beg, __end, __tm->tm_sec, 0, 60, 2,
#else
__beg = _M_extract_num(__beg, __end, __tm->tm_sec, 0, 61, 2,
#endif
__io, __tmperr);
break;
case 't':
if (__ctype.narrow(*__beg, 0) == '\t')
++__beg;
else
__tmperr |= ios_base::failbit;
break;
case 'T':
// Equivalent to (%H:%M:%S).
__cs = "%H:%M:%S";
__ctype.widen(__cs, __cs + 9, __wcs);
__beg = _M_extract_via_format(__beg, __end, __io, __tmperr,
__tm, __wcs);
break;
case 'x':
// Locale's date.
const char_type* __dates[2];
__tp._M_date_formats(__dates);
__beg = _M_extract_via_format(__beg, __end, __io, __tmperr,
__tm, __dates[0]);
break;
case 'X':
// Locale's time.
const char_type* __times[2];
__tp._M_time_formats(__times);
__beg = _M_extract_via_format(__beg, __end, __io, __tmperr,
__tm, __times[0]);
break;
case 'y':
case 'C': // C99
// Two digit year. [tm_year]
__beg = _M_extract_num(__beg, __end, __tm->tm_year, 0, 99, 2,
__io, __tmperr);
break;
case 'Y':
// Year [1900). [tm_year]
__beg = _M_extract_num(__beg, __end, __mem, 0, 9999, 4,
__io, __tmperr);
if (!__tmperr)
__tm->tm_year = __mem - 1900;
break;
case 'Z':
// Timezone info.
if (__ctype.is(ctype_base::upper, *__beg))
{
int __tmp;
__beg = _M_extract_name(__beg, __end, __tmp,
__timepunct_cache<_CharT>::_S_timezones,
14, __io, __tmperr);
// GMT requires special effort.
if (__beg != __end && !__tmperr && __tmp == 0
&& (*__beg == __ctype.widen('-')
|| *__beg == __ctype.widen('+')))
{
__beg = _M_extract_num(__beg, __end, __tmp, 0, 23, 2,
__io, __tmperr);
__beg = _M_extract_num(__beg, __end, __tmp, 0, 59, 2,
__io, __tmperr);
}
}
else
__tmperr |= ios_base::failbit;
break;
default:
// Not recognized.
__tmperr |= ios_base::failbit;
}
}
else
{
// Verify format and input match, extract and discard.
if (__format[__i] == *__beg)
++__beg;
else
__tmperr |= ios_base::failbit;
}
}
if (__tmperr)
__err |= ios_base::failbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
time_get<_CharT, _InIter>::
_M_extract_num(iter_type __beg, iter_type __end, int& __member,
int __min, int __max, size_t __len,
ios_base& __io, ios_base::iostate& __err) const
{
const locale& __loc = __io._M_getloc();
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
// As-is works for __len = 1, 2, 4, the values actually used.
int __mult = __len == 2 ? 10 : (__len == 4 ? 1000 : 1);
++__min;
size_t __i = 0;
int __value = 0;
for (; __beg != __end && __i < __len; ++__beg, ++__i)
{
const char __c = __ctype.narrow(*__beg, '*');
if (__c >= '0' && __c <= '9')
{
__value = __value * 10 + (__c - '0');
const int __valuec = __value * __mult;
if (__valuec > __max || __valuec + __mult < __min)
break;
__mult /= 10;
}
else
break;
}
if (__i == __len)
__member = __value;
else
__err |= ios_base::failbit;
return __beg;
}
// Assumptions:
// All elements in __names are unique.
template<typename _CharT, typename _InIter>
_InIter
time_get<_CharT, _InIter>::
_M_extract_name(iter_type __beg, iter_type __end, int& __member,
const _CharT** __names, size_t __indexlen,
ios_base& __io, ios_base::iostate& __err) const
{
typedef char_traits<_CharT> __traits_type;
const locale& __loc = __io._M_getloc();
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
int* __matches = static_cast<int*>(__builtin_alloca(sizeof(int)
* __indexlen));
size_t __nmatches = 0;
size_t __pos = 0;
bool __testvalid = true;
const char_type* __name;
// Look for initial matches.
// NB: Some of the locale data is in the form of all lowercase
// names, and some is in the form of initially-capitalized
// names. Look for both.
if (__beg != __end)
{
const char_type __c = *__beg;
for (size_t __i1 = 0; __i1 < __indexlen; ++__i1)
if (__c == __names[__i1][0]
|| __c == __ctype.toupper(__names[__i1][0]))
__matches[__nmatches++] = __i1;
}
while (__nmatches > 1)
{
// Find smallest matching string.
size_t __minlen = __traits_type::length(__names[__matches[0]]);
for (size_t __i2 = 1; __i2 < __nmatches; ++__i2)
__minlen = std::min(__minlen,
__traits_type::length(__names[__matches[__i2]]));
++__beg, ++__pos;
if (__pos < __minlen && __beg != __end)
for (size_t __i3 = 0; __i3 < __nmatches;)
{
__name = __names[__matches[__i3]];
if (!(__name[__pos] == *__beg))
__matches[__i3] = __matches[--__nmatches];
else
++__i3;
}
else
break;
}
if (__nmatches == 1)
{
// Make sure found name is completely extracted.
++__beg, ++__pos;
__name = __names[__matches[0]];
const size_t __len = __traits_type::length(__name);
while (__pos < __len && __beg != __end && __name[__pos] == *__beg)
++__beg, ++__pos;
if (__len == __pos)
__member = __matches[0];
else
__testvalid = false;
}
else
__testvalid = false;
if (!__testvalid)
__err |= ios_base::failbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
time_get<_CharT, _InIter>::
do_get_time(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, tm* __tm) const
{
const locale& __loc = __io._M_getloc();
const __timepunct<_CharT>& __tp = use_facet<__timepunct<_CharT> >(__loc);
const char_type* __times[2];
__tp._M_time_formats(__times);
__beg = _M_extract_via_format(__beg, __end, __io, __err,
__tm, __times[0]);
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
time_get<_CharT, _InIter>::
do_get_date(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, tm* __tm) const
{
const locale& __loc = __io._M_getloc();
const __timepunct<_CharT>& __tp = use_facet<__timepunct<_CharT> >(__loc);
const char_type* __dates[2];
__tp._M_date_formats(__dates);
__beg = _M_extract_via_format(__beg, __end, __io, __err,
__tm, __dates[0]);
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
time_get<_CharT, _InIter>::
do_get_weekday(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, tm* __tm) const
{
typedef char_traits<_CharT> __traits_type;
const locale& __loc = __io._M_getloc();
const __timepunct<_CharT>& __tp = use_facet<__timepunct<_CharT> >(__loc);
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
const char_type* __days[7];
__tp._M_days_abbreviated(__days);
int __tmpwday;
ios_base::iostate __tmperr = ios_base::goodbit;
__beg = _M_extract_name(__beg, __end, __tmpwday, __days, 7,
__io, __tmperr);
// Check to see if non-abbreviated name exists, and extract.
// NB: Assumes both _M_days and _M_days_abbreviated organized in
// exact same order, first to last, such that the resulting
// __days array with the same index points to a day, and that
// day's abbreviated form.
// NB: Also assumes that an abbreviated name is a subset of the name.
if (!__tmperr && __beg != __end)
{
size_t __pos = __traits_type::length(__days[__tmpwday]);
__tp._M_days(__days);
const char_type* __name = __days[__tmpwday];
if (__name[__pos] == *__beg)
{
// Extract the rest of it.
const size_t __len = __traits_type::length(__name);
while (__pos < __len && __beg != __end
&& __name[__pos] == *__beg)
++__beg, ++__pos;
if (__len != __pos)
__tmperr |= ios_base::failbit;
}
}
if (!__tmperr)
__tm->tm_wday = __tmpwday;
else
__err |= ios_base::failbit;
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
time_get<_CharT, _InIter>::
do_get_monthname(iter_type __beg, iter_type __end,
ios_base& __io, ios_base::iostate& __err, tm* __tm) const
{
typedef char_traits<_CharT> __traits_type;
const locale& __loc = __io._M_getloc();
const __timepunct<_CharT>& __tp = use_facet<__timepunct<_CharT> >(__loc);
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
const char_type* __months[12];
__tp._M_months_abbreviated(__months);
int __tmpmon;
ios_base::iostate __tmperr = ios_base::goodbit;
__beg = _M_extract_name(__beg, __end, __tmpmon, __months, 12,
__io, __tmperr);
// Check to see if non-abbreviated name exists, and extract.
// NB: Assumes both _M_months and _M_months_abbreviated organized in
// exact same order, first to last, such that the resulting
// __months array with the same index points to a month, and that
// month's abbreviated form.
// NB: Also assumes that an abbreviated name is a subset of the name.
if (!__tmperr && __beg != __end)
{
size_t __pos = __traits_type::length(__months[__tmpmon]);
__tp._M_months(__months);
const char_type* __name = __months[__tmpmon];
if (__name[__pos] == *__beg)
{
// Extract the rest of it.
const size_t __len = __traits_type::length(__name);
while (__pos < __len && __beg != __end
&& __name[__pos] == *__beg)
++__beg, ++__pos;
if (__len != __pos)
__tmperr |= ios_base::failbit;
}
}
if (!__tmperr)
__tm->tm_mon = __tmpmon;
else
__err |= ios_base::failbit;
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
time_get<_CharT, _InIter>::
do_get_year(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, tm* __tm) const
{
const locale& __loc = __io._M_getloc();
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
size_t __i = 0;
int __value = 0;
for (; __beg != __end && __i < 4; ++__beg, ++__i)
{
const char __c = __ctype.narrow(*__beg, '*');
if (__c >= '0' && __c <= '9')
__value = __value * 10 + (__c - '0');
else
break;
}
if (__i == 2 || __i == 4)
__tm->tm_year = __i == 2 ? __value : __value - 1900;
else
__err |= ios_base::failbit;
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
template<typename _CharT, typename _OutIter>
_OutIter
time_put<_CharT, _OutIter>::
put(iter_type __s, ios_base& __io, char_type __fill, const tm* __tm,
const _CharT* __beg, const _CharT* __end) const
{
const locale& __loc = __io._M_getloc();
ctype<_CharT> const& __ctype = use_facet<ctype<_CharT> >(__loc);
for (; __beg != __end; ++__beg)
if (__ctype.narrow(*__beg, 0) != '%')
{
*__s = *__beg;
++__s;
}
else if (++__beg != __end)
{
char __format;
char __mod = 0;
const char __c = __ctype.narrow(*__beg, 0);
if (__c != 'E' && __c != 'O')
__format = __c;
else if (++__beg != __end)
{
__mod = __c;
__format = __ctype.narrow(*__beg, 0);
}
else
break;
__s = this->do_put(__s, __io, __fill, __tm, __format, __mod);
}
else
break;
return __s;
}
template<typename _CharT, typename _OutIter>
_OutIter
time_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type, const tm* __tm,
char __format, char __mod) const
{
const locale& __loc = __io._M_getloc();
ctype<_CharT> const& __ctype = use_facet<ctype<_CharT> >(__loc);
__timepunct<_CharT> const& __tp = use_facet<__timepunct<_CharT> >(__loc);
// NB: This size is arbitrary. Should this be a data member,
// initialized at construction?
const size_t __maxlen = 128;
char_type* __res =
static_cast<char_type*>(__builtin_alloca(sizeof(char_type) * __maxlen));
// NB: In IEE 1003.1-200x, and perhaps other locale models, it
// is possible that the format character will be longer than one
// character. Possibilities include 'E' or 'O' followed by a
// format character: if __mod is not the default argument, assume
// it's a valid modifier.
char_type __fmt[4];
__fmt[0] = __ctype.widen('%');
if (!__mod)
{
__fmt[1] = __format;
__fmt[2] = char_type();
}
else
{
__fmt[1] = __mod;
__fmt[2] = __format;
__fmt[3] = char_type();
}
__tp._M_put(__res, __maxlen, __fmt, __tm);
// Write resulting, fully-formatted string to output iterator.
return std::__write(__s, __res, char_traits<char_type>::length(__res));
}
// Generic version does nothing.
template<typename _CharT>
int
collate<_CharT>::_M_compare(const _CharT*, const _CharT*) const
{ return 0; }
// Generic version does nothing.
template<typename _CharT>
size_t
collate<_CharT>::_M_transform(_CharT*, const _CharT*, size_t) const
{ return 0; }
template<typename _CharT>
int
collate<_CharT>::
do_compare(const _CharT* __lo1, const _CharT* __hi1,
const _CharT* __lo2, const _CharT* __hi2) const
{
// strcoll assumes zero-terminated strings so we make a copy
// and then put a zero at the end.
const string_type __one(__lo1, __hi1);
const string_type __two(__lo2, __hi2);
const _CharT* __p = __one.c_str();
const _CharT* __pend = __one.data() + __one.length();
const _CharT* __q = __two.c_str();
const _CharT* __qend = __two.data() + __two.length();
// strcoll stops when it sees a nul character so we break
// the strings into zero-terminated substrings and pass those
// to strcoll.
for (;;)
{
const int __res = _M_compare(__p, __q);
if (__res)
return __res;
__p += char_traits<_CharT>::length(__p);
__q += char_traits<_CharT>::length(__q);
if (__p == __pend && __q == __qend)
return 0;
else if (__p == __pend)
return -1;
else if (__q == __qend)
return 1;
__p++;
__q++;
}
}
template<typename _CharT>
typename collate<_CharT>::string_type
collate<_CharT>::
do_transform(const _CharT* __lo, const _CharT* __hi) const
{
string_type __ret;
// strxfrm assumes zero-terminated strings so we make a copy
const string_type __str(__lo, __hi);
const _CharT* __p = __str.c_str();
const _CharT* __pend = __str.data() + __str.length();
size_t __len = (__hi - __lo) * 2;
_CharT* __c = new _CharT[__len];
try
{
// strxfrm stops when it sees a nul character so we break
// the string into zero-terminated substrings and pass those
// to strxfrm.
for (;;)
{
// First try a buffer perhaps big enough.
size_t __res = _M_transform(__c, __p, __len);
// If the buffer was not large enough, try again with the
// correct size.
if (__res >= __len)
{
__len = __res + 1;
delete [] __c, __c = 0;
__c = new _CharT[__len];
__res = _M_transform(__c, __p, __len);
}
__ret.append(__c, __res);
__p += char_traits<_CharT>::length(__p);
if (__p == __pend)
break;
__p++;
__ret.push_back(_CharT());
}
}
catch(...)
{
delete [] __c;
__throw_exception_again;
}
delete [] __c;
return __ret;
}
template<typename _CharT>
long
collate<_CharT>::
do_hash(const _CharT* __lo, const _CharT* __hi) const
{
unsigned long __val = 0;
for (; __lo < __hi; ++__lo)
__val = *__lo + ((__val << 7) |
(__val >> (numeric_limits<unsigned long>::digits - 7)));
return static_cast<long>(__val);
}
// Construct correctly padded string, as per 22.2.2.2.2
// Assumes
// __newlen > __oldlen
// __news is allocated for __newlen size
// Used by both num_put and ostream inserters: if __num,
// internal-adjusted objects are padded according to the rules below
// concerning 0[xX] and +-, otherwise, exactly as right-adjusted
// ones are.
// NB: Of the two parameters, _CharT can be deduced from the
// function arguments. The other (_Traits) has to be explicitly specified.
template<typename _CharT, typename _Traits>
void
__pad<_CharT, _Traits>::_S_pad(ios_base& __io, _CharT __fill,
_CharT* __news, const _CharT* __olds,
const streamsize __newlen,
const streamsize __oldlen, const bool __num)
{
const size_t __plen = static_cast<size_t>(__newlen - __oldlen);
const ios_base::fmtflags __adjust = __io.flags() & ios_base::adjustfield;
// Padding last.
if (__adjust == ios_base::left)
{
_Traits::copy(__news, const_cast<_CharT*>(__olds), __oldlen);
_Traits::assign(__news + __oldlen, __plen, __fill);
return;
}
size_t __mod = 0;
if (__adjust == ios_base::internal && __num)
{
// Pad after the sign, if there is one.
// Pad after 0[xX], if there is one.
// Who came up with these rules, anyway? Jeeze.
const locale& __loc = __io._M_getloc();
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
const bool __testsign = (__ctype.widen('-') == __olds[0]
|| __ctype.widen('+') == __olds[0]);
const bool __testhex = (__ctype.widen('0') == __olds[0]
&& __oldlen > 1
&& (__ctype.widen('x') == __olds[1]
|| __ctype.widen('X') == __olds[1]));
if (__testhex)
{
__news[0] = __olds[0];
__news[1] = __olds[1];
__mod = 2;
__news += 2;
}
else if (__testsign)
{
__news[0] = __olds[0];
__mod = 1;
++__news;
}
// else Padding first.
}
_Traits::assign(__news, __plen, __fill);
_Traits::copy(__news + __plen, const_cast<_CharT*>(__olds + __mod),
__oldlen - __mod);
}
bool
__verify_grouping(const char* __grouping, size_t __grouping_size,
const string& __grouping_tmp)
{
const size_t __n = __grouping_tmp.size() - 1;
const size_t __min = std::min(__n, size_t(__grouping_size - 1));
size_t __i = __n;
bool __test = true;
// Parsed number groupings have to match the
// numpunct::grouping string exactly, starting at the
// right-most point of the parsed sequence of elements ...
for (size_t __j = 0; __j < __min && __test; --__i, ++__j)
__test = __grouping_tmp[__i] == __grouping[__j];
for (; __i && __test; --__i)
__test = __grouping_tmp[__i] == __grouping[__min];
// ... but the first parsed grouping can be <= numpunct
// grouping (only do the check if the numpunct char is > 0
// because <= 0 means any size is ok).
if (static_cast<signed char>(__grouping[__min]) > 0)
__test &= __grouping_tmp[0] <= __grouping[__min];
return __test;
}
template<typename _CharT>
_CharT*
__add_grouping(_CharT* __s, _CharT __sep,
const char* __gbeg, size_t __gsize,
const _CharT* __first, const _CharT* __last)
{
size_t __idx = 0;
size_t __ctr = 0;
while (__last - __first > __gbeg[__idx]
&& static_cast<signed char>(__gbeg[__idx]) > 0)
{
__last -= __gbeg[__idx];
__idx < __gsize - 1 ? ++__idx : ++__ctr;
}
while (__first != __last)
*__s++ = *__first++;
while (__ctr--)
{
*__s++ = __sep;
for (char __i = __gbeg[__idx]; __i > 0; --__i)
*__s++ = *__first++;
}
while (__idx--)
{
*__s++ = __sep;
for (char __i = __gbeg[__idx]; __i > 0; --__i)
*__s++ = *__first++;
}
return __s;
}
// Inhibit implicit instantiations for required instantiations,
// which are defined via explicit instantiations elsewhere.
// NB: This syntax is a GNU extension.
#if _GLIBCXX_EXTERN_TEMPLATE
extern template class moneypunct<char, false>;
extern template class moneypunct<char, true>;
extern template class moneypunct_byname<char, false>;
extern template class moneypunct_byname<char, true>;
extern template class _GLIBCXX_LDBL_NAMESPACE money_get<char>;
extern template class _GLIBCXX_LDBL_NAMESPACE money_put<char>;
extern template class numpunct<char>;
extern template class numpunct_byname<char>;
extern template class _GLIBCXX_LDBL_NAMESPACE num_get<char>;
extern template class _GLIBCXX_LDBL_NAMESPACE num_put<char>;
extern template class __timepunct<char>;
extern template class time_put<char>;
extern template class time_put_byname<char>;
extern template class time_get<char>;
extern template class time_get_byname<char>;
extern template class messages<char>;
extern template class messages_byname<char>;
extern template class ctype_byname<char>;
extern template class codecvt_byname<char, char, mbstate_t>;
extern template class collate<char>;
extern template class collate_byname<char>;
extern template
const codecvt<char, char, mbstate_t>&
use_facet<codecvt<char, char, mbstate_t> >(const locale&);
extern template
const collate<char>&
use_facet<collate<char> >(const locale&);
extern template
const numpunct<char>&
use_facet<numpunct<char> >(const locale&);
extern template
const num_put<char>&
use_facet<num_put<char> >(const locale&);
extern template
const num_get<char>&
use_facet<num_get<char> >(const locale&);
extern template
const moneypunct<char, true>&
use_facet<moneypunct<char, true> >(const locale&);
extern template
const moneypunct<char, false>&
use_facet<moneypunct<char, false> >(const locale&);
extern template
const money_put<char>&
use_facet<money_put<char> >(const locale&);
extern template
const money_get<char>&
use_facet<money_get<char> >(const locale&);
extern template
const __timepunct<char>&
use_facet<__timepunct<char> >(const locale&);
extern template
const time_put<char>&
use_facet<time_put<char> >(const locale&);
extern template
const time_get<char>&
use_facet<time_get<char> >(const locale&);
extern template
const messages<char>&
use_facet<messages<char> >(const locale&);
extern template
bool
has_facet<ctype<char> >(const locale&);
extern template
bool
has_facet<codecvt<char, char, mbstate_t> >(const locale&);
extern template
bool
has_facet<collate<char> >(const locale&);
extern template
bool
has_facet<numpunct<char> >(const locale&);
extern template
bool
has_facet<num_put<char> >(const locale&);
extern template
bool
has_facet<num_get<char> >(const locale&);
extern template
bool
has_facet<moneypunct<char> >(const locale&);
extern template
bool
has_facet<money_put<char> >(const locale&);
extern template
bool
has_facet<money_get<char> >(const locale&);
extern template
bool
has_facet<__timepunct<char> >(const locale&);
extern template
bool
has_facet<time_put<char> >(const locale&);
extern template
bool
has_facet<time_get<char> >(const locale&);
extern template
bool
has_facet<messages<char> >(const locale&);
#ifdef _GLIBCXX_USE_WCHAR_T
extern template class moneypunct<wchar_t, false>;
extern template class moneypunct<wchar_t, true>;
extern template class moneypunct_byname<wchar_t, false>;
extern template class moneypunct_byname<wchar_t, true>;
extern template class _GLIBCXX_LDBL_NAMESPACE money_get<wchar_t>;
extern template class _GLIBCXX_LDBL_NAMESPACE money_put<wchar_t>;
extern template class numpunct<wchar_t>;
extern template class numpunct_byname<wchar_t>;
extern template class _GLIBCXX_LDBL_NAMESPACE num_get<wchar_t>;
extern template class _GLIBCXX_LDBL_NAMESPACE num_put<wchar_t>;
extern template class __timepunct<wchar_t>;
extern template class time_put<wchar_t>;
extern template class time_put_byname<wchar_t>;
extern template class time_get<wchar_t>;
extern template class time_get_byname<wchar_t>;
extern template class messages<wchar_t>;
extern template class messages_byname<wchar_t>;
extern template class ctype_byname<wchar_t>;
extern template class codecvt_byname<wchar_t, char, mbstate_t>;
extern template class collate<wchar_t>;
extern template class collate_byname<wchar_t>;
extern template
const codecvt<wchar_t, char, mbstate_t>&
use_facet<codecvt<wchar_t, char, mbstate_t> >(locale const&);
extern template
const collate<wchar_t>&
use_facet<collate<wchar_t> >(const locale&);
extern template
const numpunct<wchar_t>&
use_facet<numpunct<wchar_t> >(const locale&);
extern template
const num_put<wchar_t>&
use_facet<num_put<wchar_t> >(const locale&);
extern template
const num_get<wchar_t>&
use_facet<num_get<wchar_t> >(const locale&);
extern template
const moneypunct<wchar_t, true>&
use_facet<moneypunct<wchar_t, true> >(const locale&);
extern template
const moneypunct<wchar_t, false>&
use_facet<moneypunct<wchar_t, false> >(const locale&);
extern template
const money_put<wchar_t>&
use_facet<money_put<wchar_t> >(const locale&);
extern template
const money_get<wchar_t>&
use_facet<money_get<wchar_t> >(const locale&);
extern template
const __timepunct<wchar_t>&
use_facet<__timepunct<wchar_t> >(const locale&);
extern template
const time_put<wchar_t>&
use_facet<time_put<wchar_t> >(const locale&);
extern template
const time_get<wchar_t>&
use_facet<time_get<wchar_t> >(const locale&);
extern template
const messages<wchar_t>&
use_facet<messages<wchar_t> >(const locale&);
extern template
bool
has_facet<ctype<wchar_t> >(const locale&);
extern template
bool
has_facet<codecvt<wchar_t, char, mbstate_t> >(const locale&);
extern template
bool
has_facet<collate<wchar_t> >(const locale&);
extern template
bool
has_facet<numpunct<wchar_t> >(const locale&);
extern template
bool
has_facet<num_put<wchar_t> >(const locale&);
extern template
bool
has_facet<num_get<wchar_t> >(const locale&);
extern template
bool
has_facet<moneypunct<wchar_t> >(const locale&);
extern template
bool
has_facet<money_put<wchar_t> >(const locale&);
extern template
bool
has_facet<money_get<wchar_t> >(const locale&);
extern template
bool
has_facet<__timepunct<wchar_t> >(const locale&);
extern template
bool
has_facet<time_put<wchar_t> >(const locale&);
extern template
bool
has_facet<time_get<wchar_t> >(const locale&);
extern template
bool
has_facet<messages<wchar_t> >(const locale&);
#endif
#endif
_GLIBCXX_END_NAMESPACE
#endif