Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
//===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the AArch64 implementation of TargetFrameLowering class.
//
// On AArch64, stack frames are structured as follows:
//
// The stack grows downward.
//
// All of the individual frame areas on the frame below are optional, i.e. it's
// possible to create a function so that the particular area isn't present
// in the frame.
//
// At function entry, the "frame" looks as follows:
//
// |                                   | Higher address
// |-----------------------------------|
// |                                   |
// | arguments passed on the stack     |
// |                                   |
// |-----------------------------------| <- sp
// |                                   | Lower address
//
//
// After the prologue has run, the frame has the following general structure.
// Note that this doesn't depict the case where a red-zone is used. Also,
// technically the last frame area (VLAs) doesn't get created until in the
// main function body, after the prologue is run. However, it's depicted here
// for completeness.
//
// |                                   | Higher address
// |-----------------------------------|
// |                                   |
// | arguments passed on the stack     |
// |                                   |
// |-----------------------------------|
// |                                   |
// | (Win64 only) varargs from reg     |
// |                                   |
// |-----------------------------------|
// |                                   |
// | prev_fp, prev_lr                  |
// | (a.k.a. "frame record")           |
// |-----------------------------------| <- fp(=x29)
// |                                   |
// | other callee-saved registers      |
// |                                   |
// |-----------------------------------|
// |.empty.space.to.make.part.below....|
// |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
// |.the.standard.16-byte.alignment....|  compile time; if present)
// |-----------------------------------|
// |                                   |
// | local variables of fixed size     |
// | including spill slots             |
// |-----------------------------------| <- bp(not defined by ABI,
// |.variable-sized.local.variables....|       LLVM chooses X19)
// |.(VLAs)............................| (size of this area is unknown at
// |...................................|  compile time)
// |-----------------------------------| <- sp
// |                                   | Lower address
//
//
// To access the data in a frame, at-compile time, a constant offset must be
// computable from one of the pointers (fp, bp, sp) to access it. The size
// of the areas with a dotted background cannot be computed at compile-time
// if they are present, making it required to have all three of fp, bp and
// sp to be set up to be able to access all contents in the frame areas,
// assuming all of the frame areas are non-empty.
//
// For most functions, some of the frame areas are empty. For those functions,
// it may not be necessary to set up fp or bp:
// * A base pointer is definitely needed when there are both VLAs and local
//   variables with more-than-default alignment requirements.
// * A frame pointer is definitely needed when there are local variables with
//   more-than-default alignment requirements.
//
// In some cases when a base pointer is not strictly needed, it is generated
// anyway when offsets from the frame pointer to access local variables become
// so large that the offset can't be encoded in the immediate fields of loads
// or stores.
//
// FIXME: also explain the redzone concept.
// FIXME: also explain the concept of reserved call frames.
//
//===----------------------------------------------------------------------===//

#include "AArch64FrameLowering.h"
#include "AArch64InstrInfo.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64RegisterInfo.h"
#include "AArch64Subtarget.h"
#include "AArch64TargetMachine.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "frame-info"

static cl::opt<bool> EnableRedZone("aarch64-redzone",
                                   cl::desc("enable use of redzone on AArch64"),
                                   cl::init(false), cl::Hidden);

STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");

/// Look at each instruction that references stack frames and return the stack
/// size limit beyond which some of these instructions will require a scratch
/// register during their expansion later.
static unsigned estimateRSStackSizeLimit(MachineFunction &MF) {
  // FIXME: For now, just conservatively guestimate based on unscaled indexing
  // range. We'll end up allocating an unnecessary spill slot a lot, but
  // realistically that's not a big deal at this stage of the game.
  for (MachineBasicBlock &MBB : MF) {
    for (MachineInstr &MI : MBB) {
      if (MI.isDebugValue() || MI.isPseudo() ||
          MI.getOpcode() == AArch64::ADDXri ||
          MI.getOpcode() == AArch64::ADDSXri)
        continue;

      for (const MachineOperand &MO : MI.operands()) {
        if (!MO.isFI())
          continue;

        int Offset = 0;
        if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
            AArch64FrameOffsetCannotUpdate)
          return 0;
      }
    }
  }
  return 255;
}

bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
  if (!EnableRedZone)
    return false;
  // Don't use the red zone if the function explicitly asks us not to.
  // This is typically used for kernel code.
  if (MF.getFunction().hasFnAttribute(Attribute::NoRedZone))
    return false;

  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
  unsigned NumBytes = AFI->getLocalStackSize();

  return !(MFI.hasCalls() || hasFP(MF) || NumBytes > 128);
}

/// hasFP - Return true if the specified function should have a dedicated frame
/// pointer register.
bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
  // Retain behavior of always omitting the FP for leaf functions when possible.
  return (MFI.hasCalls() &&
          MF.getTarget().Options.DisableFramePointerElim(MF)) ||
         MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
         MFI.hasStackMap() || MFI.hasPatchPoint() ||
         RegInfo->needsStackRealignment(MF);
}

/// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
/// not required, we reserve argument space for call sites in the function
/// immediately on entry to the current function.  This eliminates the need for
/// add/sub sp brackets around call sites.  Returns true if the call frame is
/// included as part of the stack frame.
bool
AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
  return !MF.getFrameInfo().hasVarSizedObjects();
}

MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr(
    MachineFunction &MF, MachineBasicBlock &MBB,
    MachineBasicBlock::iterator I) const {
  const AArch64InstrInfo *TII =
      static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
  DebugLoc DL = I->getDebugLoc();
  unsigned Opc = I->getOpcode();
  bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
  uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;

  const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
  if (!TFI->hasReservedCallFrame(MF)) {
    unsigned Align = getStackAlignment();

    int64_t Amount = I->getOperand(0).getImm();
    Amount = alignTo(Amount, Align);
    if (!IsDestroy)
      Amount = -Amount;

    // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
    // doesn't have to pop anything), then the first operand will be zero too so
    // this adjustment is a no-op.
    if (CalleePopAmount == 0) {
      // FIXME: in-function stack adjustment for calls is limited to 24-bits
      // because there's no guaranteed temporary register available.
      //
      // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
      // 1) For offset <= 12-bit, we use LSL #0
      // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
      // LSL #0, and the other uses LSL #12.
      //
      // Most call frames will be allocated at the start of a function so
      // this is OK, but it is a limitation that needs dealing with.
      assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
      emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, Amount, TII);
    }
  } else if (CalleePopAmount != 0) {
    // If the calling convention demands that the callee pops arguments from the
    // stack, we want to add it back if we have a reserved call frame.
    assert(CalleePopAmount < 0xffffff && "call frame too large");
    emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, -CalleePopAmount,
                    TII);
  }
  return MBB.erase(I);
}

void AArch64FrameLowering::emitCalleeSavedFrameMoves(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
  MachineFunction &MF = *MBB.getParent();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  const TargetSubtargetInfo &STI = MF.getSubtarget();
  const MCRegisterInfo *MRI = STI.getRegisterInfo();
  const TargetInstrInfo *TII = STI.getInstrInfo();
  DebugLoc DL = MBB.findDebugLoc(MBBI);

  // Add callee saved registers to move list.
  const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
  if (CSI.empty())
    return;

  for (const auto &Info : CSI) {
    unsigned Reg = Info.getReg();
    int64_t Offset =
        MFI.getObjectOffset(Info.getFrameIdx()) - getOffsetOfLocalArea();
    unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
    unsigned CFIIndex = MF.addFrameInst(
        MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
    BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
        .addCFIIndex(CFIIndex)
        .setMIFlags(MachineInstr::FrameSetup);
  }
}

// Find a scratch register that we can use at the start of the prologue to
// re-align the stack pointer.  We avoid using callee-save registers since they
// may appear to be free when this is called from canUseAsPrologue (during
// shrink wrapping), but then no longer be free when this is called from
// emitPrologue.
//
// FIXME: This is a bit conservative, since in the above case we could use one
// of the callee-save registers as a scratch temp to re-align the stack pointer,
// but we would then have to make sure that we were in fact saving at least one
// callee-save register in the prologue, which is additional complexity that
// doesn't seem worth the benefit.
static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) {
  MachineFunction *MF = MBB->getParent();

  // If MBB is an entry block, use X9 as the scratch register
  if (&MF->front() == MBB)
    return AArch64::X9;

  const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
  const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
  LivePhysRegs LiveRegs(TRI);
  LiveRegs.addLiveIns(*MBB);

  // Mark callee saved registers as used so we will not choose them.
  const MCPhysReg *CSRegs = TRI.getCalleeSavedRegs(MF);
  for (unsigned i = 0; CSRegs[i]; ++i)
    LiveRegs.addReg(CSRegs[i]);

  // Prefer X9 since it was historically used for the prologue scratch reg.
  const MachineRegisterInfo &MRI = MF->getRegInfo();
  if (LiveRegs.available(MRI, AArch64::X9))
    return AArch64::X9;

  for (unsigned Reg : AArch64::GPR64RegClass) {
    if (LiveRegs.available(MRI, Reg))
      return Reg;
  }
  return AArch64::NoRegister;
}

bool AArch64FrameLowering::canUseAsPrologue(
    const MachineBasicBlock &MBB) const {
  const MachineFunction *MF = MBB.getParent();
  MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
  const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
  const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();

  // Don't need a scratch register if we're not going to re-align the stack.
  if (!RegInfo->needsStackRealignment(*MF))
    return true;
  // Otherwise, we can use any block as long as it has a scratch register
  // available.
  return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister;
}

static bool windowsRequiresStackProbe(MachineFunction &MF,
                                      unsigned StackSizeInBytes) {
  const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
  if (!Subtarget.isTargetWindows())
    return false;
  const Function &F = MF.getFunction();
  // TODO: When implementing stack protectors, take that into account
  // for the probe threshold.
  unsigned StackProbeSize = 4096;
  if (F.hasFnAttribute("stack-probe-size"))
    F.getFnAttribute("stack-probe-size")
        .getValueAsString()
        .getAsInteger(0, StackProbeSize);
  return StackSizeInBytes >= StackProbeSize;
}

bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
    MachineFunction &MF, unsigned StackBumpBytes) const {
  AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
  const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();

  if (AFI->getLocalStackSize() == 0)
    return false;

  // 512 is the maximum immediate for stp/ldp that will be used for
  // callee-save save/restores
  if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes))
    return false;

  if (MFI.hasVarSizedObjects())
    return false;

  if (RegInfo->needsStackRealignment(MF))
    return false;

  // This isn't strictly necessary, but it simplifies things a bit since the
  // current RedZone handling code assumes the SP is adjusted by the
  // callee-save save/restore code.
  if (canUseRedZone(MF))
    return false;

  return true;
}

// Convert callee-save register save/restore instruction to do stack pointer
// decrement/increment to allocate/deallocate the callee-save stack area by
// converting store/load to use pre/post increment version.
static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
    const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc) {
  unsigned NewOpc;
  bool NewIsUnscaled = false;
  switch (MBBI->getOpcode()) {
  default:
    llvm_unreachable("Unexpected callee-save save/restore opcode!");
  case AArch64::STPXi:
    NewOpc = AArch64::STPXpre;
    break;
  case AArch64::STPDi:
    NewOpc = AArch64::STPDpre;
    break;
  case AArch64::STRXui:
    NewOpc = AArch64::STRXpre;
    NewIsUnscaled = true;
    break;
  case AArch64::STRDui:
    NewOpc = AArch64::STRDpre;
    NewIsUnscaled = true;
    break;
  case AArch64::LDPXi:
    NewOpc = AArch64::LDPXpost;
    break;
  case AArch64::LDPDi:
    NewOpc = AArch64::LDPDpost;
    break;
  case AArch64::LDRXui:
    NewOpc = AArch64::LDRXpost;
    NewIsUnscaled = true;
    break;
  case AArch64::LDRDui:
    NewOpc = AArch64::LDRDpost;
    NewIsUnscaled = true;
    break;
  }

  MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
  MIB.addReg(AArch64::SP, RegState::Define);

  // Copy all operands other than the immediate offset.
  unsigned OpndIdx = 0;
  for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd;
       ++OpndIdx)
    MIB.add(MBBI->getOperand(OpndIdx));

  assert(MBBI->getOperand(OpndIdx).getImm() == 0 &&
         "Unexpected immediate offset in first/last callee-save save/restore "
         "instruction!");
  assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP &&
         "Unexpected base register in callee-save save/restore instruction!");
  // Last operand is immediate offset that needs fixing.
  assert(CSStackSizeInc % 8 == 0);
  int64_t CSStackSizeIncImm = CSStackSizeInc;
  if (!NewIsUnscaled)
    CSStackSizeIncImm /= 8;
  MIB.addImm(CSStackSizeIncImm);

  MIB.setMIFlags(MBBI->getFlags());
  MIB.setMemRefs(MBBI->memoperands_begin(), MBBI->memoperands_end());

  return std::prev(MBB.erase(MBBI));
}

// Fixup callee-save register save/restore instructions to take into account
// combined SP bump by adding the local stack size to the stack offsets.
static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI,
                                              unsigned LocalStackSize) {
  unsigned Opc = MI.getOpcode();
  (void)Opc;
  assert((Opc == AArch64::STPXi || Opc == AArch64::STPDi ||
          Opc == AArch64::STRXui || Opc == AArch64::STRDui ||
          Opc == AArch64::LDPXi || Opc == AArch64::LDPDi ||
          Opc == AArch64::LDRXui || Opc == AArch64::LDRDui) &&
         "Unexpected callee-save save/restore opcode!");

  unsigned OffsetIdx = MI.getNumExplicitOperands() - 1;
  assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP &&
         "Unexpected base register in callee-save save/restore instruction!");
  // Last operand is immediate offset that needs fixing.
  MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx);
  // All generated opcodes have scaled offsets.
  assert(LocalStackSize % 8 == 0);
  OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / 8);
}

void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
                                        MachineBasicBlock &MBB) const {
  MachineBasicBlock::iterator MBBI = MBB.begin();
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const Function &F = MF.getFunction();
  const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
  const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
  MachineModuleInfo &MMI = MF.getMMI();
  AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
  bool needsFrameMoves = MMI.hasDebugInfo() || F.needsUnwindTableEntry();
  bool HasFP = hasFP(MF);

  // Debug location must be unknown since the first debug location is used
  // to determine the end of the prologue.
  DebugLoc DL;

  // All calls are tail calls in GHC calling conv, and functions have no
  // prologue/epilogue.
  if (MF.getFunction().getCallingConv() == CallingConv::GHC)
    return;

  int NumBytes = (int)MFI.getStackSize();
  if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) {
    assert(!HasFP && "unexpected function without stack frame but with FP");

    // All of the stack allocation is for locals.
    AFI->setLocalStackSize(NumBytes);

    if (!NumBytes)
      return;
    // REDZONE: If the stack size is less than 128 bytes, we don't need
    // to actually allocate.
    if (canUseRedZone(MF))
      ++NumRedZoneFunctions;
    else {
      emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, -NumBytes, TII,
                      MachineInstr::FrameSetup);

      // Label used to tie together the PROLOG_LABEL and the MachineMoves.
      MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
      // Encode the stack size of the leaf function.
      unsigned CFIIndex = MF.addFrameInst(
          MCCFIInstruction::createDefCfaOffset(FrameLabel, -NumBytes));
      BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
          .addCFIIndex(CFIIndex)
          .setMIFlags(MachineInstr::FrameSetup);
    }
    return;
  }

  bool IsWin64 =
      Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
  unsigned FixedObject = IsWin64 ? alignTo(AFI->getVarArgsGPRSize(), 16) : 0;

  auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
  // All of the remaining stack allocations are for locals.
  AFI->setLocalStackSize(NumBytes - PrologueSaveSize);

  bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
  if (CombineSPBump) {
    emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, -NumBytes, TII,
                    MachineInstr::FrameSetup);
    NumBytes = 0;
  } else if (PrologueSaveSize != 0) {
    MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(MBB, MBBI, DL, TII,
                                                     -PrologueSaveSize);
    NumBytes -= PrologueSaveSize;
  }
  assert(NumBytes >= 0 && "Negative stack allocation size!?");

  // Move past the saves of the callee-saved registers, fixing up the offsets
  // and pre-inc if we decided to combine the callee-save and local stack
  // pointer bump above.
  MachineBasicBlock::iterator End = MBB.end();
  while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup)) {
    if (CombineSPBump)
      fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize());
    ++MBBI;
  }
  if (HasFP) {
    // Only set up FP if we actually need to. Frame pointer is fp =
    // sp - fixedobject - 16.
    int FPOffset = AFI->getCalleeSavedStackSize() - 16;
    if (CombineSPBump)
      FPOffset += AFI->getLocalStackSize();

    // Issue    sub fp, sp, FPOffset or
    //          mov fp,sp          when FPOffset is zero.
    // Note: All stores of callee-saved registers are marked as "FrameSetup".
    // This code marks the instruction(s) that set the FP also.
    emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP, FPOffset, TII,
                    MachineInstr::FrameSetup);
  }

  if (windowsRequiresStackProbe(MF, NumBytes)) {
    uint32_t NumWords = NumBytes >> 4;

    BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15)
        .addImm(NumWords)
        .setMIFlags(MachineInstr::FrameSetup);

    switch (MF.getTarget().getCodeModel()) {
    case CodeModel::Small:
    case CodeModel::Medium:
    case CodeModel::Kernel:
      BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL))
          .addExternalSymbol("__chkstk")
          .addReg(AArch64::X15, RegState::Implicit)
          .setMIFlags(MachineInstr::FrameSetup);
      break;
    case CodeModel::Large:
      BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT))
          .addReg(AArch64::X16, RegState::Define)
          .addExternalSymbol("__chkstk")
          .addExternalSymbol("__chkstk")
          .setMIFlags(MachineInstr::FrameSetup);

      BuildMI(MBB, MBBI, DL, TII->get(AArch64::BLR))
          .addReg(AArch64::X16, RegState::Kill)
          .addReg(AArch64::X15, RegState::Implicit | RegState::Define)
          .setMIFlags(MachineInstr::FrameSetup);
      break;
    }

    BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP)
        .addReg(AArch64::SP, RegState::Kill)
        .addReg(AArch64::X15, RegState::Kill)
        .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4))
        .setMIFlags(MachineInstr::FrameSetup);
    NumBytes = 0;
  }

  // Allocate space for the rest of the frame.
  if (NumBytes) {
    const bool NeedsRealignment = RegInfo->needsStackRealignment(MF);
    unsigned scratchSPReg = AArch64::SP;

    if (NeedsRealignment) {
      scratchSPReg = findScratchNonCalleeSaveRegister(&MBB);
      assert(scratchSPReg != AArch64::NoRegister);
    }

    // If we're a leaf function, try using the red zone.
    if (!canUseRedZone(MF))
      // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
      // the correct value here, as NumBytes also includes padding bytes,
      // which shouldn't be counted here.
      emitFrameOffset(MBB, MBBI, DL, scratchSPReg, AArch64::SP, -NumBytes, TII,
                      MachineInstr::FrameSetup);

    if (NeedsRealignment) {
      const unsigned Alignment = MFI.getMaxAlignment();
      const unsigned NrBitsToZero = countTrailingZeros(Alignment);
      assert(NrBitsToZero > 1);
      assert(scratchSPReg != AArch64::SP);

      // SUB X9, SP, NumBytes
      //   -- X9 is temporary register, so shouldn't contain any live data here,
      //   -- free to use. This is already produced by emitFrameOffset above.
      // AND SP, X9, 0b11111...0000
      // The logical immediates have a non-trivial encoding. The following
      // formula computes the encoded immediate with all ones but
      // NrBitsToZero zero bits as least significant bits.
      uint32_t andMaskEncoded = (1 << 12)                         // = N
                                | ((64 - NrBitsToZero) << 6)      // immr
                                | ((64 - NrBitsToZero - 1) << 0); // imms

      BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
          .addReg(scratchSPReg, RegState::Kill)
          .addImm(andMaskEncoded);
      AFI->setStackRealigned(true);
    }
  }

  // If we need a base pointer, set it up here. It's whatever the value of the
  // stack pointer is at this point. Any variable size objects will be allocated
  // after this, so we can still use the base pointer to reference locals.
  //
  // FIXME: Clarify FrameSetup flags here.
  // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
  // needed.
  if (RegInfo->hasBasePointer(MF)) {
    TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
                     false);
  }

  if (needsFrameMoves) {
    const DataLayout &TD = MF.getDataLayout();
    const int StackGrowth = -TD.getPointerSize(0);
    unsigned FramePtr = RegInfo->getFrameRegister(MF);
    // An example of the prologue:
    //
    //     .globl __foo
    //     .align 2
    //  __foo:
    // Ltmp0:
    //     .cfi_startproc
    //     .cfi_personality 155, ___gxx_personality_v0
    // Leh_func_begin:
    //     .cfi_lsda 16, Lexception33
    //
    //     stp  xa,bx, [sp, -#offset]!
    //     ...
    //     stp  x28, x27, [sp, #offset-32]
    //     stp  fp, lr, [sp, #offset-16]
    //     add  fp, sp, #offset - 16
    //     sub  sp, sp, #1360
    //
    // The Stack:
    //       +-------------------------------------------+
    // 10000 | ........ | ........ | ........ | ........ |
    // 10004 | ........ | ........ | ........ | ........ |
    //       +-------------------------------------------+
    // 10008 | ........ | ........ | ........ | ........ |
    // 1000c | ........ | ........ | ........ | ........ |
    //       +===========================================+
    // 10010 |                X28 Register               |
    // 10014 |                X28 Register               |
    //       +-------------------------------------------+
    // 10018 |                X27 Register               |
    // 1001c |                X27 Register               |
    //       +===========================================+
    // 10020 |                Frame Pointer              |
    // 10024 |                Frame Pointer              |
    //       +-------------------------------------------+
    // 10028 |                Link Register              |
    // 1002c |                Link Register              |
    //       +===========================================+
    // 10030 | ........ | ........ | ........ | ........ |
    // 10034 | ........ | ........ | ........ | ........ |
    //       +-------------------------------------------+
    // 10038 | ........ | ........ | ........ | ........ |
    // 1003c | ........ | ........ | ........ | ........ |
    //       +-------------------------------------------+
    //
    //     [sp] = 10030        ::    >>initial value<<
    //     sp = 10020          ::  stp fp, lr, [sp, #-16]!
    //     fp = sp == 10020    ::  mov fp, sp
    //     [sp] == 10020       ::  stp x28, x27, [sp, #-16]!
    //     sp == 10010         ::    >>final value<<
    //
    // The frame pointer (w29) points to address 10020. If we use an offset of
    // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
    // for w27, and -32 for w28:
    //
    //  Ltmp1:
    //     .cfi_def_cfa w29, 16
    //  Ltmp2:
    //     .cfi_offset w30, -8
    //  Ltmp3:
    //     .cfi_offset w29, -16
    //  Ltmp4:
    //     .cfi_offset w27, -24
    //  Ltmp5:
    //     .cfi_offset w28, -32

    if (HasFP) {
      // Define the current CFA rule to use the provided FP.
      unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true);
      unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa(
          nullptr, Reg, 2 * StackGrowth - FixedObject));
      BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
          .addCFIIndex(CFIIndex)
          .setMIFlags(MachineInstr::FrameSetup);
    } else {
      // Encode the stack size of the leaf function.
      unsigned CFIIndex = MF.addFrameInst(
          MCCFIInstruction::createDefCfaOffset(nullptr, -MFI.getStackSize()));
      BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
          .addCFIIndex(CFIIndex)
          .setMIFlags(MachineInstr::FrameSetup);
    }

    // Now emit the moves for whatever callee saved regs we have (including FP,
    // LR if those are saved).
    emitCalleeSavedFrameMoves(MBB, MBBI);
  }
}

void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
                                        MachineBasicBlock &MBB) const {
  MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
  DebugLoc DL;
  bool IsTailCallReturn = false;
  if (MBB.end() != MBBI) {
    DL = MBBI->getDebugLoc();
    unsigned RetOpcode = MBBI->getOpcode();
    IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi ||
      RetOpcode == AArch64::TCRETURNri;
  }
  int NumBytes = MFI.getStackSize();
  const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();

  // All calls are tail calls in GHC calling conv, and functions have no
  // prologue/epilogue.
  if (MF.getFunction().getCallingConv() == CallingConv::GHC)
    return;

  // Initial and residual are named for consistency with the prologue. Note that
  // in the epilogue, the residual adjustment is executed first.
  uint64_t ArgumentPopSize = 0;
  if (IsTailCallReturn) {
    MachineOperand &StackAdjust = MBBI->getOperand(1);

    // For a tail-call in a callee-pops-arguments environment, some or all of
    // the stack may actually be in use for the call's arguments, this is
    // calculated during LowerCall and consumed here...
    ArgumentPopSize = StackAdjust.getImm();
  } else {
    // ... otherwise the amount to pop is *all* of the argument space,
    // conveniently stored in the MachineFunctionInfo by
    // LowerFormalArguments. This will, of course, be zero for the C calling
    // convention.
    ArgumentPopSize = AFI->getArgumentStackToRestore();
  }

  // The stack frame should be like below,
  //
  //      ----------------------                     ---
  //      |                    |                      |
  //      | BytesInStackArgArea|              CalleeArgStackSize
  //      | (NumReusableBytes) |                (of tail call)
  //      |                    |                     ---
  //      |                    |                      |
  //      ---------------------|        ---           |
  //      |                    |         |            |
  //      |   CalleeSavedReg   |         |            |
  //      | (CalleeSavedStackSize)|      |            |
  //      |                    |         |            |
  //      ---------------------|         |         NumBytes
  //      |                    |     StackSize  (StackAdjustUp)
  //      |   LocalStackSize   |         |            |
  //      | (covering callee   |         |            |
  //      |       args)        |         |            |
  //      |                    |         |            |
  //      ----------------------        ---          ---
  //
  // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize
  //             = StackSize + ArgumentPopSize
  //
  // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps
  // it as the 2nd argument of AArch64ISD::TC_RETURN.

  bool IsWin64 =
      Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
  unsigned FixedObject = IsWin64 ? alignTo(AFI->getVarArgsGPRSize(), 16) : 0;

  auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
  bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);

  if (!CombineSPBump && PrologueSaveSize != 0)
    convertCalleeSaveRestoreToSPPrePostIncDec(
        MBB, std::prev(MBB.getFirstTerminator()), DL, TII, PrologueSaveSize);

  // Move past the restores of the callee-saved registers.
  MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
  MachineBasicBlock::iterator Begin = MBB.begin();
  while (LastPopI != Begin) {
    --LastPopI;
    if (!LastPopI->getFlag(MachineInstr::FrameDestroy)) {
      ++LastPopI;
      break;
    } else if (CombineSPBump)
      fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize());
  }

  // If there is a single SP update, insert it before the ret and we're done.
  if (CombineSPBump) {
    emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
                    NumBytes + ArgumentPopSize, TII,
                    MachineInstr::FrameDestroy);
    return;
  }

  NumBytes -= PrologueSaveSize;
  assert(NumBytes >= 0 && "Negative stack allocation size!?");

  if (!hasFP(MF)) {
    bool RedZone = canUseRedZone(MF);
    // If this was a redzone leaf function, we don't need to restore the
    // stack pointer (but we may need to pop stack args for fastcc).
    if (RedZone && ArgumentPopSize == 0)
      return;

    bool NoCalleeSaveRestore = PrologueSaveSize == 0;
    int StackRestoreBytes = RedZone ? 0 : NumBytes;
    if (NoCalleeSaveRestore)
      StackRestoreBytes += ArgumentPopSize;
    emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
                    StackRestoreBytes, TII, MachineInstr::FrameDestroy);
    // If we were able to combine the local stack pop with the argument pop,
    // then we're done.
    if (NoCalleeSaveRestore || ArgumentPopSize == 0)
      return;
    NumBytes = 0;
  }

  // Restore the original stack pointer.
  // FIXME: Rather than doing the math here, we should instead just use
  // non-post-indexed loads for the restores if we aren't actually going to
  // be able to save any instructions.
  if (MFI.hasVarSizedObjects() || AFI->isStackRealigned())
    emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
                    -AFI->getCalleeSavedStackSize() + 16, TII,
                    MachineInstr::FrameDestroy);
  else if (NumBytes)
    emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, NumBytes, TII,
                    MachineInstr::FrameDestroy);

  // This must be placed after the callee-save restore code because that code
  // assumes the SP is at the same location as it was after the callee-save save
  // code in the prologue.
  if (ArgumentPopSize)
    emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
                    ArgumentPopSize, TII, MachineInstr::FrameDestroy);
}

/// getFrameIndexReference - Provide a base+offset reference to an FI slot for
/// debug info.  It's the same as what we use for resolving the code-gen
/// references for now.  FIXME: This can go wrong when references are
/// SP-relative and simple call frames aren't used.
int AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF,
                                                 int FI,
                                                 unsigned &FrameReg) const {
  return resolveFrameIndexReference(MF, FI, FrameReg);
}

int AArch64FrameLowering::resolveFrameIndexReference(const MachineFunction &MF,
                                                     int FI, unsigned &FrameReg,
                                                     bool PreferFP) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
      MF.getSubtarget().getRegisterInfo());
  const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
  const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
  bool IsWin64 =
      Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
  unsigned FixedObject = IsWin64 ? alignTo(AFI->getVarArgsGPRSize(), 16) : 0;
  int FPOffset = MFI.getObjectOffset(FI) + FixedObject + 16;
  int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
  bool isFixed = MFI.isFixedObjectIndex(FI);

  // Use frame pointer to reference fixed objects. Use it for locals if
  // there are VLAs or a dynamically realigned SP (and thus the SP isn't
  // reliable as a base). Make sure useFPForScavengingIndex() does the
  // right thing for the emergency spill slot.
  bool UseFP = false;
  if (AFI->hasStackFrame()) {
    // Note: Keeping the following as multiple 'if' statements rather than
    // merging to a single expression for readability.
    //
    // Argument access should always use the FP.
    if (isFixed) {
      UseFP = hasFP(MF);
    } else if (hasFP(MF) && !RegInfo->hasBasePointer(MF) &&
               !RegInfo->needsStackRealignment(MF)) {
      // Use SP or FP, whichever gives us the best chance of the offset
      // being in range for direct access. If the FPOffset is positive,
      // that'll always be best, as the SP will be even further away.
      // If the FPOffset is negative, we have to keep in mind that the
      // available offset range for negative offsets is smaller than for
      // positive ones. If we have variable sized objects, we're stuck with
      // using the FP regardless, though, as the SP offset is unknown
      // and we don't have a base pointer available. If an offset is
      // available via the FP and the SP, use whichever is closest.
      if (PreferFP || MFI.hasVarSizedObjects() || FPOffset >= 0 ||
          (FPOffset >= -256 && Offset > -FPOffset))
        UseFP = true;
    }
  }

  assert((isFixed || !RegInfo->needsStackRealignment(MF) || !UseFP) &&
         "In the presence of dynamic stack pointer realignment, "
         "non-argument objects cannot be accessed through the frame pointer");

  if (UseFP) {
    FrameReg = RegInfo->getFrameRegister(MF);
    return FPOffset;
  }

  // Use the base pointer if we have one.
  if (RegInfo->hasBasePointer(MF))
    FrameReg = RegInfo->getBaseRegister();
  else {
    FrameReg = AArch64::SP;
    // If we're using the red zone for this function, the SP won't actually
    // be adjusted, so the offsets will be negative. They're also all
    // within range of the signed 9-bit immediate instructions.
    if (canUseRedZone(MF))
      Offset -= AFI->getLocalStackSize();
  }

  return Offset;
}

static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
  // Do not set a kill flag on values that are also marked as live-in. This
  // happens with the @llvm-returnaddress intrinsic and with arguments passed in
  // callee saved registers.
  // Omitting the kill flags is conservatively correct even if the live-in
  // is not used after all.
  bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
  return getKillRegState(!IsLiveIn);
}

static bool produceCompactUnwindFrame(MachineFunction &MF) {
  const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
  AttributeList Attrs = MF.getFunction().getAttributes();
  return Subtarget.isTargetMachO() &&
         !(Subtarget.getTargetLowering()->supportSwiftError() &&
           Attrs.hasAttrSomewhere(Attribute::SwiftError));
}

namespace {

struct RegPairInfo {
  unsigned Reg1 = AArch64::NoRegister;
  unsigned Reg2 = AArch64::NoRegister;
  int FrameIdx;
  int Offset;
  bool IsGPR;

  RegPairInfo() = default;

  bool isPaired() const { return Reg2 != AArch64::NoRegister; }
};

} // end anonymous namespace

static void computeCalleeSaveRegisterPairs(
    MachineFunction &MF, const std::vector<CalleeSavedInfo> &CSI,
    const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs) {

  if (CSI.empty())
    return;

  AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  CallingConv::ID CC = MF.getFunction().getCallingConv();
  unsigned Count = CSI.size();
  (void)CC;
  // MachO's compact unwind format relies on all registers being stored in
  // pairs.
  assert((!produceCompactUnwindFrame(MF) ||
          CC == CallingConv::PreserveMost ||
          (Count & 1) == 0) &&
         "Odd number of callee-saved regs to spill!");
  int Offset = AFI->getCalleeSavedStackSize();

  for (unsigned i = 0; i < Count; ++i) {
    RegPairInfo RPI;
    RPI.Reg1 = CSI[i].getReg();

    assert(AArch64::GPR64RegClass.contains(RPI.Reg1) ||
           AArch64::FPR64RegClass.contains(RPI.Reg1));
    RPI.IsGPR = AArch64::GPR64RegClass.contains(RPI.Reg1);

    // Add the next reg to the pair if it is in the same register class.
    if (i + 1 < Count) {
      unsigned NextReg = CSI[i + 1].getReg();
      if ((RPI.IsGPR && AArch64::GPR64RegClass.contains(NextReg)) ||
          (!RPI.IsGPR && AArch64::FPR64RegClass.contains(NextReg)))
        RPI.Reg2 = NextReg;
    }

    // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
    // list to come in sorted by frame index so that we can issue the store
    // pair instructions directly. Assert if we see anything otherwise.
    //
    // The order of the registers in the list is controlled by
    // getCalleeSavedRegs(), so they will always be in-order, as well.
    assert((!RPI.isPaired() ||
            (CSI[i].getFrameIdx() + 1 == CSI[i + 1].getFrameIdx())) &&
           "Out of order callee saved regs!");

    // MachO's compact unwind format relies on all registers being stored in
    // adjacent register pairs.
    assert((!produceCompactUnwindFrame(MF) ||
            CC == CallingConv::PreserveMost ||
            (RPI.isPaired() &&
             ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
              RPI.Reg1 + 1 == RPI.Reg2))) &&
           "Callee-save registers not saved as adjacent register pair!");

    RPI.FrameIdx = CSI[i].getFrameIdx();

    if (Count * 8 != AFI->getCalleeSavedStackSize() && !RPI.isPaired()) {
      // Round up size of non-pair to pair size if we need to pad the
      // callee-save area to ensure 16-byte alignment.
      Offset -= 16;
      assert(MFI.getObjectAlignment(RPI.FrameIdx) <= 16);
      MFI.setObjectAlignment(RPI.FrameIdx, 16);
      AFI->setCalleeSaveStackHasFreeSpace(true);
    } else
      Offset -= RPI.isPaired() ? 16 : 8;
    assert(Offset % 8 == 0);
    RPI.Offset = Offset / 8;
    assert((RPI.Offset >= -64 && RPI.Offset <= 63) &&
           "Offset out of bounds for LDP/STP immediate");

    RegPairs.push_back(RPI);
    if (RPI.isPaired())
      ++i;
  }
}

bool AArch64FrameLowering::spillCalleeSavedRegisters(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
    const std::vector<CalleeSavedInfo> &CSI,
    const TargetRegisterInfo *TRI) const {
  MachineFunction &MF = *MBB.getParent();
  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
  DebugLoc DL;
  SmallVector<RegPairInfo, 8> RegPairs;

  computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs);
  const MachineRegisterInfo &MRI = MF.getRegInfo();

  for (auto RPII = RegPairs.rbegin(), RPIE = RegPairs.rend(); RPII != RPIE;
       ++RPII) {
    RegPairInfo RPI = *RPII;
    unsigned Reg1 = RPI.Reg1;
    unsigned Reg2 = RPI.Reg2;
    unsigned StrOpc;

    // Issue sequence of spills for cs regs.  The first spill may be converted
    // to a pre-decrement store later by emitPrologue if the callee-save stack
    // area allocation can't be combined with the local stack area allocation.
    // For example:
    //    stp     x22, x21, [sp, #0]     // addImm(+0)
    //    stp     x20, x19, [sp, #16]    // addImm(+2)
    //    stp     fp, lr, [sp, #32]      // addImm(+4)
    // Rationale: This sequence saves uop updates compared to a sequence of
    // pre-increment spills like stp xi,xj,[sp,#-16]!
    // Note: Similar rationale and sequence for restores in epilog.
    if (RPI.IsGPR)
      StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
    else
      StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
    DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
          if (RPI.isPaired())
            dbgs() << ", " << printReg(Reg2, TRI);
          dbgs() << ") -> fi#(" << RPI.FrameIdx;
          if (RPI.isPaired())
            dbgs() << ", " << RPI.FrameIdx+1;
          dbgs() << ")\n");

    MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
    if (!MRI.isReserved(Reg1))
      MBB.addLiveIn(Reg1);
    if (RPI.isPaired()) {
      if (!MRI.isReserved(Reg2))
        MBB.addLiveIn(Reg2);
      MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
      MIB.addMemOperand(MF.getMachineMemOperand(
          MachinePointerInfo::getFixedStack(MF, RPI.FrameIdx + 1),
          MachineMemOperand::MOStore, 8, 8));
    }
    MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
        .addReg(AArch64::SP)
        .addImm(RPI.Offset) // [sp, #offset*8], where factor*8 is implicit
        .setMIFlag(MachineInstr::FrameSetup);
    MIB.addMemOperand(MF.getMachineMemOperand(
        MachinePointerInfo::getFixedStack(MF, RPI.FrameIdx),
        MachineMemOperand::MOStore, 8, 8));
  }
  return true;
}

bool AArch64FrameLowering::restoreCalleeSavedRegisters(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
    std::vector<CalleeSavedInfo> &CSI,
    const TargetRegisterInfo *TRI) const {
  MachineFunction &MF = *MBB.getParent();
  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
  DebugLoc DL;
  SmallVector<RegPairInfo, 8> RegPairs;

  if (MI != MBB.end())
    DL = MI->getDebugLoc();

  computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs);

  for (auto RPII = RegPairs.begin(), RPIE = RegPairs.end(); RPII != RPIE;
       ++RPII) {
    RegPairInfo RPI = *RPII;
    unsigned Reg1 = RPI.Reg1;
    unsigned Reg2 = RPI.Reg2;

    // Issue sequence of restores for cs regs. The last restore may be converted
    // to a post-increment load later by emitEpilogue if the callee-save stack
    // area allocation can't be combined with the local stack area allocation.
    // For example:
    //    ldp     fp, lr, [sp, #32]       // addImm(+4)
    //    ldp     x20, x19, [sp, #16]     // addImm(+2)
    //    ldp     x22, x21, [sp, #0]      // addImm(+0)
    // Note: see comment in spillCalleeSavedRegisters()
    unsigned LdrOpc;
    if (RPI.IsGPR)
      LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
    else
      LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
    DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
          if (RPI.isPaired())
            dbgs() << ", " << printReg(Reg2, TRI);
          dbgs() << ") -> fi#(" << RPI.FrameIdx;
          if (RPI.isPaired())
            dbgs() << ", " << RPI.FrameIdx+1;
          dbgs() << ")\n");

    MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc));
    if (RPI.isPaired()) {
      MIB.addReg(Reg2, getDefRegState(true));
      MIB.addMemOperand(MF.getMachineMemOperand(
          MachinePointerInfo::getFixedStack(MF, RPI.FrameIdx + 1),
          MachineMemOperand::MOLoad, 8, 8));
    }
    MIB.addReg(Reg1, getDefRegState(true))
        .addReg(AArch64::SP)
        .addImm(RPI.Offset) // [sp, #offset*8] where the factor*8 is implicit
        .setMIFlag(MachineInstr::FrameDestroy);
    MIB.addMemOperand(MF.getMachineMemOperand(
        MachinePointerInfo::getFixedStack(MF, RPI.FrameIdx),
        MachineMemOperand::MOLoad, 8, 8));
  }
  return true;
}

void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
                                                BitVector &SavedRegs,
                                                RegScavenger *RS) const {
  // All calls are tail calls in GHC calling conv, and functions have no
  // prologue/epilogue.
  if (MF.getFunction().getCallingConv() == CallingConv::GHC)
    return;

  TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
  const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
      MF.getSubtarget().getRegisterInfo());
  AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
  unsigned UnspilledCSGPR = AArch64::NoRegister;
  unsigned UnspilledCSGPRPaired = AArch64::NoRegister;

  MachineFrameInfo &MFI = MF.getFrameInfo();
  const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);

  unsigned BasePointerReg = RegInfo->hasBasePointer(MF)
                                ? RegInfo->getBaseRegister()
                                : (unsigned)AArch64::NoRegister;

  unsigned SpillEstimate = SavedRegs.count();
  for (unsigned i = 0; CSRegs[i]; ++i) {
    unsigned Reg = CSRegs[i];
    unsigned PairedReg = CSRegs[i ^ 1];
    if (Reg == BasePointerReg)
      SpillEstimate++;
    if (produceCompactUnwindFrame(MF) && !SavedRegs.test(PairedReg))
      SpillEstimate++;
  }
  SpillEstimate += 2; // Conservatively include FP+LR in the estimate
  unsigned StackEstimate = MFI.estimateStackSize(MF) + 8 * SpillEstimate;

  // The frame record needs to be created by saving the appropriate registers
  if (hasFP(MF) || windowsRequiresStackProbe(MF, StackEstimate)) {
    SavedRegs.set(AArch64::FP);
    SavedRegs.set(AArch64::LR);
  }

  unsigned ExtraCSSpill = 0;
  // Figure out which callee-saved registers to save/restore.
  for (unsigned i = 0; CSRegs[i]; ++i) {
    const unsigned Reg = CSRegs[i];

    // Add the base pointer register to SavedRegs if it is callee-save.
    if (Reg == BasePointerReg)
      SavedRegs.set(Reg);

    bool RegUsed = SavedRegs.test(Reg);
    unsigned PairedReg = CSRegs[i ^ 1];
    if (!RegUsed) {
      if (AArch64::GPR64RegClass.contains(Reg) &&
          !RegInfo->isReservedReg(MF, Reg)) {
        UnspilledCSGPR = Reg;
        UnspilledCSGPRPaired = PairedReg;
      }
      continue;
    }

    // MachO's compact unwind format relies on all registers being stored in
    // pairs.
    // FIXME: the usual format is actually better if unwinding isn't needed.
    if (produceCompactUnwindFrame(MF) && !SavedRegs.test(PairedReg)) {
      SavedRegs.set(PairedReg);
      if (AArch64::GPR64RegClass.contains(PairedReg) &&
          !RegInfo->isReservedReg(MF, PairedReg))
        ExtraCSSpill = PairedReg;
    }
  }

  DEBUG(dbgs() << "*** determineCalleeSaves\nUsed CSRs:";
        for (unsigned Reg : SavedRegs.set_bits())
          dbgs() << ' ' << printReg(Reg, RegInfo);
        dbgs() << "\n";);

  // If any callee-saved registers are used, the frame cannot be eliminated.
  unsigned NumRegsSpilled = SavedRegs.count();
  bool CanEliminateFrame = NumRegsSpilled == 0;

  // The CSR spill slots have not been allocated yet, so estimateStackSize
  // won't include them.
  unsigned CFSize = MFI.estimateStackSize(MF) + 8 * NumRegsSpilled;
  DEBUG(dbgs() << "Estimated stack frame size: " << CFSize << " bytes.\n");
  unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
  bool BigStack = (CFSize > EstimatedStackSizeLimit);
  if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
    AFI->setHasStackFrame(true);

  // Estimate if we might need to scavenge a register at some point in order
  // to materialize a stack offset. If so, either spill one additional
  // callee-saved register or reserve a special spill slot to facilitate
  // register scavenging. If we already spilled an extra callee-saved register
  // above to keep the number of spills even, we don't need to do anything else
  // here.
  if (BigStack) {
    if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
      DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
                   << " to get a scratch register.\n");
      SavedRegs.set(UnspilledCSGPR);
      // MachO's compact unwind format relies on all registers being stored in
      // pairs, so if we need to spill one extra for BigStack, then we need to
      // store the pair.
      if (produceCompactUnwindFrame(MF))
        SavedRegs.set(UnspilledCSGPRPaired);
      ExtraCSSpill = UnspilledCSGPRPaired;
      NumRegsSpilled = SavedRegs.count();
    }

    // If we didn't find an extra callee-saved register to spill, create
    // an emergency spill slot.
    if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
      const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
      const TargetRegisterClass &RC = AArch64::GPR64RegClass;
      unsigned Size = TRI->getSpillSize(RC);
      unsigned Align = TRI->getSpillAlignment(RC);
      int FI = MFI.CreateStackObject(Size, Align, false);
      RS->addScavengingFrameIndex(FI);
      DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
                   << " as the emergency spill slot.\n");
    }
  }

  // Round up to register pair alignment to avoid additional SP adjustment
  // instructions.
  AFI->setCalleeSavedStackSize(alignTo(8 * NumRegsSpilled, 16));
}

bool AArch64FrameLowering::enableStackSlotScavenging(
    const MachineFunction &MF) const {
  const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
  return AFI->hasCalleeSaveStackFreeSpace();
}