Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

//===----------------------- AMDGPUFrameLowering.cpp ----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//==-----------------------------------------------------------------------===//
//
// Interface to describe a layout of a stack frame on a AMDGPU target machine.
//
//===----------------------------------------------------------------------===//

#include "AMDGPUFrameLowering.h"

using namespace llvm;
AMDGPUFrameLowering::AMDGPUFrameLowering(StackDirection D, unsigned StackAl,
    int LAO, unsigned TransAl)
  : TargetFrameLowering(D, StackAl, LAO, TransAl) { }

AMDGPUFrameLowering::~AMDGPUFrameLowering() = default;

unsigned AMDGPUFrameLowering::getStackWidth(const MachineFunction &MF) const {
  // XXX: Hardcoding to 1 for now.
  //
  // I think the StackWidth should stored as metadata associated with the
  // MachineFunction.  This metadata can either be added by a frontend, or
  // calculated by a R600 specific LLVM IR pass.
  //
  // The StackWidth determines how stack objects are laid out in memory.
  // For a vector stack variable, like: int4 stack[2], the data will be stored
  // in the following ways depending on the StackWidth.
  //
  // StackWidth = 1:
  //
  // T0.X = stack[0].x
  // T1.X = stack[0].y
  // T2.X = stack[0].z
  // T3.X = stack[0].w
  // T4.X = stack[1].x
  // T5.X = stack[1].y
  // T6.X = stack[1].z
  // T7.X = stack[1].w
  //
  // StackWidth = 2:
  //
  // T0.X = stack[0].x
  // T0.Y = stack[0].y
  // T1.X = stack[0].z
  // T1.Y = stack[0].w
  // T2.X = stack[1].x
  // T2.Y = stack[1].y
  // T3.X = stack[1].z
  // T3.Y = stack[1].w
  //
  // StackWidth = 4:
  // T0.X = stack[0].x
  // T0.Y = stack[0].y
  // T0.Z = stack[0].z
  // T0.W = stack[0].w
  // T1.X = stack[1].x
  // T1.Y = stack[1].y
  // T1.Z = stack[1].z
  // T1.W = stack[1].w
  return 1;
}