Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
//==- HexagonPatterns.td - Target Description for Hexagon -*- tablegen -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

// Table of contents:
//     (0) Definitions
//     (1) Immediates
//     (2) Type casts
//     (3) Extend/truncate
//     (4) Logical
//     (5) Compare
//     (6) Select
//     (7) Insert/extract
//     (8) Shift/permute
//     (9) Arithmetic/bitwise
//    (10) Bit
//    (11) PIC
//    (12) Load
//    (13) Store
//    (14) Memop
//    (15) Call
//    (16) Branch
//    (17) Misc

// Guidelines (in no particular order):
// 1. Avoid relying on pattern ordering to give preference to one pattern
//    over another, prefer using AddedComplexity instead. The reason for
//    this is to avoid unintended conseqeuences (caused by altering the
//    order) when making changes. The current order of patterns in this
//    file obviously does play some role, but none of the ordering was
//    deliberately chosen (other than to create a logical structure of
//    this file). When making changes, adding AddedComplexity to existing
//    patterns may be needed.
// 2. Maintain the logical structure of the file, try to put new patterns
//    in designated sections.
// 3. Do not use A2_combinew instruction directly, use Combinew fragment
//    instead. It uses REG_SEQUENCE, which is more amenable to optimizations.
// 4. Most selection macros are based on PatFrags. For DAGs that involve
//    SDNodes, use pf1/pf2 to convert them to PatFrags. Use common frags
//    whenever possible (see the Definitions section). When adding new
//    macro, try to make is general to enable reuse across sections.
// 5. Compound instructions (e.g. Rx+Rs*Rt) are generated under the condition
//    that the nested operation has only one use. Having it separated in case
//    of multiple uses avoids duplication of (processor) work.
// 6. The v4 vector instructions (64-bit) are treated as core instructions,
//    for example, A2_vaddh is in the "arithmetic" section with A2_add.
// 7. When adding a pattern for an instruction with a constant-extendable
//    operand, allow all possible kinds of inputs for the immediate value
//    (see AnyImm/anyimm and their variants in the Definitions section).


// --(0) Definitions -----------------------------------------------------
//

// This complex pattern exists only to create a machine instruction operand
// of type "frame index". There doesn't seem to be a way to do that directly
// in the patterns.
def AddrFI: ComplexPattern<i32, 1, "SelectAddrFI", [frameindex], []>;

// These complex patterns are not strictly necessary, since global address
// folding will happen during DAG combining. For distinguishing between GA
// and GP, pat frags with HexagonCONST32 and HexagonCONST32_GP can be used.
def AddrGA: ComplexPattern<i32, 1, "SelectAddrGA", [], []>;
def AddrGP: ComplexPattern<i32, 1, "SelectAddrGP", [], []>;
def AnyImm: ComplexPattern<i32, 1, "SelectAnyImm", [], []>;
def AnyInt: ComplexPattern<i32, 1, "SelectAnyInt", [], []>;

// Global address or a constant being a multiple of 2^n.
def AnyImm0: ComplexPattern<i32, 1, "SelectAnyImm0", [], []>;
def AnyImm1: ComplexPattern<i32, 1, "SelectAnyImm1", [], []>;
def AnyImm2: ComplexPattern<i32, 1, "SelectAnyImm2", [], []>;
def AnyImm3: ComplexPattern<i32, 1, "SelectAnyImm3", [], []>;


// Type helper frags.
def V2I1:   PatLeaf<(v2i1    PredRegs:$R)>;
def V4I1:   PatLeaf<(v4i1    PredRegs:$R)>;
def V8I1:   PatLeaf<(v8i1    PredRegs:$R)>;
def V4I8:   PatLeaf<(v4i8    IntRegs:$R)>;
def V2I16:  PatLeaf<(v2i16   IntRegs:$R)>;

def V8I8:   PatLeaf<(v8i8    DoubleRegs:$R)>;
def V4I16:  PatLeaf<(v4i16   DoubleRegs:$R)>;
def V2I32:  PatLeaf<(v2i32   DoubleRegs:$R)>;

def HQ8:    PatLeaf<(VecQ8   HvxQR:$R)>;
def HQ16:   PatLeaf<(VecQ16  HvxQR:$R)>;
def HQ32:   PatLeaf<(VecQ32  HvxQR:$R)>;

def HVI8:   PatLeaf<(VecI8   HvxVR:$R)>;
def HVI16:  PatLeaf<(VecI16  HvxVR:$R)>;
def HVI32:  PatLeaf<(VecI32  HvxVR:$R)>;

def HWI8:   PatLeaf<(VecPI8  HvxWR:$R)>;
def HWI16:  PatLeaf<(VecPI16 HvxWR:$R)>;
def HWI32:  PatLeaf<(VecPI32 HvxWR:$R)>;

// Pattern fragments to extract the low and high subregisters from a
// 64-bit value.
def LoReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_lo)>;
def HiReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_hi)>;

def IsOrAdd: PatFrag<(ops node:$A, node:$B), (or node:$A, node:$B), [{
  return isOrEquivalentToAdd(N);
}]>;

def IsVecOff : PatLeaf<(i32 imm), [{
  int32_t V = N->getSExtValue();
  int32_t VecSize = HRI->getSpillSize(Hexagon::HvxVRRegClass);
  assert(isPowerOf2_32(VecSize));
  if ((uint32_t(V) & (uint32_t(VecSize)-1)) != 0)
    return false;
  int32_t L = Log2_32(VecSize);
  return isInt<4>(V >> L);
}]>;

def IsPow2_32: PatLeaf<(i32 imm), [{
  uint32_t V = N->getZExtValue();
  return isPowerOf2_32(V);
}]>;

def IsPow2_64: PatLeaf<(i64 imm), [{
  uint64_t V = N->getZExtValue();
  return isPowerOf2_64(V);
}]>;

def IsNPow2_32: PatLeaf<(i32 imm), [{
  uint32_t NV = ~N->getZExtValue();
  return isPowerOf2_32(NV);
}]>;

def IsPow2_64L: PatLeaf<(i64 imm), [{
  uint64_t V = N->getZExtValue();
  return isPowerOf2_64(V) && Log2_64(V) < 32;
}]>;

def IsPow2_64H: PatLeaf<(i64 imm), [{
  uint64_t V = N->getZExtValue();
  return isPowerOf2_64(V) && Log2_64(V) >= 32;
}]>;

def IsNPow2_64L: PatLeaf<(i64 imm), [{
  uint64_t NV = ~N->getZExtValue();
  return isPowerOf2_64(NV) && Log2_64(NV) < 32;
}]>;

def IsNPow2_64H: PatLeaf<(i64 imm), [{
  uint64_t NV = ~N->getZExtValue();
  return isPowerOf2_64(NV) && Log2_64(NV) >= 32;
}]>;

class IsUGT<int Width, int Arg>: PatLeaf<(i32 imm),
  "uint64_t V = N->getZExtValue();" #
  "return isUInt<" # Width # ">(V) && V > " # Arg # ";"
>;

def SDEC1: SDNodeXForm<imm, [{
  int32_t V = N->getSExtValue();
  return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32);
}]>;

def UDEC1: SDNodeXForm<imm, [{
  uint32_t V = N->getZExtValue();
  assert(V >= 1);
  return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32);
}]>;

def UDEC32: SDNodeXForm<imm, [{
  uint32_t V = N->getZExtValue();
  assert(V >= 32);
  return CurDAG->getTargetConstant(V-32, SDLoc(N), MVT::i32);
}]>;

def Log2_32: SDNodeXForm<imm, [{
  uint32_t V = N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
}]>;

def Log2_64: SDNodeXForm<imm, [{
  uint64_t V = N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_64(V), SDLoc(N), MVT::i32);
}]>;

def LogN2_32: SDNodeXForm<imm, [{
  uint32_t NV = ~N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
}]>;

def LogN2_64: SDNodeXForm<imm, [{
  uint64_t NV = ~N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_64(NV), SDLoc(N), MVT::i32);
}]>;

def NegImm8: SDNodeXForm<imm, [{
  int8_t NV = -N->getSExtValue();
  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
}]>;

def NegImm16: SDNodeXForm<imm, [{
  int16_t NV = -N->getSExtValue();
  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
}]>;

def NegImm32: SDNodeXForm<imm, [{
  int32_t NV = -N->getSExtValue();
  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
}]>;


// Helpers for type promotions/contractions.
def I1toI32:  OutPatFrag<(ops node:$Rs), (C2_muxii (i1 $Rs), 1, 0)>;
def I32toI1:  OutPatFrag<(ops node:$Rs), (i1 (C2_tfrrp (i32 $Rs)))>;
def ToZext64: OutPatFrag<(ops node:$Rs), (i64 (A4_combineir 0, (i32 $Rs)))>;
def ToSext64: OutPatFrag<(ops node:$Rs), (i64 (A2_sxtw (i32 $Rs)))>;

def Combinew: OutPatFrag<(ops node:$Rs, node:$Rt),
  (REG_SEQUENCE DoubleRegs, $Rs, isub_hi, $Rt, isub_lo)>;

def addrga: PatLeaf<(i32 AddrGA:$Addr)>;
def addrgp: PatLeaf<(i32 AddrGP:$Addr)>;
def anyimm: PatLeaf<(i32 AnyImm:$Imm)>;
def anyint: PatLeaf<(i32 AnyInt:$Imm)>;

// Global address or an aligned constant.
def anyimm0: PatLeaf<(i32 AnyImm0:$Addr)>;
def anyimm1: PatLeaf<(i32 AnyImm1:$Addr)>;
def anyimm2: PatLeaf<(i32 AnyImm2:$Addr)>;
def anyimm3: PatLeaf<(i32 AnyImm3:$Addr)>;

def f32ImmPred : PatLeaf<(f32 fpimm:$F)>;
def f64ImmPred : PatLeaf<(f64 fpimm:$F)>;

// This complex pattern is really only to detect various forms of
// sign-extension i32->i64. The selected value will be of type i64
// whose low word is the value being extended. The high word is
// unspecified.
def Usxtw:  ComplexPattern<i64, 1, "DetectUseSxtw", [], []>;

def Aext64: PatFrag<(ops node:$Rs), (i64 (anyext node:$Rs))>;
def Zext64: PatFrag<(ops node:$Rs), (i64 (zext node:$Rs))>;
def Sext64: PatLeaf<(i64 Usxtw:$Rs)>;

def: Pat<(IsOrAdd (i32 AddrFI:$Rs), s32_0ImmPred:$off),
         (PS_fi (i32 AddrFI:$Rs), imm:$off)>;


def alignedload: PatFrag<(ops node:$a), (load $a), [{
  return isAlignedMemNode(dyn_cast<MemSDNode>(N));
}]>;

def unalignedload: PatFrag<(ops node:$a), (load $a), [{
  return !isAlignedMemNode(dyn_cast<MemSDNode>(N));
}]>;

def alignedstore: PatFrag<(ops node:$v, node:$a), (store $v, $a), [{
  return isAlignedMemNode(dyn_cast<MemSDNode>(N));
}]>;

def unalignedstore: PatFrag<(ops node:$v, node:$a), (store $v, $a), [{
  return !isAlignedMemNode(dyn_cast<MemSDNode>(N));
}]>;


// Converters from unary/binary SDNode to PatFrag.
class pf1<SDNode Op> : PatFrag<(ops node:$a), (Op node:$a)>;
class pf2<SDNode Op> : PatFrag<(ops node:$a, node:$b), (Op node:$a, node:$b)>;

class Not2<PatFrag P>
  : PatFrag<(ops node:$A, node:$B), (P node:$A, (not node:$B))>;

class Su<PatFrag Op>
  : PatFrag<Op.Operands, Op.Fragment, [{ return hasOneUse(N); }],
            Op.OperandTransform>;

// Main selection macros.

class OpR_R_pat<InstHexagon MI, PatFrag Op, ValueType ResVT, PatFrag RegPred>
  : Pat<(ResVT (Op RegPred:$Rs)), (MI RegPred:$Rs)>;

class OpR_RI_pat<InstHexagon MI, PatFrag Op, ValueType ResType,
                 PatFrag RegPred, PatFrag ImmPred>
  : Pat<(ResType (Op RegPred:$Rs, ImmPred:$I)),
        (MI RegPred:$Rs, imm:$I)>;

class OpR_RR_pat<InstHexagon MI, PatFrag Op, ValueType ResType,
                 PatFrag RsPred, PatFrag RtPred = RsPred>
  : Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)),
        (MI RsPred:$Rs, RtPred:$Rt)>;

class AccRRI_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op,
                 PatFrag RegPred, PatFrag ImmPred>
  : Pat<(AccOp RegPred:$Rx, (Op RegPred:$Rs, ImmPred:$I)),
        (MI RegPred:$Rx, RegPred:$Rs, imm:$I)>;

class AccRRR_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op,
                 PatFrag RsPred, PatFrag RtPred>
  : Pat<(AccOp RsPred:$Rx, (Op RsPred:$Rs, RtPred:$Rt)),
        (MI RsPred:$Rx, RsPred:$Rs, RtPred:$Rt)>;

multiclass SelMinMax_pats<PatFrag CmpOp, PatFrag Val,
                          InstHexagon InstA, InstHexagon InstB> {
  def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$A, Val:$B),
           (InstA Val:$A, Val:$B)>;
  def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$B, Val:$A),
           (InstB Val:$A, Val:$B)>;
}


// Frags for commonly used SDNodes.
def Add: pf2<add>;    def And: pf2<and>;    def Sra: pf2<sra>;
def Sub: pf2<sub>;    def Or:  pf2<or>;     def Srl: pf2<srl>;
def Mul: pf2<mul>;    def Xor: pf2<xor>;    def Shl: pf2<shl>;


// --(1) Immediate -------------------------------------------------------
//

def SDTHexagonCONST32
  : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisPtrTy<0>]>;

def HexagonJT:          SDNode<"HexagonISD::JT",          SDTIntUnaryOp>;
def HexagonCP:          SDNode<"HexagonISD::CP",          SDTIntUnaryOp>;
def HexagonCONST32:     SDNode<"HexagonISD::CONST32",     SDTHexagonCONST32>;
def HexagonCONST32_GP:  SDNode<"HexagonISD::CONST32_GP",  SDTHexagonCONST32>;

def TruncI64ToI32: SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32);
}]>;

def: Pat<(s32_0ImmPred:$s16), (A2_tfrsi imm:$s16)>;
def: Pat<(s8_0Imm64Pred:$s8), (A2_tfrpi (TruncI64ToI32 $s8))>;

def: Pat<(HexagonCONST32    tglobaltlsaddr:$A), (A2_tfrsi imm:$A)>;
def: Pat<(HexagonCONST32    bbl:$A),            (A2_tfrsi imm:$A)>;
def: Pat<(HexagonCONST32    tglobaladdr:$A),    (A2_tfrsi imm:$A)>;
def: Pat<(HexagonCONST32_GP tblockaddress:$A),  (A2_tfrsi imm:$A)>;
def: Pat<(HexagonCONST32_GP tglobaladdr:$A),    (A2_tfrsi imm:$A)>;
def: Pat<(HexagonJT         tjumptable:$A),     (A2_tfrsi imm:$A)>;
def: Pat<(HexagonCP         tconstpool:$A),     (A2_tfrsi imm:$A)>;
// The HVX load patterns also match CP directly. Make sure that if
// the selection of this opcode changes, it's updated in all places.

def: Pat<(i1 0),        (PS_false)>;
def: Pat<(i1 1),        (PS_true)>;
def: Pat<(i64 imm:$v),  (CONST64 imm:$v)>;

def ftoi : SDNodeXForm<fpimm, [{
  APInt I = N->getValueAPF().bitcastToAPInt();
  return CurDAG->getTargetConstant(I.getZExtValue(), SDLoc(N),
                                   MVT::getIntegerVT(I.getBitWidth()));
}]>;

def: Pat<(f32ImmPred:$f), (A2_tfrsi (ftoi $f))>;
def: Pat<(f64ImmPred:$f), (CONST64  (ftoi $f))>;

def ToI32: OutPatFrag<(ops node:$V), (A2_tfrsi $V)>;

// --(2) Type cast -------------------------------------------------------
//

let Predicates = [HasV5T] in {
  def: OpR_R_pat<F2_conv_sf2df,      pf1<fpextend>,   f64, F32>;
  def: OpR_R_pat<F2_conv_df2sf,      pf1<fpround>,    f32, F64>;

  def: OpR_R_pat<F2_conv_w2sf,       pf1<sint_to_fp>, f32, I32>;
  def: OpR_R_pat<F2_conv_d2sf,       pf1<sint_to_fp>, f32, I64>;
  def: OpR_R_pat<F2_conv_w2df,       pf1<sint_to_fp>, f64, I32>;
  def: OpR_R_pat<F2_conv_d2df,       pf1<sint_to_fp>, f64, I64>;

  def: OpR_R_pat<F2_conv_uw2sf,      pf1<uint_to_fp>, f32, I32>;
  def: OpR_R_pat<F2_conv_ud2sf,      pf1<uint_to_fp>, f32, I64>;
  def: OpR_R_pat<F2_conv_uw2df,      pf1<uint_to_fp>, f64, I32>;
  def: OpR_R_pat<F2_conv_ud2df,      pf1<uint_to_fp>, f64, I64>;

  def: OpR_R_pat<F2_conv_sf2w_chop,  pf1<fp_to_sint>, i32, F32>;
  def: OpR_R_pat<F2_conv_df2w_chop,  pf1<fp_to_sint>, i32, F64>;
  def: OpR_R_pat<F2_conv_sf2d_chop,  pf1<fp_to_sint>, i64, F32>;
  def: OpR_R_pat<F2_conv_df2d_chop,  pf1<fp_to_sint>, i64, F64>;

  def: OpR_R_pat<F2_conv_sf2uw_chop, pf1<fp_to_uint>, i32, F32>;
  def: OpR_R_pat<F2_conv_df2uw_chop, pf1<fp_to_uint>, i32, F64>;
  def: OpR_R_pat<F2_conv_sf2ud_chop, pf1<fp_to_uint>, i64, F32>;
  def: OpR_R_pat<F2_conv_df2ud_chop, pf1<fp_to_uint>, i64, F64>;
}

// Bitcast is different than [fp|sint|uint]_to_[sint|uint|fp].
let Predicates = [HasV5T] in {
  def: Pat<(i32 (bitconvert F32:$v)), (I32:$v)>;
  def: Pat<(f32 (bitconvert I32:$v)), (F32:$v)>;
  def: Pat<(i64 (bitconvert F64:$v)), (I64:$v)>;
  def: Pat<(f64 (bitconvert I64:$v)), (F64:$v)>;
}

multiclass Cast_pat<ValueType Ta, ValueType Tb, RegisterClass RC> {
  def: Pat<(Tb (bitconvert (Ta RC:$Rs))), (Tb RC:$Rs)>;
  def: Pat<(Ta (bitconvert (Tb RC:$Rs))), (Ta RC:$Rs)>;
}

// Bit convert vector types to integers.
defm: Cast_pat<v4i8,  i32, IntRegs>;
defm: Cast_pat<v2i16, i32, IntRegs>;
defm: Cast_pat<v8i8,  i64, DoubleRegs>;
defm: Cast_pat<v4i16, i64, DoubleRegs>;
defm: Cast_pat<v2i32, i64, DoubleRegs>;


// --(3) Extend/truncate -------------------------------------------------
//

def: Pat<(sext_inreg I32:$Rs, i8),  (A2_sxtb I32:$Rs)>;
def: Pat<(sext_inreg I32:$Rs, i16), (A2_sxth I32:$Rs)>;
def: Pat<(sext_inreg I64:$Rs, i32), (A2_sxtw (LoReg $Rs))>;
def: Pat<(sext_inreg I64:$Rs, i16), (A2_sxtw (A2_sxth (LoReg $Rs)))>;
def: Pat<(sext_inreg I64:$Rs, i8),  (A2_sxtw (A2_sxtb (LoReg $Rs)))>;

def: Pat<(i64 (sext I1:$Pu)),
         (Combinew (C2_muxii PredRegs:$Pu, -1, 0),
                   (C2_muxii PredRegs:$Pu, -1, 0))>;

def: Pat<(i32 (sext I1:$Pu)), (C2_muxii I1:$Pu, -1, 0)>;
def: Pat<(i32 (zext I1:$Pu)), (C2_muxii I1:$Pu, 1, 0)>;
def: Pat<(i64 (zext I1:$Pu)), (ToZext64 (C2_muxii I1:$Pu, 1, 0))>;

def: Pat<(i64 (sext I32:$Rs)), (A2_sxtw I32:$Rs)>;
def: Pat<(Zext64 I32:$Rs),     (ToZext64 $Rs)>;
def: Pat<(Aext64 I32:$Rs),     (ToZext64 $Rs)>;

def: Pat<(i32 (trunc I64:$Rs)), (LoReg $Rs)>;
def: Pat<(i1 (trunc I64:$Rs)),  (C2_tfrrp (LoReg $Rs))>;

let AddedComplexity = 20 in {
  def: Pat<(and I32:$Rs, 255),   (A2_zxtb I32:$Rs)>;
  def: Pat<(and I32:$Rs, 65535), (A2_zxth I32:$Rs)>;
}

def: Pat<(i32 (anyext I1:$Pu)), (C2_muxii I1:$Pu, 1, 0)>;
def: Pat<(i64 (anyext I1:$Pu)), (ToZext64 (C2_muxii I1:$Pu, 1, 0))>;

def: Pat<(v4i16 (zext   V4I8:$Rs)),  (S2_vzxtbh V4I8:$Rs)>;
def: Pat<(v2i32 (zext   V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>;
def: Pat<(v4i16 (anyext V4I8:$Rs)),  (S2_vzxtbh V4I8:$Rs)>;
def: Pat<(v2i32 (anyext V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>;
def: Pat<(v4i16 (sext   V4I8:$Rs)),  (S2_vsxtbh V4I8:$Rs)>;
def: Pat<(v2i32 (sext   V2I16:$Rs)), (S2_vsxthw V2I16:$Rs)>;

def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i8)),
         (Combinew (A2_sxtb (HiReg $Rs)), (A2_sxtb (LoReg $Rs)))>;

def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i16)),
         (Combinew (A2_sxth (HiReg $Rs)), (A2_sxth (LoReg $Rs)))>;

// Truncate: from vector B copy all 'E'ven 'B'yte elements:
// A[0] = B[0];  A[1] = B[2];  A[2] = B[4];  A[3] = B[6];
def: Pat<(v4i8 (trunc V4I16:$Rs)),
         (S2_vtrunehb V4I16:$Rs)>;

// Truncate: from vector B copy all 'O'dd 'B'yte elements:
// A[0] = B[1];  A[1] = B[3];  A[2] = B[5];  A[3] = B[7];
// S2_vtrunohb

// Truncate: from vectors B and C copy all 'E'ven 'H'alf-word elements:
// A[0] = B[0];  A[1] = B[2];  A[2] = C[0];  A[3] = C[2];
// S2_vtruneh

def: Pat<(v2i16 (trunc V2I32:$Rs)),
         (A2_combine_ll (HiReg $Rs), (LoReg $Rs))>;


// --(4) Logical ---------------------------------------------------------
//

def: Pat<(not I1:$Ps),      (C2_not I1:$Ps)>;
def: Pat<(add I1:$Ps, -1),  (C2_not I1:$Ps)>;

def: OpR_RR_pat<C2_and,   And,       i1, I1>;
def: OpR_RR_pat<C2_or,    Or,        i1, I1>;
def: OpR_RR_pat<C2_xor,   Xor,       i1, I1>;
def: OpR_RR_pat<C2_andn,  Not2<And>, i1, I1>;
def: OpR_RR_pat<C2_orn,   Not2<Or>,  i1, I1>;

// op(Ps, op(Pt, Pu))
def: AccRRR_pat<C4_and_and,   And, Su<And>,       I1, I1>;
def: AccRRR_pat<C4_and_or,    And, Su<Or>,        I1, I1>;
def: AccRRR_pat<C4_or_and,    Or,  Su<And>,       I1, I1>;
def: AccRRR_pat<C4_or_or,     Or,  Su<Or>,        I1, I1>;

// op(Ps, op(Pt, ~Pu))
def: AccRRR_pat<C4_and_andn,  And, Su<Not2<And>>, I1, I1>;
def: AccRRR_pat<C4_and_orn,   And, Su<Not2<Or>>,  I1, I1>;
def: AccRRR_pat<C4_or_andn,   Or,  Su<Not2<And>>, I1, I1>;
def: AccRRR_pat<C4_or_orn,    Or,  Su<Not2<Or>>,  I1, I1>;


// --(5) Compare ---------------------------------------------------------
//

// Avoid negated comparisons, i.e. those of form "Pd = !cmp(...)".
// These cannot form compounds (e.g. J4_cmpeqi_tp0_jump_nt).

def: OpR_RI_pat<C2_cmpeqi,    seteq,          i1, I32,  anyimm>;
def: OpR_RI_pat<C2_cmpgti,    setgt,          i1, I32,  anyimm>;
def: OpR_RI_pat<C2_cmpgtui,   setugt,         i1, I32,  anyimm>;

def: Pat<(i1 (setge I32:$Rs, s32_0ImmPred:$s10)),
         (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10))>;
def: Pat<(i1 (setuge I32:$Rs, u32_0ImmPred:$u9)),
         (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9))>;

def: Pat<(i1 (setlt I32:$Rs, s32_0ImmPred:$s10)),
         (C2_not (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10)))>;
def: Pat<(i1 (setult I32:$Rs, u32_0ImmPred:$u9)),
         (C2_not (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9)))>;

// Patfrag to convert the usual comparison patfrags (e.g. setlt) to ones
// that reverse the order of the operands.
class RevCmp<PatFrag F>
  : PatFrag<(ops node:$rhs, node:$lhs), F.Fragment, F.PredicateCode,
            F.OperandTransform>;

def: OpR_RR_pat<C2_cmpeq,     seteq,          i1,   I32>;
def: OpR_RR_pat<C2_cmpgt,     setgt,          i1,   I32>;
def: OpR_RR_pat<C2_cmpgtu,    setugt,         i1,   I32>;
def: OpR_RR_pat<C2_cmpgt,     RevCmp<setlt>,  i1,   I32>;
def: OpR_RR_pat<C2_cmpgtu,    RevCmp<setult>, i1,   I32>;
def: OpR_RR_pat<C2_cmpeqp,    seteq,          i1,   I64>;
def: OpR_RR_pat<C2_cmpgtp,    setgt,          i1,   I64>;
def: OpR_RR_pat<C2_cmpgtup,   setugt,         i1,   I64>;
def: OpR_RR_pat<C2_cmpgtp,    RevCmp<setlt>,  i1,   I64>;
def: OpR_RR_pat<C2_cmpgtup,   RevCmp<setult>, i1,   I64>;
def: OpR_RR_pat<A2_vcmpbeq,   seteq,          i1,   V8I8>;
def: OpR_RR_pat<A2_vcmpbeq,   seteq,          v8i1, V8I8>;
def: OpR_RR_pat<A4_vcmpbgt,   RevCmp<setlt>,  i1,   V8I8>;
def: OpR_RR_pat<A4_vcmpbgt,   RevCmp<setlt>,  v8i1, V8I8>;
def: OpR_RR_pat<A4_vcmpbgt,   setgt,          i1,   V8I8>;
def: OpR_RR_pat<A4_vcmpbgt,   setgt,          v8i1, V8I8>;
def: OpR_RR_pat<A2_vcmpbgtu,  RevCmp<setult>, i1,   V8I8>;
def: OpR_RR_pat<A2_vcmpbgtu,  RevCmp<setult>, v8i1, V8I8>;
def: OpR_RR_pat<A2_vcmpbgtu,  setugt,         i1,   V8I8>;
def: OpR_RR_pat<A2_vcmpbgtu,  setugt,         v8i1, V8I8>;
def: OpR_RR_pat<A2_vcmpheq,   seteq,          i1,   V4I16>;
def: OpR_RR_pat<A2_vcmpheq,   seteq,          v4i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgt,   RevCmp<setlt>,  i1,   V4I16>;
def: OpR_RR_pat<A2_vcmphgt,   RevCmp<setlt>,  v4i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgt,   setgt,          i1,   V4I16>;
def: OpR_RR_pat<A2_vcmphgt,   setgt,          v4i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgtu,  RevCmp<setult>, i1,   V4I16>;
def: OpR_RR_pat<A2_vcmphgtu,  RevCmp<setult>, v4i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgtu,  setugt,         i1,   V4I16>;
def: OpR_RR_pat<A2_vcmphgtu,  setugt,         v4i1, V4I16>;
def: OpR_RR_pat<A2_vcmpweq,   seteq,          i1,   V2I32>;
def: OpR_RR_pat<A2_vcmpweq,   seteq,          v2i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgt,   RevCmp<setlt>,  i1,   V2I32>;
def: OpR_RR_pat<A2_vcmpwgt,   RevCmp<setlt>,  v2i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgt,   setgt,          i1,   V2I32>;
def: OpR_RR_pat<A2_vcmpwgt,   setgt,          v2i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgtu,  RevCmp<setult>, i1,   V2I32>;
def: OpR_RR_pat<A2_vcmpwgtu,  RevCmp<setult>, v2i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgtu,  setugt,         i1,   V2I32>;
def: OpR_RR_pat<A2_vcmpwgtu,  setugt,         v2i1, V2I32>;

let Predicates = [HasV5T] in {
  def: OpR_RR_pat<F2_sfcmpeq,   seteq,          i1, F32>;
  def: OpR_RR_pat<F2_sfcmpgt,   setgt,          i1, F32>;
  def: OpR_RR_pat<F2_sfcmpge,   setge,          i1, F32>;
  def: OpR_RR_pat<F2_sfcmpeq,   setoeq,         i1, F32>;
  def: OpR_RR_pat<F2_sfcmpgt,   setogt,         i1, F32>;
  def: OpR_RR_pat<F2_sfcmpge,   setoge,         i1, F32>;
  def: OpR_RR_pat<F2_sfcmpgt,   RevCmp<setolt>, i1, F32>;
  def: OpR_RR_pat<F2_sfcmpge,   RevCmp<setole>, i1, F32>;
  def: OpR_RR_pat<F2_sfcmpgt,   RevCmp<setlt>,  i1, F32>;
  def: OpR_RR_pat<F2_sfcmpge,   RevCmp<setle>,  i1, F32>;
  def: OpR_RR_pat<F2_sfcmpuo,   setuo,          i1, F32>;

  def: OpR_RR_pat<F2_dfcmpeq,   seteq,          i1, F64>;
  def: OpR_RR_pat<F2_dfcmpgt,   setgt,          i1, F64>;
  def: OpR_RR_pat<F2_dfcmpge,   setge,          i1, F64>;
  def: OpR_RR_pat<F2_dfcmpeq,   setoeq,         i1, F64>;
  def: OpR_RR_pat<F2_dfcmpgt,   setogt,         i1, F64>;
  def: OpR_RR_pat<F2_dfcmpge,   setoge,         i1, F64>;
  def: OpR_RR_pat<F2_dfcmpgt,   RevCmp<setolt>, i1, F64>;
  def: OpR_RR_pat<F2_dfcmpge,   RevCmp<setole>, i1, F64>;
  def: OpR_RR_pat<F2_dfcmpgt,   RevCmp<setlt>,  i1, F64>;
  def: OpR_RR_pat<F2_dfcmpge,   RevCmp<setle>,  i1, F64>;
  def: OpR_RR_pat<F2_dfcmpuo,   setuo,          i1, F64>;
}

// Avoid C4_cmpneqi, C4_cmpltei, C4_cmplteui, since they cannot form compounds.

def: Pat<(i1 (setne I32:$Rs, anyimm:$u5)),
         (C2_not (C2_cmpeqi I32:$Rs, imm:$u5))>;
def: Pat<(i1 (setle I32:$Rs, anyimm:$u5)),
         (C2_not (C2_cmpgti I32:$Rs, imm:$u5))>;
def: Pat<(i1 (setule I32:$Rs, anyimm:$u5)),
         (C2_not (C2_cmpgtui I32:$Rs, imm:$u5))>;

def: Pat<(i1 (setne I32:$Rs, I32:$Rt)),
         (C2_not (C2_cmpeq I32:$Rs, I32:$Rt))>;
def: Pat<(i1 (setle I32:$Rs, I32:$Rt)),
         (C2_not (C2_cmpgt I32:$Rs, I32:$Rt))>;
def: Pat<(i1 (setule I32:$Rs, I32:$Rt)),
         (C2_not (C2_cmpgtu I32:$Rs, I32:$Rt))>;
def: Pat<(i1 (setge I32:$Rs, I32:$Rt)),
         (C2_not (C2_cmpgt I32:$Rt, I32:$Rs))>;
def: Pat<(i1 (setuge I32:$Rs, I32:$Rt)),
         (C2_not (C2_cmpgtu I32:$Rt, I32:$Rs))>;

def: Pat<(i1 (setle I64:$Rs, I64:$Rt)),
         (C2_not (C2_cmpgtp I64:$Rs, I64:$Rt))>;
def: Pat<(i1 (setne I64:$Rs, I64:$Rt)),
         (C2_not (C2_cmpeqp I64:$Rs, I64:$Rt))>;
def: Pat<(i1 (setge I64:$Rs, I64:$Rt)),
         (C2_not (C2_cmpgtp I64:$Rt, I64:$Rs))>;
def: Pat<(i1 (setuge I64:$Rs, I64:$Rt)),
         (C2_not (C2_cmpgtup I64:$Rt, I64:$Rs))>;
def: Pat<(i1 (setule I64:$Rs, I64:$Rt)),
         (C2_not (C2_cmpgtup I64:$Rs, I64:$Rt))>;

let AddedComplexity = 100 in {
  def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 255), 0)),
           (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt)>;
  def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 255), 0)),
           (C2_not (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt))>;
  def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 65535), 0)),
           (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt)>;
  def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 65535), 0)),
           (C2_not (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt))>;
}

// PatFrag for AsserZext which takes the original type as a parameter.
def SDTAssertZext: SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0,1>]>;
def AssertZextSD: SDNode<"ISD::AssertZext", SDTAssertZext>;
class AssertZext<ValueType T>: PatFrag<(ops node:$A), (AssertZextSD $A, T)>;

multiclass Cmpb_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
                      PatLeaf ImmPred, int Mask> {
  def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
           (MI I32:$Rs, imm:$I)>;
  def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
           (MI I32:$Rs, imm:$I)>;
}

multiclass CmpbN_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
                     PatLeaf ImmPred, int Mask> {
  def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
           (C2_not (MI I32:$Rs, imm:$I))>;
  def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
           (C2_not (MI I32:$Rs, imm:$I))>;
}

multiclass CmpbND_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
                      PatLeaf ImmPred, int Mask> {
  def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
           (C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>;
  def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
           (C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>;
}

let AddedComplexity = 200 in {
  defm: Cmpb_pat  <A4_cmpbeqi,  seteq,  AssertZext<i8>,  IsUGT<8,31>,  255>;
  defm: CmpbN_pat <A4_cmpbeqi,  setne,  AssertZext<i8>,  IsUGT<8,31>,  255>;
  defm: Cmpb_pat  <A4_cmpbgtui, setugt, AssertZext<i8>,  IsUGT<32,31>, 255>;
  defm: CmpbN_pat <A4_cmpbgtui, setule, AssertZext<i8>,  IsUGT<32,31>, 255>;
  defm: Cmpb_pat  <A4_cmphgtui, setugt, AssertZext<i16>, IsUGT<32,31>, 65535>;
  defm: CmpbN_pat <A4_cmphgtui, setule, AssertZext<i16>, IsUGT<32,31>, 65535>;
  defm: CmpbND_pat<A4_cmpbgtui, setult, AssertZext<i8>,  IsUGT<32,32>, 255>;
  defm: CmpbND_pat<A4_cmphgtui, setult, AssertZext<i16>, IsUGT<32,32>, 65535>;
}

def: Pat<(i32 (zext (i1 (seteq I32:$Rs, I32:$Rt)))),
         (A4_rcmpeq I32:$Rs, I32:$Rt)>;
def: Pat<(i32 (zext (i1 (setne I32:$Rs, I32:$Rt)))),
         (A4_rcmpneq I32:$Rs, I32:$Rt)>;
def: Pat<(i32 (zext (i1 (seteq I32:$Rs, anyimm:$s8)))),
         (A4_rcmpeqi I32:$Rs, imm:$s8)>;
def: Pat<(i32 (zext (i1 (setne I32:$Rs, anyimm:$s8)))),
         (A4_rcmpneqi I32:$Rs, imm:$s8)>;

def: Pat<(i1 (setne I1:$Ps, I1:$Pt)),
         (C2_xor I1:$Ps, I1:$Pt)>;

def: Pat<(i1 (seteq V4I8:$Rs, V4I8:$Rt)),
         (A2_vcmpbeq (ToZext64 $Rs), (ToZext64 $Rt))>;
def: Pat<(i1 (setgt V4I8:$Rs, V4I8:$Rt)),
         (A4_vcmpbgt (ToZext64 $Rs), (ToZext64 $Rt))>;
def: Pat<(i1 (setugt V4I8:$Rs, V4I8:$Rt)),
         (A2_vcmpbgtu (ToZext64 $Rs), (ToZext64 $Rt))>;

def: Pat<(i1 (seteq V2I16:$Rs, V2I16:$Rt)),
         (A2_vcmpheq (ToZext64 $Rs), (ToZext64 $Rt))>;
def: Pat<(i1 (setgt V2I16:$Rs, V2I16:$Rt)),
         (A2_vcmphgt (ToZext64 $Rs), (ToZext64 $Rt))>;
def: Pat<(i1 (setugt V2I16:$Rs, V2I16:$Rt)),
         (A2_vcmphgtu (ToZext64 $Rs), (ToZext64 $Rt))>;

def: Pat<(v2i1 (setne V2I32:$Rs, V2I32:$Rt)),
         (C2_not (v2i1 (A2_vcmpbeq V2I32:$Rs, V2I32:$Rt)))>;

// Floating-point comparisons with checks for ordered/unordered status.

class T3<InstHexagon MI1, InstHexagon MI2, InstHexagon MI3>
  : OutPatFrag<(ops node:$Rs, node:$Rt),
               (MI1 (MI2 $Rs, $Rt), (MI3 $Rs, $Rt))>;

class OpmR_RR_pat<PatFrag Output, PatFrag Op, ValueType ResType,
                  PatFrag RsPred, PatFrag RtPred = RsPred>
  : Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)),
        (Output RsPred:$Rs, RtPred:$Rt)>;

class Cmpuf<InstHexagon MI>:  T3<C2_or,  F2_sfcmpuo, MI>;
class Cmpud<InstHexagon MI>:  T3<C2_or,  F2_dfcmpuo, MI>;

class Cmpufn<InstHexagon MI>: T3<C2_orn, F2_sfcmpuo, MI>;
class Cmpudn<InstHexagon MI>: T3<C2_orn, F2_dfcmpuo, MI>;

let Predicates = [HasV5T] in {
  def: OpmR_RR_pat<Cmpuf<F2_sfcmpeq>,  setueq,         i1, F32>;
  def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>,  setuge,         i1, F32>;
  def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>,  setugt,         i1, F32>;
  def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>,  RevCmp<setule>, i1, F32>;
  def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>,  RevCmp<setult>, i1, F32>;
  def: OpmR_RR_pat<Cmpufn<F2_sfcmpeq>, setune,         i1, F32>;

  def: OpmR_RR_pat<Cmpud<F2_dfcmpeq>,  setueq,         i1, F64>;
  def: OpmR_RR_pat<Cmpud<F2_dfcmpge>,  setuge,         i1, F64>;
  def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>,  setugt,         i1, F64>;
  def: OpmR_RR_pat<Cmpud<F2_dfcmpge>,  RevCmp<setule>, i1, F64>;
  def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>,  RevCmp<setult>, i1, F64>;
  def: OpmR_RR_pat<Cmpudn<F2_dfcmpeq>, setune,         i1, F64>;
}

class Outn<InstHexagon MI>
  : OutPatFrag<(ops node:$Rs, node:$Rt),
               (C2_not (MI $Rs, $Rt))>;

let Predicates = [HasV5T] in {
  def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setone, i1, F32>;
  def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setne,  i1, F32>;

  def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setone, i1, F64>;
  def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setne,  i1, F64>;

  def: OpmR_RR_pat<Outn<F2_sfcmpuo>, seto,   i1, F32>;
  def: OpmR_RR_pat<Outn<F2_dfcmpuo>, seto,   i1, F64>;
}


// --(6) Select ----------------------------------------------------------
//

def: Pat<(select I1:$Pu, I32:$Rs, I32:$Rt),
         (C2_mux I1:$Pu, I32:$Rs, I32:$Rt)>;
def: Pat<(select I1:$Pu, anyimm:$s8, I32:$Rs),
         (C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>;
def: Pat<(select I1:$Pu, I32:$Rs, anyimm:$s8),
         (C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>;
def: Pat<(select I1:$Pu, anyimm:$s8, s8_0ImmPred:$S8),
         (C2_muxii I1:$Pu, imm:$s8, imm:$S8)>;

def: Pat<(select (not I1:$Pu), I32:$Rs, I32:$Rt),
         (C2_mux I1:$Pu, I32:$Rt, I32:$Rs)>;
def: Pat<(select (not I1:$Pu), s8_0ImmPred:$S8, anyimm:$s8),
         (C2_muxii I1:$Pu, imm:$s8, imm:$S8)>;
def: Pat<(select (not I1:$Pu), anyimm:$s8, I32:$Rs),
         (C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>;
def: Pat<(select (not I1:$Pu), I32:$Rs, anyimm:$s8),
         (C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>;

// Map from a 64-bit select to an emulated 64-bit mux.
// Hexagon does not support 64-bit MUXes; so emulate with combines.
def: Pat<(select I1:$Pu, I64:$Rs, I64:$Rt),
         (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
                   (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;

let Predicates = [HasV5T] in {
  def: Pat<(select I1:$Pu, F32:$Rs, f32ImmPred:$I),
           (C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>;
  def: Pat<(select I1:$Pu, f32ImmPred:$I, F32:$Rt),
           (C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>;
  def: Pat<(select I1:$Pu, F32:$Rs, F32:$Rt),
           (C2_mux I1:$Pu, F32:$Rs, F32:$Rt)>;
  def: Pat<(select I1:$Pu, F64:$Rs, F64:$Rt),
           (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
                     (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;

  def: Pat<(select (i1 (setult F32:$Ra, F32:$Rb)), F32:$Rs, F32:$Rt),
           (C2_mux (F2_sfcmpgt F32:$Rb, F32:$Ra), F32:$Rs, F32:$Rt)>;
  def: Pat<(select (i1 (setult F64:$Ra, F64:$Rb)), F64:$Rs, F64:$Rt),
           (C2_vmux (F2_dfcmpgt F64:$Rb, F64:$Ra), F64:$Rs, F64:$Rt)>;

  def: Pat<(select (not I1:$Pu), f32ImmPred:$I, F32:$Rs),
           (C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>;
  def: Pat<(select (not I1:$Pu), F32:$Rt, f32ImmPred:$I),
           (C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>;
}

def: Pat<(select I1:$Pu, V4I8:$Rs, V4I8:$Rt),
         (LoReg (C2_vmux I1:$Pu, (ToZext64 $Rs), (ToZext64 $Rt)))>;
def: Pat<(select I1:$Pu, V2I16:$Rs, V2I16:$Rt),
         (LoReg (C2_vmux I1:$Pu, (ToZext64 $Rs), (ToZext64 $Rt)))>;
def: Pat<(select I1:$Pu, V2I32:$Rs, V2I32:$Rt),
         (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
                   (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;

def: Pat<(vselect V8I1:$Pu, V8I8:$Rs, V8I8:$Rt),
         (C2_vmux V8I1:$Pu, V8I8:$Rs, V8I8:$Rt)>;
def: Pat<(vselect V4I1:$Pu, V4I16:$Rs, V4I16:$Rt),
         (C2_vmux V4I1:$Pu, V4I16:$Rs, V4I16:$Rt)>;
def: Pat<(vselect V2I1:$Pu, V2I32:$Rs, V2I32:$Rt),
         (C2_vmux V2I1:$Pu, V2I32:$Rs, V2I32:$Rt)>;


class HvxSel_pat<InstHexagon MI, PatFrag RegPred>
  : Pat<(select I1:$Pu, RegPred:$Vs, RegPred:$Vt),
        (MI I1:$Pu, RegPred:$Vs, RegPred:$Vt)>;

let Predicates = [HasV60T,UseHVX] in {
  def: HvxSel_pat<PS_vselect, HVI8>;
  def: HvxSel_pat<PS_vselect, HVI16>;
  def: HvxSel_pat<PS_vselect, HVI32>;
  def: HvxSel_pat<PS_wselect, HWI8>;
  def: HvxSel_pat<PS_wselect, HWI16>;
  def: HvxSel_pat<PS_wselect, HWI32>;
}

// From LegalizeDAG.cpp: (Pu ? Pv : Pw) <=> (Pu & Pv) | (!Pu & Pw).
def: Pat<(select I1:$Pu, I1:$Pv, I1:$Pw),
         (C2_or (C2_and  I1:$Pu, I1:$Pv),
                (C2_andn I1:$Pw, I1:$Pu))>;


def IsPosHalf : PatLeaf<(i32 IntRegs:$a), [{
  return isPositiveHalfWord(N);
}]>;

multiclass SelMinMax16_pats<PatFrag CmpOp, InstHexagon InstA,
                            InstHexagon InstB> {
  def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)),
                               IsPosHalf:$Rs, IsPosHalf:$Rt), i16),
           (InstA IntRegs:$Rs, IntRegs:$Rt)>;
  def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)),
                               IsPosHalf:$Rt, IsPosHalf:$Rs), i16),
           (InstB IntRegs:$Rs, IntRegs:$Rt)>;
}

let AddedComplexity = 200 in {
  defm: SelMinMax16_pats<setge,  A2_max,  A2_min>;
  defm: SelMinMax16_pats<setgt,  A2_max,  A2_min>;
  defm: SelMinMax16_pats<setle,  A2_min,  A2_max>;
  defm: SelMinMax16_pats<setlt,  A2_min,  A2_max>;
  defm: SelMinMax16_pats<setuge, A2_maxu, A2_minu>;
  defm: SelMinMax16_pats<setugt, A2_maxu, A2_minu>;
  defm: SelMinMax16_pats<setule, A2_minu, A2_maxu>;
  defm: SelMinMax16_pats<setult, A2_minu, A2_maxu>;
}

let AddedComplexity = 200 in {
  defm: SelMinMax_pats<setge,  I32, A2_max,   A2_min>;
  defm: SelMinMax_pats<setgt,  I32, A2_max,   A2_min>;
  defm: SelMinMax_pats<setle,  I32, A2_min,   A2_max>;
  defm: SelMinMax_pats<setlt,  I32, A2_min,   A2_max>;
  defm: SelMinMax_pats<setuge, I32, A2_maxu,  A2_minu>;
  defm: SelMinMax_pats<setugt, I32, A2_maxu,  A2_minu>;
  defm: SelMinMax_pats<setule, I32, A2_minu,  A2_maxu>;
  defm: SelMinMax_pats<setult, I32, A2_minu,  A2_maxu>;

  defm: SelMinMax_pats<setge,  I64, A2_maxp,  A2_minp>;
  defm: SelMinMax_pats<setgt,  I64, A2_maxp,  A2_minp>;
  defm: SelMinMax_pats<setle,  I64, A2_minp,  A2_maxp>;
  defm: SelMinMax_pats<setlt,  I64, A2_minp,  A2_maxp>;
  defm: SelMinMax_pats<setuge, I64, A2_maxup, A2_minup>;
  defm: SelMinMax_pats<setugt, I64, A2_maxup, A2_minup>;
  defm: SelMinMax_pats<setule, I64, A2_minup, A2_maxup>;
  defm: SelMinMax_pats<setult, I64, A2_minup, A2_maxup>;
}

let AddedComplexity = 100, Predicates = [HasV5T] in {
  defm: SelMinMax_pats<setolt, F32, F2_sfmin, F2_sfmax>;
  defm: SelMinMax_pats<setole, F32, F2_sfmin, F2_sfmax>;
  defm: SelMinMax_pats<setogt, F32, F2_sfmax, F2_sfmin>;
  defm: SelMinMax_pats<setoge, F32, F2_sfmax, F2_sfmin>;
}


// --(7) Insert/extract --------------------------------------------------
//

def SDTHexagonINSERT:
  SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
                       SDTCisInt<0>, SDTCisVT<3, i32>, SDTCisVT<4, i32>]>;
def SDTHexagonINSERTRP:
  SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
                       SDTCisInt<0>, SDTCisVT<3, i64>]>;

def HexagonINSERT:    SDNode<"HexagonISD::INSERT",   SDTHexagonINSERT>;
def HexagonINSERTRP:  SDNode<"HexagonISD::INSERTRP", SDTHexagonINSERTRP>;

def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, u5_0ImmPred:$u1, u5_0ImmPred:$u2),
         (S2_insert I32:$Rs, I32:$Rt, imm:$u1, imm:$u2)>;
def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, u6_0ImmPred:$u1, u6_0ImmPred:$u2),
         (S2_insertp I64:$Rs, I64:$Rt, imm:$u1, imm:$u2)>;
def: Pat<(HexagonINSERTRP I32:$Rs, I32:$Rt, I64:$Ru),
         (S2_insert_rp I32:$Rs, I32:$Rt, I64:$Ru)>;
def: Pat<(HexagonINSERTRP I64:$Rs, I64:$Rt, I64:$Ru),
         (S2_insertp_rp I64:$Rs, I64:$Rt, I64:$Ru)>;

def SDTHexagonEXTRACTU
  : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<1>,
                  SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
def SDTHexagonEXTRACTURP
  : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<1>,
                  SDTCisVT<2, i64>]>;

def HexagonEXTRACTU:   SDNode<"HexagonISD::EXTRACTU",   SDTHexagonEXTRACTU>;
def HexagonEXTRACTURP: SDNode<"HexagonISD::EXTRACTURP", SDTHexagonEXTRACTURP>;

def: Pat<(HexagonEXTRACTU I32:$Rs, u5_0ImmPred:$u5, u5_0ImmPred:$U5),
         (S2_extractu I32:$Rs, imm:$u5, imm:$U5)>;
def: Pat<(HexagonEXTRACTU I64:$Rs, u6_0ImmPred:$u6, u6_0ImmPred:$U6),
         (S2_extractup I64:$Rs, imm:$u6, imm:$U6)>;
def: Pat<(HexagonEXTRACTURP I32:$Rs, I64:$Rt),
         (S2_extractu_rp I32:$Rs, I64:$Rt)>;
def: Pat<(HexagonEXTRACTURP I64:$Rs, I64:$Rt),
         (S2_extractup_rp I64:$Rs, I64:$Rt)>;

def SDTHexagonVSPLAT:
  SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVT<1, i32>]>;

def HexagonVSPLAT: SDNode<"HexagonISD::VSPLAT", SDTHexagonVSPLAT>;

def: Pat<(v4i8  (HexagonVSPLAT I32:$Rs)), (S2_vsplatrb I32:$Rs)>;
def: Pat<(v4i16 (HexagonVSPLAT I32:$Rs)), (S2_vsplatrh I32:$Rs)>;
def: Pat<(v2i32 (HexagonVSPLAT s8_0ImmPred:$s8)),
         (A2_combineii imm:$s8, imm:$s8)>;
def: Pat<(v2i32 (HexagonVSPLAT I32:$Rs)), (Combinew I32:$Rs, I32:$Rs)>;


// --(8) Shift/permute ---------------------------------------------------
//

def SDTHexagonI64I32I32: SDTypeProfile<1, 2,
  [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
def SDTHexagonVCOMBINE: SDTypeProfile<1, 2, [SDTCisSameAs<1, 2>,
  SDTCisSubVecOfVec<1, 0>]>;
def SDTHexagonVPACK: SDTypeProfile<1, 2, [SDTCisSameAs<1, 2>, SDTCisVec<1>]>;

def HexagonCOMBINE:  SDNode<"HexagonISD::COMBINE",  SDTHexagonI64I32I32>;
def HexagonVCOMBINE: SDNode<"HexagonISD::VCOMBINE", SDTHexagonVCOMBINE>;
def HexagonVPACKE:   SDNode<"HexagonISD::VPACKE",   SDTHexagonVPACK>;
def HexagonVPACKO:   SDNode<"HexagonISD::VPACKO",   SDTHexagonVPACK>;

def: Pat<(HexagonCOMBINE I32:$Rs, I32:$Rt), (Combinew $Rs, $Rt)>;

// The complexity of the combines involving immediates should be greater
// than the complexity of the combine with two registers.
let AddedComplexity = 50 in {
  def: Pat<(HexagonCOMBINE I32:$Rs, anyimm:$s8),
           (A4_combineri IntRegs:$Rs, imm:$s8)>;
  def: Pat<(HexagonCOMBINE anyimm:$s8, I32:$Rs),
           (A4_combineir imm:$s8, IntRegs:$Rs)>;
}

// The complexity of the combine with two immediates should be greater than
// the complexity of a combine involving a register.
let AddedComplexity = 75 in {
  def: Pat<(HexagonCOMBINE s8_0ImmPred:$s8, anyimm:$u6),
           (A4_combineii imm:$s8, imm:$u6)>;
  def: Pat<(HexagonCOMBINE anyimm:$s8, s8_0ImmPred:$S8),
           (A2_combineii imm:$s8, imm:$S8)>;
}

def: Pat<(bswap I32:$Rs),  (A2_swiz I32:$Rs)>;
def: Pat<(bswap I64:$Rss), (Combinew (A2_swiz (LoReg $Rss)),
                                     (A2_swiz (HiReg $Rss)))>;

def: Pat<(shl s6_0ImmPred:$s6, I32:$Rt),  (S4_lsli imm:$s6, I32:$Rt)>;
def: Pat<(shl I32:$Rs, (i32 16)),         (A2_aslh I32:$Rs)>;
def: Pat<(sra I32:$Rs, (i32 16)),         (A2_asrh I32:$Rs)>;

def: OpR_RI_pat<S2_asr_i_r,  Sra, i32,   I32,   u5_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_r,  Srl, i32,   I32,   u5_0ImmPred>;
def: OpR_RI_pat<S2_asl_i_r,  Shl, i32,   I32,   u5_0ImmPred>;
def: OpR_RI_pat<S2_asr_i_p,  Sra, i64,   I64,   u6_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_p,  Srl, i64,   I64,   u6_0ImmPred>;
def: OpR_RI_pat<S2_asl_i_p,  Shl, i64,   I64,   u6_0ImmPred>;
def: OpR_RI_pat<S2_asr_i_vh, Sra, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_vh, Srl, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RI_pat<S2_asl_i_vh, Shl, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RI_pat<S2_asr_i_vh, Sra, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_vh, Srl, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_asl_i_vh, Shl, v2i32, V2I32, u5_0ImmPred>;

def: OpR_RR_pat<S2_asr_r_r, Sra, i32, I32, I32>;
def: OpR_RR_pat<S2_lsr_r_r, Srl, i32, I32, I32>;
def: OpR_RR_pat<S2_asl_r_r, Shl, i32, I32, I32>;
def: OpR_RR_pat<S2_asr_r_p, Sra, i64, I64, I32>;
def: OpR_RR_pat<S2_lsr_r_p, Srl, i64, I64, I32>;
def: OpR_RR_pat<S2_asl_r_p, Shl, i64, I64, I32>;


def: Pat<(sra (add (sra I32:$Rs, u5_0ImmPred:$u5), 1), (i32 1)),
         (S2_asr_i_r_rnd I32:$Rs, imm:$u5)>;
def: Pat<(sra (add (sra I64:$Rs, u6_0ImmPred:$u6), 1), (i32 1)),
         (S2_asr_i_p_rnd I64:$Rs, imm:$u6)>, Requires<[HasV5T]>;

// Prefer S2_addasl_rrri over S2_asl_i_r_acc.
let AddedComplexity = 120 in
def: Pat<(add I32:$Rt, (shl I32:$Rs, u3_0ImmPred:$u3)),
         (S2_addasl_rrri IntRegs:$Rt, IntRegs:$Rs, imm:$u3)>;

let AddedComplexity = 100 in {
  def: AccRRI_pat<S2_asr_i_r_acc,   Add, Su<Sra>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_asr_i_r_nac,   Sub, Su<Sra>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_asr_i_r_and,   And, Su<Sra>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_asr_i_r_or,    Or,  Su<Sra>, I32, u5_0ImmPred>;

  def: AccRRI_pat<S2_asr_i_p_acc,   Add, Su<Sra>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_asr_i_p_nac,   Sub, Su<Sra>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_asr_i_p_and,   And, Su<Sra>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_asr_i_p_or,    Or,  Su<Sra>, I64, u6_0ImmPred>;

  def: AccRRI_pat<S2_lsr_i_r_acc,   Add, Su<Srl>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_lsr_i_r_nac,   Sub, Su<Srl>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_lsr_i_r_and,   And, Su<Srl>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_lsr_i_r_or,    Or,  Su<Srl>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_lsr_i_r_xacc,  Xor, Su<Srl>, I32, u5_0ImmPred>;

  def: AccRRI_pat<S2_lsr_i_p_acc,   Add, Su<Srl>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_lsr_i_p_nac,   Sub, Su<Srl>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_lsr_i_p_and,   And, Su<Srl>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_lsr_i_p_or,    Or,  Su<Srl>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_lsr_i_p_xacc,  Xor, Su<Srl>, I64, u6_0ImmPred>;

  def: AccRRI_pat<S2_asl_i_r_acc,   Add, Su<Shl>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_asl_i_r_nac,   Sub, Su<Shl>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_asl_i_r_and,   And, Su<Shl>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_asl_i_r_or,    Or,  Su<Shl>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_asl_i_r_xacc,  Xor, Su<Shl>, I32, u5_0ImmPred>;

  def: AccRRI_pat<S2_asl_i_p_acc,   Add, Su<Shl>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_asl_i_p_nac,   Sub, Su<Shl>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_asl_i_p_and,   And, Su<Shl>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_asl_i_p_or,    Or,  Su<Shl>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_asl_i_p_xacc,  Xor, Su<Shl>, I64, u6_0ImmPred>;
}

let AddedComplexity = 100 in {
  def: AccRRR_pat<S2_asr_r_r_acc,   Add, Su<Sra>, I32, I32>;
  def: AccRRR_pat<S2_asr_r_r_nac,   Sub, Su<Sra>, I32, I32>;
  def: AccRRR_pat<S2_asr_r_r_and,   And, Su<Sra>, I32, I32>;
  def: AccRRR_pat<S2_asr_r_r_or,    Or,  Su<Sra>, I32, I32>;

  def: AccRRR_pat<S2_asr_r_p_acc,   Add, Su<Sra>, I64, I32>;
  def: AccRRR_pat<S2_asr_r_p_nac,   Sub, Su<Sra>, I64, I32>;
  def: AccRRR_pat<S2_asr_r_p_and,   And, Su<Sra>, I64, I32>;
  def: AccRRR_pat<S2_asr_r_p_or,    Or,  Su<Sra>, I64, I32>;
  def: AccRRR_pat<S2_asr_r_p_xor,   Xor, Su<Sra>, I64, I32>;

  def: AccRRR_pat<S2_lsr_r_r_acc,   Add, Su<Srl>, I32, I32>;
  def: AccRRR_pat<S2_lsr_r_r_nac,   Sub, Su<Srl>, I32, I32>;
  def: AccRRR_pat<S2_lsr_r_r_and,   And, Su<Srl>, I32, I32>;
  def: AccRRR_pat<S2_lsr_r_r_or,    Or,  Su<Srl>, I32, I32>;

  def: AccRRR_pat<S2_lsr_r_p_acc,   Add, Su<Srl>, I64, I32>;
  def: AccRRR_pat<S2_lsr_r_p_nac,   Sub, Su<Srl>, I64, I32>;
  def: AccRRR_pat<S2_lsr_r_p_and,   And, Su<Srl>, I64, I32>;
  def: AccRRR_pat<S2_lsr_r_p_or,    Or,  Su<Srl>, I64, I32>;
  def: AccRRR_pat<S2_lsr_r_p_xor,   Xor, Su<Srl>, I64, I32>;

  def: AccRRR_pat<S2_asl_r_r_acc,   Add, Su<Shl>, I32, I32>;
  def: AccRRR_pat<S2_asl_r_r_nac,   Sub, Su<Shl>, I32, I32>;
  def: AccRRR_pat<S2_asl_r_r_and,   And, Su<Shl>, I32, I32>;
  def: AccRRR_pat<S2_asl_r_r_or,    Or,  Su<Shl>, I32, I32>;

  def: AccRRR_pat<S2_asl_r_p_acc,   Add, Su<Shl>, I64, I32>;
  def: AccRRR_pat<S2_asl_r_p_nac,   Sub, Su<Shl>, I64, I32>;
  def: AccRRR_pat<S2_asl_r_p_and,   And, Su<Shl>, I64, I32>;
  def: AccRRR_pat<S2_asl_r_p_or,    Or,  Su<Shl>, I64, I32>;
  def: AccRRR_pat<S2_asl_r_p_xor,   Xor, Su<Shl>, I64, I32>;
}


class OpshIRI_pat<InstHexagon MI, PatFrag Op, PatFrag ShOp,
                  PatFrag RegPred, PatFrag ImmPred>
  : Pat<(Op anyimm:$u8, (ShOp RegPred:$Rs, ImmPred:$U5)),
        (MI anyimm:$u8, RegPred:$Rs, imm:$U5)>;

let AddedComplexity = 200 in {
  def: OpshIRI_pat<S4_addi_asl_ri,  Add, Su<Shl>, I32, u5_0ImmPred>;
  def: OpshIRI_pat<S4_addi_lsr_ri,  Add, Su<Srl>, I32, u5_0ImmPred>;
  def: OpshIRI_pat<S4_subi_asl_ri,  Sub, Su<Shl>, I32, u5_0ImmPred>;
  def: OpshIRI_pat<S4_subi_lsr_ri,  Sub, Su<Srl>, I32, u5_0ImmPred>;
  def: OpshIRI_pat<S4_andi_asl_ri,  And, Su<Shl>, I32, u5_0ImmPred>;
  def: OpshIRI_pat<S4_andi_lsr_ri,  And, Su<Srl>, I32, u5_0ImmPred>;
  def: OpshIRI_pat<S4_ori_asl_ri,   Or,  Su<Shl>, I32, u5_0ImmPred>;
  def: OpshIRI_pat<S4_ori_lsr_ri,   Or,  Su<Srl>, I32, u5_0ImmPred>;
}

// Prefer this pattern to S2_asl_i_p_or for the special case of joining
// two 32-bit words into a 64-bit word.
let AddedComplexity = 200 in
def: Pat<(or (shl (Aext64 I32:$a), (i32 32)), (Zext64 I32:$b)),
         (Combinew I32:$a, I32:$b)>;

def: Pat<(or (or (or (shl (Zext64 (and I32:$b, (i32 65535))), (i32 16)),
                     (Zext64 (and I32:$a, (i32 65535)))),
                 (shl (Aext64 (and I32:$c, (i32 65535))), (i32 32))),
             (shl (Aext64 I32:$d), (i32 48))),
         (Combinew (A2_combine_ll I32:$d, I32:$c),
                   (A2_combine_ll I32:$b, I32:$a))>;

def: Pat<(or (or (shl (or (shl (i32 (extloadi8 (add I32:$b, 3))),
                               (i32 8)),
                          (i32 (zextloadi8 (add I32:$b, 2)))),
                      (i32 16)),
                 (shl (i32 (zextloadi8 (add I32:$b, 1))), (i32 8))),
             (zextloadi8 I32:$b)),
         (A2_swiz (L2_loadri_io IntRegs:$b, 0))>;

let AddedComplexity = 200 in {
  def: Pat<(or (shl I32:$Rt, (i32 16)), (and I32:$Rs, (i32 65535))),
           (A2_combine_ll I32:$Rt, I32:$Rs)>;
  def: Pat<(or (shl I32:$Rt, (i32 16)), (srl I32:$Rs, (i32 16))),
           (A2_combine_lh I32:$Rt, I32:$Rs)>;
  def: Pat<(or (and I32:$Rt, (i32 268431360)), (and I32:$Rs, (i32 65535))),
           (A2_combine_hl I32:$Rt, I32:$Rs)>;
  def: Pat<(or (and I32:$Rt, (i32 268431360)), (srl I32:$Rs, (i32 16))),
           (A2_combine_hh I32:$Rt, I32:$Rs)>;
}

def SDTHexagonVShift
  : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisVec<0>, SDTCisVT<2, i32>]>;

def HexagonVASL: SDNode<"HexagonISD::VASL", SDTHexagonVShift>;
def HexagonVASR: SDNode<"HexagonISD::VASR", SDTHexagonVShift>;
def HexagonVLSR: SDNode<"HexagonISD::VLSR", SDTHexagonVShift>;

def: OpR_RI_pat<S2_asl_i_vw, pf2<HexagonVASL>, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_asl_i_vh, pf2<HexagonVASL>, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RI_pat<S2_asr_i_vw, pf2<HexagonVASR>, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_asr_i_vh, pf2<HexagonVASR>, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_vw, pf2<HexagonVLSR>, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_vh, pf2<HexagonVLSR>, v4i16, V4I16, u4_0ImmPred>;

def: OpR_RR_pat<S2_asl_r_vw, pf2<HexagonVASL>, v2i32, V2I32, I32>;
def: OpR_RR_pat<S2_asl_r_vh, pf2<HexagonVASL>, v4i16, V4I16, I32>;
def: OpR_RR_pat<S2_asr_r_vw, pf2<HexagonVASR>, v2i32, V2I32, I32>;
def: OpR_RR_pat<S2_asr_r_vh, pf2<HexagonVASR>, v4i16, V4I16, I32>;
def: OpR_RR_pat<S2_lsr_r_vw, pf2<HexagonVLSR>, v2i32, V2I32, I32>;
def: OpR_RR_pat<S2_lsr_r_vh, pf2<HexagonVLSR>, v4i16, V4I16, I32>;

def: Pat<(sra V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))),
         (S2_asr_i_vw V2I32:$b, imm:$c)>;
def: Pat<(srl V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))),
         (S2_lsr_i_vw V2I32:$b, imm:$c)>;
def: Pat<(shl V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))),
         (S2_asl_i_vw V2I32:$b, imm:$c)>;
def: Pat<(sra V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))),
         (S2_asr_i_vh V4I16:$b, imm:$c)>;
def: Pat<(srl V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))),
         (S2_lsr_i_vh V4I16:$b, imm:$c)>;
def: Pat<(shl V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))),
         (S2_asl_i_vh V4I16:$b, imm:$c)>;


// --(9) Arithmetic/bitwise ----------------------------------------------
//

def: Pat<(abs I32:$Rs), (A2_abs   I32:$Rs)>;
def: Pat<(not I32:$Rs), (A2_subri -1, I32:$Rs)>;
def: Pat<(not I64:$Rs), (A2_notp  I64:$Rs)>;

let Predicates = [HasV5T] in {
  def: Pat<(fabs F32:$Rs), (S2_clrbit_i    F32:$Rs, 31)>;
  def: Pat<(fneg F32:$Rs), (S2_togglebit_i F32:$Rs, 31)>;

  def: Pat<(fabs F64:$Rs),
           (Combinew (S2_clrbit_i (HiReg $Rs), 31),
                     (i32 (LoReg $Rs)))>;
  def: Pat<(fneg F64:$Rs),
           (Combinew (S2_togglebit_i (HiReg $Rs), 31),
                     (i32 (LoReg $Rs)))>;
}

let AddedComplexity = 50 in
def: Pat<(xor (add (sra I32:$Rs, (i32 31)),
                   I32:$Rs),
              (sra I32:$Rs, (i32 31))),
         (A2_abs I32:$Rs)>;


def: Pat<(add I32:$Rs, anyimm:$s16),   (A2_addi   I32:$Rs,  imm:$s16)>;
def: Pat<(or  I32:$Rs, anyimm:$s10),   (A2_orir   I32:$Rs,  imm:$s10)>;
def: Pat<(and I32:$Rs, anyimm:$s10),   (A2_andir  I32:$Rs,  imm:$s10)>;
def: Pat<(sub anyimm:$s10, I32:$Rs),   (A2_subri  imm:$s10, I32:$Rs)>;

def: OpR_RR_pat<A2_add,       Add,        i32,   I32>;
def: OpR_RR_pat<A2_sub,       Sub,        i32,   I32>;
def: OpR_RR_pat<A2_and,       And,        i32,   I32>;
def: OpR_RR_pat<A2_or,        Or,         i32,   I32>;
def: OpR_RR_pat<A2_xor,       Xor,        i32,   I32>;
def: OpR_RR_pat<A2_addp,      Add,        i64,   I64>;
def: OpR_RR_pat<A2_subp,      Sub,        i64,   I64>;
def: OpR_RR_pat<A2_andp,      And,        i64,   I64>;
def: OpR_RR_pat<A2_orp,       Or,         i64,   I64>;
def: OpR_RR_pat<A2_xorp,      Xor,        i64,   I64>;
def: OpR_RR_pat<A4_andnp,     Not2<And>,  i64,   I64>;
def: OpR_RR_pat<A4_ornp,      Not2<Or>,   i64,   I64>;

def: OpR_RR_pat<A2_svaddh,    Add,        v2i16, V2I16>;
def: OpR_RR_pat<A2_svsubh,    Sub,        v2i16, V2I16>;

def: OpR_RR_pat<A2_vaddub,    Add,        v8i8,  V8I8>;
def: OpR_RR_pat<A2_vaddh,     Add,        v4i16, V4I16>;
def: OpR_RR_pat<A2_vaddw,     Add,        v2i32, V2I32>;
def: OpR_RR_pat<A2_vsubub,    Sub,        v8i8,  V8I8>;
def: OpR_RR_pat<A2_vsubh,     Sub,        v4i16, V4I16>;
def: OpR_RR_pat<A2_vsubw,     Sub,        v2i32, V2I32>;

def: OpR_RR_pat<A2_and,       And,        v2i16, V2I16>;
def: OpR_RR_pat<A2_xor,       Xor,        v2i16, V2I16>;
def: OpR_RR_pat<A2_or,        Or,         v2i16, V2I16>;

def: OpR_RR_pat<A2_andp,      And,        v8i8,  V8I8>;
def: OpR_RR_pat<A2_andp,      And,        v4i16, V4I16>;
def: OpR_RR_pat<A2_andp,      And,        v2i32, V2I32>;
def: OpR_RR_pat<A2_orp,       Or,         v8i8,  V8I8>;
def: OpR_RR_pat<A2_orp,       Or,         v4i16, V4I16>;
def: OpR_RR_pat<A2_orp,       Or,         v2i32, V2I32>;
def: OpR_RR_pat<A2_xorp,      Xor,        v8i8,  V8I8>;
def: OpR_RR_pat<A2_xorp,      Xor,        v4i16, V4I16>;
def: OpR_RR_pat<A2_xorp,      Xor,        v2i32, V2I32>;

def: OpR_RR_pat<M2_mpyi,      Mul,        i32,   I32>;
def: OpR_RR_pat<M2_mpy_up,    pf2<mulhs>, i32,   I32>;
def: OpR_RR_pat<M2_mpyu_up,   pf2<mulhu>, i32,   I32>;
def: OpR_RI_pat<M2_mpysip,    Mul,        i32,   I32, u32_0ImmPred>;
def: OpR_RI_pat<M2_mpysmi,    Mul,        i32,   I32, s32_0ImmPred>;

// Arithmetic on predicates.
def: OpR_RR_pat<C2_xor,       Add,        i1,    I1>;
def: OpR_RR_pat<C2_xor,       Add,        v2i1,  V2I1>;
def: OpR_RR_pat<C2_xor,       Add,        v4i1,  V4I1>;
def: OpR_RR_pat<C2_xor,       Add,        v8i1,  V8I1>;
def: OpR_RR_pat<C2_xor,       Sub,        i1,    I1>;
def: OpR_RR_pat<C2_xor,       Sub,        v2i1,  V2I1>;
def: OpR_RR_pat<C2_xor,       Sub,        v4i1,  V4I1>;
def: OpR_RR_pat<C2_xor,       Sub,        v8i1,  V8I1>;
def: OpR_RR_pat<C2_and,       Mul,        i1,    I1>;
def: OpR_RR_pat<C2_and,       Mul,        v2i1,  V2I1>;
def: OpR_RR_pat<C2_and,       Mul,        v4i1,  V4I1>;
def: OpR_RR_pat<C2_and,       Mul,        v8i1,  V8I1>;

let Predicates = [HasV5T] in {
  def: OpR_RR_pat<F2_sfadd,     pf2<fadd>,    f32, F32>;
  def: OpR_RR_pat<F2_sfsub,     pf2<fsub>,    f32, F32>;
  def: OpR_RR_pat<F2_sfmpy,     pf2<fmul>,    f32, F32>;
  def: OpR_RR_pat<F2_sfmin,     pf2<fminnum>, f32, F32>;
  def: OpR_RR_pat<F2_sfmax,     pf2<fmaxnum>, f32, F32>;
}

// In expressions like a0*b0 + a1*b1 + ..., prefer to generate multiply-add,
// over add-add with individual multiplies as inputs.
let AddedComplexity = 10 in {
  def: AccRRI_pat<M2_macsip,    Add, Su<Mul>, I32, u32_0ImmPred>;
  def: AccRRI_pat<M2_macsin,    Sub, Su<Mul>, I32, u32_0ImmPred>;
  def: AccRRR_pat<M2_maci,      Add, Su<Mul>, I32, I32>;
}

def: AccRRI_pat<M2_naccii,    Sub, Su<Add>, I32, s32_0ImmPred>;
def: AccRRI_pat<M2_accii,     Add, Su<Add>, I32, s32_0ImmPred>;
def: AccRRR_pat<M2_acci,      Add, Su<Add>, I32, I32>;


def: Pat<(ineg (mul I32:$Rs, u8_0ImmPred:$u8)),
         (M2_mpysin IntRegs:$Rs, imm:$u8)>;

def n8_0ImmPred: PatLeaf<(i32 imm), [{
  int64_t V = N->getSExtValue();
  return -255 <= V && V <= 0;
}]>;

// Change the sign of the immediate for Rd=-mpyi(Rs,#u8)
def: Pat<(mul I32:$Rs, n8_0ImmPred:$n8),
         (M2_mpysin I32:$Rs, (NegImm8 imm:$n8))>;

def: Pat<(add Sext64:$Rs, I64:$Rt),
         (A2_addsp (LoReg Sext64:$Rs), I64:$Rt)>;

def: AccRRR_pat<M4_and_and,   And, Su<And>,       I32,  I32>;
def: AccRRR_pat<M4_and_or,    And, Su<Or>,        I32,  I32>;
def: AccRRR_pat<M4_and_xor,   And, Su<Xor>,       I32,  I32>;
def: AccRRR_pat<M4_or_and,    Or,  Su<And>,       I32,  I32>;
def: AccRRR_pat<M4_or_or,     Or,  Su<Or>,        I32,  I32>;
def: AccRRR_pat<M4_or_xor,    Or,  Su<Xor>,       I32,  I32>;
def: AccRRR_pat<M4_xor_and,   Xor, Su<And>,       I32,  I32>;
def: AccRRR_pat<M4_xor_or,    Xor, Su<Or>,        I32,  I32>;
def: AccRRR_pat<M2_xor_xacc,  Xor, Su<Xor>,       I32,  I32>;
def: AccRRR_pat<M4_xor_xacc,  Xor, Su<Xor>,       I64,  I64>;

// For dags like (or (and (not _), _), (shl _, _)) where the "or" with
// one argument matches the patterns below, and with the other argument
// matches S2_asl_r_r_or, etc, prefer the patterns below.
let AddedComplexity = 110 in {  // greater than S2_asl_r_r_and/or/xor.
  def: AccRRR_pat<M4_and_andn,  And, Su<Not2<And>>, I32,  I32>;
  def: AccRRR_pat<M4_or_andn,   Or,  Su<Not2<And>>, I32,  I32>;
  def: AccRRR_pat<M4_xor_andn,  Xor, Su<Not2<And>>, I32,  I32>;
}

// S4_addaddi and S4_subaddi don't have tied operands, so give them
// a bit of preference.
let AddedComplexity = 30 in {
  def: Pat<(add I32:$Rs, (Su<Add> I32:$Ru, anyimm:$s6)),
           (S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>;
  def: Pat<(add anyimm:$s6, (Su<Add> I32:$Rs, I32:$Ru)),
           (S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>;
  def: Pat<(add I32:$Rs, (Su<Sub> anyimm:$s6, I32:$Ru)),
           (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
  def: Pat<(sub (Su<Add> I32:$Rs, anyimm:$s6), I32:$Ru),
           (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
  def: Pat<(add (Su<Sub> I32:$Rs, I32:$Ru), anyimm:$s6),
           (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
}

def: Pat<(or I32:$Ru, (Su<And> I32:$Rx, anyimm:$s10)),
         (S4_or_andix IntRegs:$Ru, IntRegs:$Rx, imm:$s10)>;
def: Pat<(or I32:$Rx, (Su<And> I32:$Rs, anyimm:$s10)),
         (S4_or_andi IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>;
def: Pat<(or I32:$Rx, (Su<Or> I32:$Rs, anyimm:$s10)),
         (S4_or_ori IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>;


def: Pat<(i32 (trunc (sra (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))),
         (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
def: Pat<(i32 (trunc (srl (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))),
         (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;

def: Pat<(mul (Zext64 I32:$Rs), (Zext64 I32:$Rt)),
         (M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>;
def: Pat<(mul (Aext64 I32:$Rs), (Aext64 I32:$Rt)),
         (M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>;
def: Pat<(mul Sext64:$Rs, Sext64:$Rt),
         (M2_dpmpyss_s0 (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;

def: Pat<(add I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)),
         (M2_dpmpyss_acc_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
def: Pat<(sub I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)),
         (M2_dpmpyss_nac_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
def: Pat<(add I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))),
         (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
def: Pat<(add I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))),
         (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
def: Pat<(sub I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))),
         (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
def: Pat<(sub I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))),
         (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;

// Add halfword.
def: Pat<(sext_inreg (add I32:$Rt, I32:$Rs), i16),
         (A2_addh_l16_ll I32:$Rt, I32:$Rs)>;
def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)),
         (A2_addh_l16_hl I32:$Rt, I32:$Rs)>;
def: Pat<(shl (add I32:$Rt, I32:$Rs), (i32 16)),
         (A2_addh_h16_ll I32:$Rt, I32:$Rs)>;

// Subtract halfword.
def: Pat<(sext_inreg (sub I32:$Rt, I32:$Rs), i16),
         (A2_subh_l16_ll I32:$Rt, I32:$Rs)>;
def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)),
         (A2_addh_l16_hl I32:$Rt, I32:$Rs)>;
def: Pat<(shl (sub I32:$Rt, I32:$Rs), (i32 16)),
         (A2_subh_h16_ll I32:$Rt, I32:$Rs)>;

def: Pat<(mul I64:$Rss, I64:$Rtt),
         (Combinew
           (M2_maci (M2_maci (HiReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt))),
                             (LoReg $Rss),
                             (HiReg $Rtt)),
                    (LoReg $Rtt),
                    (HiReg $Rss)),
           (i32 (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)))))>;

def MulHU : OutPatFrag<(ops node:$Rss, node:$Rtt),
  (A2_addp
    (M2_dpmpyuu_acc_s0
      (S2_lsr_i_p
        (A2_addp
          (M2_dpmpyuu_acc_s0
            (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)), 32),
            (HiReg $Rss),
            (LoReg $Rtt)),
          (A4_combineir 0, (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt))))),
        32),
      (HiReg $Rss),
      (HiReg $Rtt)),
    (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt)), 32))>;

// Multiply 64-bit unsigned and use upper result.
def : Pat <(mulhu I64:$Rss, I64:$Rtt), (MulHU $Rss, $Rtt)>;

// Multiply 64-bit signed and use upper result.
//
// For two signed 64-bit integers A and B, let A' and B' denote A and B
// with the sign bit cleared. Then A = -2^63*s(A) + A', where s(A) is the
// sign bit of A (and identically for B). With this notation, the signed
// product A*B can be written as:
//   AB = (-2^63 s(A) + A') * (-2^63 s(B) + B')
//      = 2^126 s(A)s(B) - 2^63 [s(A)B'+s(B)A'] + A'B'
//      = 2^126 s(A)s(B) + 2^63 [s(A)B'+s(B)A'] + A'B' - 2*2^63 [s(A)B'+s(B)A']
//      = (unsigned product AB) - 2^64 [s(A)B'+s(B)A']

// Clear the sign bit in a 64-bit register.
def ClearSign : OutPatFrag<(ops node:$Rss),
  (Combinew (S2_clrbit_i (HiReg $Rss), 31), (i32 (LoReg $Rss)))>;

def : Pat <(mulhs I64:$Rss, I64:$Rtt),
  (A2_subp
    (MulHU $Rss, $Rtt),
    (A2_addp
      (A2_andp (S2_asr_i_p $Rss, 63), (ClearSign $Rtt)),
      (A2_andp (S2_asr_i_p $Rtt, 63), (ClearSign $Rss))))>;

// Prefer these instructions over M2_macsip/M2_macsin: the macsi* instructions
// will put the immediate addend into a register, while these instructions will
// use it directly. Such a construct does not appear in the middle of a gep,
// where M2_macsip would be preferable.
let AddedComplexity = 20 in {
  def: Pat<(add (Su<Mul> I32:$Rs, u6_0ImmPred:$U6), anyimm:$u6),
           (M4_mpyri_addi imm:$u6, IntRegs:$Rs, imm:$U6)>;
  def: Pat<(add (Su<Mul> I32:$Rs, I32:$Rt), anyimm:$u6),
           (M4_mpyrr_addi imm:$u6, IntRegs:$Rs, IntRegs:$Rt)>;
}

// Keep these instructions less preferable to M2_macsip/M2_macsin.
def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, u6_2ImmPred:$u6_2)),
         (M4_mpyri_addr_u2 IntRegs:$Ru, imm:$u6_2, IntRegs:$Rs)>;
def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, anyimm:$u6)),
         (M4_mpyri_addr IntRegs:$Ru, IntRegs:$Rs, imm:$u6)>;
def: Pat<(add I32:$Ru, (Su<Mul> I32:$Ry, I32:$Rs)),
         (M4_mpyrr_addr IntRegs:$Ru, IntRegs:$Ry, IntRegs:$Rs)>;


let Predicates = [HasV5T] in {
  def: Pat<(fma F32:$Rs, F32:$Rt, F32:$Rx),
           (F2_sffma F32:$Rx, F32:$Rs, F32:$Rt)>;
  def: Pat<(fma (fneg F32:$Rs), F32:$Rt, F32:$Rx),
           (F2_sffms F32:$Rx, F32:$Rs, F32:$Rt)>;
  def: Pat<(fma F32:$Rs, (fneg F32:$Rt), F32:$Rx),
           (F2_sffms F32:$Rx, F32:$Rs, F32:$Rt)>;
}


def: Pat<(mul V2I32:$Rs, V2I32:$Rt),
         (PS_vmulw V2I32:$Rs, V2I32:$Rt)>;
def: Pat<(add V2I32:$Rx, (mul V2I32:$Rs, V2I32:$Rt)),
         (PS_vmulw_acc V2I32:$Rx, V2I32:$Rs, V2I32:$Rt)>;

// Add/subtract two v4i8: Hexagon does not have an insn for this one, so
// we use the double add v8i8, and use only the low part of the result.
def: Pat<(add V4I8:$Rs, V4I8:$Rt),
         (LoReg (A2_vaddub (ToZext64 $Rs), (ToZext64 $Rt)))>;
def: Pat<(sub V4I8:$Rs, V4I8:$Rt),
         (LoReg (A2_vsubub (ToZext64 $Rs), (ToZext64 $Rt)))>;

// Use M2_vmpy2s_s0 for half-word vector multiply. It multiplies two
// half-words, and saturates the result to a 32-bit value, except the
// saturation never happens (it can only occur with scaling).
def: Pat<(v2i16 (mul V2I16:$Rs, V2I16:$Rt)),
         (LoReg (S2_vtrunewh (A2_combineii 0, 0),
                             (M2_vmpy2s_s0 V2I16:$Rs, V2I16:$Rt)))>;
def: Pat<(v4i16 (mul V4I16:$Rs, V4I16:$Rt)),
         (S2_vtrunewh (M2_vmpy2s_s0 (HiReg $Rs), (HiReg $Rt)),
                      (M2_vmpy2s_s0 (LoReg $Rs), (LoReg $Rt)))>;

// Multiplies two v4i8 vectors.
def: Pat<(v4i8 (mul V4I8:$Rs, V4I8:$Rt)),
         (S2_vtrunehb (M5_vmpybuu V4I8:$Rs, V4I8:$Rt))>,
     Requires<[HasV5T]>;

// Multiplies two v8i8 vectors.
def: Pat<(v8i8 (mul V8I8:$Rs, V8I8:$Rt)),
         (Combinew (S2_vtrunehb (M5_vmpybuu (HiReg $Rs), (HiReg $Rt))),
                   (S2_vtrunehb (M5_vmpybuu (LoReg $Rs), (LoReg $Rt))))>,
     Requires<[HasV5T]>;


// --(10) Bit ------------------------------------------------------------
//

// Count leading zeros.
def: Pat<(ctlz I32:$Rs),                      (S2_cl0 I32:$Rs)>;
def: Pat<(i32 (trunc (ctlz I64:$Rss))),       (S2_cl0p I64:$Rss)>;

// Count trailing zeros.
def: Pat<(cttz I32:$Rs),                      (S2_ct0 I32:$Rs)>;
def: Pat<(i32 (trunc (cttz I64:$Rss))),       (S2_ct0p I64:$Rss)>;

// Count leading ones.
def: Pat<(ctlz (not I32:$Rs)),                (S2_cl1 I32:$Rs)>;
def: Pat<(i32 (trunc (ctlz (not I64:$Rss)))), (S2_cl1p I64:$Rss)>;

// Count trailing ones.
def: Pat<(cttz (not I32:$Rs)),                (S2_ct1 I32:$Rs)>;
def: Pat<(i32 (trunc (cttz (not I64:$Rss)))), (S2_ct1p I64:$Rss)>;

// Define leading/trailing patterns that require zero-extensions to 64 bits.
def: Pat<(i64 (ctlz I64:$Rss)),               (ToZext64 (S2_cl0p I64:$Rss))>;
def: Pat<(i64 (cttz I64:$Rss)),               (ToZext64 (S2_ct0p I64:$Rss))>;
def: Pat<(i64 (ctlz (not I64:$Rss))),         (ToZext64 (S2_cl1p I64:$Rss))>;
def: Pat<(i64 (cttz (not I64:$Rss))),         (ToZext64 (S2_ct1p I64:$Rss))>;

def: Pat<(i64 (ctpop I64:$Rss)),  (ToZext64 (S5_popcountp I64:$Rss))>;
def: Pat<(i32 (ctpop I32:$Rs)),   (S5_popcountp (A4_combineir 0, I32:$Rs))>;

def: Pat<(bitreverse I32:$Rs),    (S2_brev I32:$Rs)>;
def: Pat<(bitreverse I64:$Rss),   (S2_brevp I64:$Rss)>;


let AddedComplexity = 20 in { // Complexity greater than and/or/xor
  def: Pat<(and I32:$Rs, IsNPow2_32:$V),
           (S2_clrbit_i IntRegs:$Rs, (LogN2_32 $V))>;
  def: Pat<(or I32:$Rs, IsPow2_32:$V),
           (S2_setbit_i IntRegs:$Rs, (Log2_32 $V))>;
  def: Pat<(xor I32:$Rs, IsPow2_32:$V),
           (S2_togglebit_i IntRegs:$Rs, (Log2_32 $V))>;

  def: Pat<(and I32:$Rs, (not (shl 1, I32:$Rt))),
           (S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>;
  def: Pat<(or I32:$Rs, (shl 1, I32:$Rt)),
           (S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>;
  def: Pat<(xor I32:$Rs, (shl 1, I32:$Rt)),
           (S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>;
}

// Clr/set/toggle bit for 64-bit values with immediate bit index.
let AddedComplexity = 20 in { // Complexity greater than and/or/xor
  def: Pat<(and I64:$Rss, IsNPow2_64L:$V),
           (Combinew (i32 (HiReg $Rss)),
                     (S2_clrbit_i (LoReg $Rss), (LogN2_64 $V)))>;
  def: Pat<(and I64:$Rss, IsNPow2_64H:$V),
           (Combinew (S2_clrbit_i (HiReg $Rss), (UDEC32 (i32 (LogN2_64 $V)))),
                     (i32 (LoReg $Rss)))>;

  def: Pat<(or I64:$Rss, IsPow2_64L:$V),
           (Combinew (i32 (HiReg $Rss)),
                     (S2_setbit_i (LoReg $Rss), (Log2_64 $V)))>;
  def: Pat<(or I64:$Rss, IsPow2_64H:$V),
           (Combinew (S2_setbit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
                     (i32 (LoReg $Rss)))>;

  def: Pat<(xor I64:$Rss, IsPow2_64L:$V),
           (Combinew (i32 (HiReg $Rss)),
                     (S2_togglebit_i (LoReg $Rss), (Log2_64 $V)))>;
  def: Pat<(xor I64:$Rss, IsPow2_64H:$V),
           (Combinew (S2_togglebit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
                     (i32 (LoReg $Rss)))>;
}

let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm.
  def: Pat<(i1 (setne (and (shl 1, u5_0ImmPred:$u5), I32:$Rs), 0)),
           (S2_tstbit_i IntRegs:$Rs, imm:$u5)>;
  def: Pat<(i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)),
           (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt)>;
  def: Pat<(i1 (trunc I32:$Rs)),
           (S2_tstbit_i IntRegs:$Rs, 0)>;
  def: Pat<(i1 (trunc I64:$Rs)),
           (S2_tstbit_i (LoReg DoubleRegs:$Rs), 0)>;
}

let AddedComplexity = 20 in { // Complexity greater than compare reg-imm.
  def: Pat<(i1 (seteq (and I32:$Rs, u6_0ImmPred:$u6), 0)),
           (C2_bitsclri IntRegs:$Rs, imm:$u6)>;
  def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), 0)),
           (C2_bitsclr IntRegs:$Rs, IntRegs:$Rt)>;
}

let AddedComplexity = 10 in   // Complexity greater than compare reg-reg.
def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), IntRegs:$Rt)),
         (C2_bitsset IntRegs:$Rs, IntRegs:$Rt)>;

let AddedComplexity = 20 in {   // Complexity greater than cmp reg-imm.
  def: Pat<(i1 (seteq (and (shl 1, u5_0ImmPred:$u5), I32:$Rs), 0)),
           (S4_ntstbit_i I32:$Rs, imm:$u5)>;
  def: Pat<(i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)),
           (S4_ntstbit_r I32:$Rs, I32:$Rt)>;
}

// Add extra complexity to prefer these instructions over bitsset/bitsclr.
// The reason is that tstbit/ntstbit can be folded into a compound instruction:
//   if ([!]tstbit(...)) jump ...
let AddedComplexity = 100 in
def: Pat<(i1 (setne (and I32:$Rs, (i32 IsPow2_32:$u5)), (i32 0))),
         (S2_tstbit_i I32:$Rs, (Log2_32 imm:$u5))>;

let AddedComplexity = 100 in
def: Pat<(i1 (seteq (and I32:$Rs, (i32 IsPow2_32:$u5)), (i32 0))),
         (S4_ntstbit_i I32:$Rs, (Log2_32 imm:$u5))>;

// Do not increase complexity of these patterns. In the DAG, "cmp i8" may be
// represented as a compare against "value & 0xFF", which is an exact match
// for cmpb (same for cmph). The patterns below do not contain any additional
// complexity that would make them preferable, and if they were actually used
// instead of cmpb/cmph, they would result in a compare against register that
// is loaded with the byte/half mask (i.e. 0xFF or 0xFFFF).
def: Pat<(i1 (setne (and I32:$Rs, u6_0ImmPred:$u6), 0)),
         (C4_nbitsclri I32:$Rs, imm:$u6)>;
def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), 0)),
         (C4_nbitsclr I32:$Rs, I32:$Rt)>;
def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), I32:$Rt)),
         (C4_nbitsset I32:$Rs, I32:$Rt)>;

// Special patterns to address certain cases where the "top-down" matching
// algorithm would cause suboptimal selection.

let AddedComplexity = 100 in {
  // Avoid A4_rcmp[n]eqi in these cases:
  def: Pat<(i32 (zext (i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
           (I1toI32 (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt))>;
  def: Pat<(i32 (zext (i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
           (I1toI32 (S4_ntstbit_r IntRegs:$Rs, IntRegs:$Rt))>;
}

// --(11) PIC ------------------------------------------------------------
//

def SDT_HexagonAtGot
  : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>;
def SDT_HexagonAtPcrel
  : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;

// AT_GOT address-of-GOT, address-of-global, offset-in-global
def HexagonAtGot       : SDNode<"HexagonISD::AT_GOT", SDT_HexagonAtGot>;
// AT_PCREL address-of-global
def HexagonAtPcrel     : SDNode<"HexagonISD::AT_PCREL", SDT_HexagonAtPcrel>;

def: Pat<(HexagonAtGot I32:$got, I32:$addr, (i32 0)),
         (L2_loadri_io I32:$got, imm:$addr)>;
def: Pat<(HexagonAtGot I32:$got, I32:$addr, s30_2ImmPred:$off),
         (A2_addi (L2_loadri_io I32:$got, imm:$addr), imm:$off)>;
def: Pat<(HexagonAtPcrel I32:$addr),
         (C4_addipc imm:$addr)>;

// The HVX load patterns also match AT_PCREL directly. Make sure that
// if the selection of this opcode changes, it's updated in all places.


// --(12) Load -----------------------------------------------------------
//

def extloadv2i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{
  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
}]>;
def extloadv4i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{
  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
}]>;

def zextloadv2i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
}]>;
def zextloadv4i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
}]>;

def sextloadv2i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
}]>;
def sextloadv4i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
}]>;

// Patterns to select load-indexed: Rs + Off.
// - frameindex [+ imm],
multiclass Loadxfi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
                       InstHexagon MI> {
  def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))),
           (VT (MI AddrFI:$fi, imm:$Off))>;
  def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))),
           (VT (MI AddrFI:$fi, imm:$Off))>;
  def: Pat<(VT (Load AddrFI:$fi)), (VT (MI AddrFI:$fi, 0))>;
}

// Patterns to select load-indexed: Rs + Off.
// - base reg [+ imm]
multiclass Loadxgi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
                       InstHexagon MI> {
  def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))),
           (VT (MI IntRegs:$Rs, imm:$Off))>;
  def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))),
           (VT (MI IntRegs:$Rs, imm:$Off))>;
  def: Pat<(VT (Load I32:$Rs)), (VT (MI IntRegs:$Rs, 0))>;
}

// Patterns to select load-indexed: Rs + Off. Combines Loadxfi + Loadxgi.
multiclass Loadxi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
                      InstHexagon MI> {
  defm: Loadxfi_pat<Load, VT, ImmPred, MI>;
  defm: Loadxgi_pat<Load, VT, ImmPred, MI>;
}

// Patterns to select load reg indexed: Rs + Off with a value modifier.
// - frameindex [+ imm]
multiclass Loadxfim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
                        PatLeaf ImmPred, InstHexagon MI> {
  def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))),
           (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>;
  def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))),
           (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>;
  def: Pat<(VT (Load AddrFI:$fi)), (VT (ValueMod (MI AddrFI:$fi, 0)))>;
}

// Patterns to select load reg indexed: Rs + Off with a value modifier.
// - base reg [+ imm]
multiclass Loadxgim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
                        PatLeaf ImmPred, InstHexagon MI> {
  def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))),
           (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>;
  def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))),
           (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>;
  def: Pat<(VT (Load I32:$Rs)), (VT (ValueMod (MI IntRegs:$Rs, 0)))>;
}

// Patterns to select load reg indexed: Rs + Off with a value modifier.
// Combines Loadxfim + Loadxgim.
multiclass Loadxim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
                       PatLeaf ImmPred, InstHexagon MI> {
  defm: Loadxfim_pat<Load, VT, ValueMod, ImmPred, MI>;
  defm: Loadxgim_pat<Load, VT, ValueMod, ImmPred, MI>;
}

// Pattern to select load reg reg-indexed: Rs + Rt<<u2.
class Loadxr_shl_pat<PatFrag Load, ValueType VT, InstHexagon MI>
  : Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))),
        (VT (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2))>;

// Pattern to select load reg reg-indexed: Rs + Rt<<0.
class Loadxr_add_pat<PatFrag Load, ValueType VT, InstHexagon MI>
  : Pat<(VT (Load (add I32:$Rs, I32:$Rt))),
        (VT (MI IntRegs:$Rs, IntRegs:$Rt, 0))>;

// Pattern to select load reg reg-indexed: Rs + Rt<<u2 with value modifier.
class Loadxrm_shl_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
                      InstHexagon MI>
  : Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))),
        (VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2)))>;

// Pattern to select load reg reg-indexed: Rs + Rt<<0 with value modifier.
class Loadxrm_add_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
                      InstHexagon MI>
  : Pat<(VT (Load (add I32:$Rs, I32:$Rt))),
        (VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, 0)))>;

// Pattern to select load long-offset reg-indexed: Addr + Rt<<u2.
// Don't match for u2==0, instead use reg+imm for those cases.
class Loadxu_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, InstHexagon MI>
  : Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))),
        (VT (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr))>;

class Loadxum_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, PatFrag ValueMod,
                  InstHexagon MI>
  : Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))),
        (VT (ValueMod (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr)))>;

// Pattern to select load absolute.
class Loada_pat<PatFrag Load, ValueType VT, PatFrag Addr, InstHexagon MI>
  : Pat<(VT (Load Addr:$addr)), (MI Addr:$addr)>;

// Pattern to select load absolute with value modifier.
class Loadam_pat<PatFrag Load, ValueType VT, PatFrag Addr, PatFrag ValueMod,
                 InstHexagon MI>
  : Pat<(VT (Load Addr:$addr)), (ValueMod (MI Addr:$addr))>;


let AddedComplexity = 20 in {
  defm: Loadxi_pat<extloadi1,       i32,   anyimm0, L2_loadrub_io>;
  defm: Loadxi_pat<extloadi8,       i32,   anyimm0, L2_loadrub_io>;
  defm: Loadxi_pat<extloadi16,      i32,   anyimm1, L2_loadruh_io>;
  defm: Loadxi_pat<extloadv2i8,     v2i16, anyimm1, L2_loadbzw2_io>;
  defm: Loadxi_pat<extloadv4i8,     v4i16, anyimm2, L2_loadbzw4_io>;
  defm: Loadxi_pat<sextloadi8,      i32,   anyimm0, L2_loadrb_io>;
  defm: Loadxi_pat<sextloadi16,     i32,   anyimm1, L2_loadrh_io>;
  defm: Loadxi_pat<sextloadv2i8,    v2i16, anyimm1, L2_loadbsw2_io>;
  defm: Loadxi_pat<sextloadv4i8,    v4i16, anyimm2, L2_loadbzw4_io>;
  defm: Loadxi_pat<zextloadi1,      i32,   anyimm0, L2_loadrub_io>;
  defm: Loadxi_pat<zextloadi8,      i32,   anyimm0, L2_loadrub_io>;
  defm: Loadxi_pat<zextloadi16,     i32,   anyimm1, L2_loadruh_io>;
  defm: Loadxi_pat<zextloadv2i8,    v2i16, anyimm1, L2_loadbzw2_io>;
  defm: Loadxi_pat<zextloadv4i8,    v4i16, anyimm2, L2_loadbzw4_io>;
  defm: Loadxi_pat<load,            i32,   anyimm2, L2_loadri_io>;
  defm: Loadxi_pat<load,            i64,   anyimm3, L2_loadrd_io>;
  defm: Loadxi_pat<load,            f32,   anyimm2, L2_loadri_io>;
  defm: Loadxi_pat<load,            f64,   anyimm3, L2_loadrd_io>;
  // No sextloadi1.

  defm: Loadxi_pat<atomic_load_8 ,  i32, anyimm0, L2_loadrub_io>;
  defm: Loadxi_pat<atomic_load_16,  i32, anyimm1, L2_loadruh_io>;
  defm: Loadxi_pat<atomic_load_32,  i32, anyimm2, L2_loadri_io>;
  defm: Loadxi_pat<atomic_load_64,  i64, anyimm3, L2_loadrd_io>;
}

let AddedComplexity = 30 in {
  defm: Loadxim_pat<extloadi1,    i64, ToZext64, anyimm0, L2_loadrub_io>;
  defm: Loadxim_pat<extloadi8,    i64, ToZext64, anyimm0, L2_loadrub_io>;
  defm: Loadxim_pat<extloadi16,   i64, ToZext64, anyimm1, L2_loadruh_io>;
  defm: Loadxim_pat<extloadi32,   i64, ToZext64, anyimm2, L2_loadri_io>;
  defm: Loadxim_pat<zextloadi1,   i64, ToZext64, anyimm0, L2_loadrub_io>;
  defm: Loadxim_pat<zextloadi8,   i64, ToZext64, anyimm0, L2_loadrub_io>;
  defm: Loadxim_pat<zextloadi16,  i64, ToZext64, anyimm1, L2_loadruh_io>;
  defm: Loadxim_pat<zextloadi32,  i64, ToZext64, anyimm2, L2_loadri_io>;
  defm: Loadxim_pat<sextloadi8,   i64, ToSext64, anyimm0, L2_loadrb_io>;
  defm: Loadxim_pat<sextloadi16,  i64, ToSext64, anyimm1, L2_loadrh_io>;
  defm: Loadxim_pat<sextloadi32,  i64, ToSext64, anyimm2, L2_loadri_io>;
}

let AddedComplexity  = 60 in {
  def: Loadxu_pat<extloadi8,    i32,   anyimm0, L4_loadrub_ur>;
  def: Loadxu_pat<extloadi16,   i32,   anyimm1, L4_loadruh_ur>;
  def: Loadxu_pat<extloadv2i8,  v2i16, anyimm1, L4_loadbzw2_ur>;
  def: Loadxu_pat<extloadv4i8,  v4i16, anyimm2, L4_loadbzw4_ur>;
  def: Loadxu_pat<sextloadi8,   i32,   anyimm0, L4_loadrb_ur>;
  def: Loadxu_pat<sextloadi16,  i32,   anyimm1, L4_loadrh_ur>;
  def: Loadxu_pat<sextloadv2i8, v2i16, anyimm1, L4_loadbsw2_ur>;
  def: Loadxu_pat<sextloadv4i8, v4i16, anyimm2, L4_loadbzw4_ur>;
  def: Loadxu_pat<zextloadi8,   i32,   anyimm0, L4_loadrub_ur>;
  def: Loadxu_pat<zextloadi16,  i32,   anyimm1, L4_loadruh_ur>;
  def: Loadxu_pat<zextloadv2i8, v2i16, anyimm1, L4_loadbzw2_ur>;
  def: Loadxu_pat<zextloadv4i8, v4i16, anyimm2, L4_loadbzw4_ur>;
  def: Loadxu_pat<load,         f32,   anyimm2, L4_loadri_ur>;
  def: Loadxu_pat<load,         f64,   anyimm3, L4_loadrd_ur>;
  def: Loadxu_pat<load,         i32,   anyimm2, L4_loadri_ur>;
  def: Loadxu_pat<load,         i64,   anyimm3, L4_loadrd_ur>;

  def: Loadxum_pat<sextloadi8,  i64, anyimm0, ToSext64, L4_loadrb_ur>;
  def: Loadxum_pat<zextloadi8,  i64, anyimm0, ToZext64, L4_loadrub_ur>;
  def: Loadxum_pat<extloadi8,   i64, anyimm0, ToZext64, L4_loadrub_ur>;
  def: Loadxum_pat<sextloadi16, i64, anyimm1, ToSext64, L4_loadrh_ur>;
  def: Loadxum_pat<zextloadi16, i64, anyimm1, ToZext64, L4_loadruh_ur>;
  def: Loadxum_pat<extloadi16,  i64, anyimm1, ToZext64, L4_loadruh_ur>;
  def: Loadxum_pat<sextloadi32, i64, anyimm2, ToSext64, L4_loadri_ur>;
  def: Loadxum_pat<zextloadi32, i64, anyimm2, ToZext64, L4_loadri_ur>;
  def: Loadxum_pat<extloadi32,  i64, anyimm2, ToZext64, L4_loadri_ur>;
}

let AddedComplexity = 40 in {
  def: Loadxr_shl_pat<extloadi8,     i32, L4_loadrub_rr>;
  def: Loadxr_shl_pat<zextloadi8,    i32, L4_loadrub_rr>;
  def: Loadxr_shl_pat<sextloadi8,    i32, L4_loadrb_rr>;
  def: Loadxr_shl_pat<extloadi16,    i32, L4_loadruh_rr>;
  def: Loadxr_shl_pat<zextloadi16,   i32, L4_loadruh_rr>;
  def: Loadxr_shl_pat<sextloadi16,   i32, L4_loadrh_rr>;
  def: Loadxr_shl_pat<load,          i32, L4_loadri_rr>;
  def: Loadxr_shl_pat<load,          i64, L4_loadrd_rr>;
  def: Loadxr_shl_pat<load,          f32, L4_loadri_rr>;
  def: Loadxr_shl_pat<load,          f64, L4_loadrd_rr>;
}

let AddedComplexity = 20 in {
  def: Loadxr_add_pat<extloadi8,     i32, L4_loadrub_rr>;
  def: Loadxr_add_pat<zextloadi8,    i32, L4_loadrub_rr>;
  def: Loadxr_add_pat<sextloadi8,    i32, L4_loadrb_rr>;
  def: Loadxr_add_pat<extloadi16,    i32, L4_loadruh_rr>;
  def: Loadxr_add_pat<zextloadi16,   i32, L4_loadruh_rr>;
  def: Loadxr_add_pat<sextloadi16,   i32, L4_loadrh_rr>;
  def: Loadxr_add_pat<load,          i32, L4_loadri_rr>;
  def: Loadxr_add_pat<load,          i64, L4_loadrd_rr>;
  def: Loadxr_add_pat<load,          f32, L4_loadri_rr>;
  def: Loadxr_add_pat<load,          f64, L4_loadrd_rr>;
}

let AddedComplexity = 40 in {
  def: Loadxrm_shl_pat<extloadi8,    i64, ToZext64, L4_loadrub_rr>;
  def: Loadxrm_shl_pat<zextloadi8,   i64, ToZext64, L4_loadrub_rr>;
  def: Loadxrm_shl_pat<sextloadi8,   i64, ToSext64, L4_loadrb_rr>;
  def: Loadxrm_shl_pat<extloadi16,   i64, ToZext64, L4_loadruh_rr>;
  def: Loadxrm_shl_pat<zextloadi16,  i64, ToZext64, L4_loadruh_rr>;
  def: Loadxrm_shl_pat<sextloadi16,  i64, ToSext64, L4_loadrh_rr>;
  def: Loadxrm_shl_pat<extloadi32,   i64, ToZext64, L4_loadri_rr>;
  def: Loadxrm_shl_pat<zextloadi32,  i64, ToZext64, L4_loadri_rr>;
  def: Loadxrm_shl_pat<sextloadi32,  i64, ToSext64, L4_loadri_rr>;
}

let AddedComplexity = 20 in {
  def: Loadxrm_add_pat<extloadi8,    i64, ToZext64, L4_loadrub_rr>;
  def: Loadxrm_add_pat<zextloadi8,   i64, ToZext64, L4_loadrub_rr>;
  def: Loadxrm_add_pat<sextloadi8,   i64, ToSext64, L4_loadrb_rr>;
  def: Loadxrm_add_pat<extloadi16,   i64, ToZext64, L4_loadruh_rr>;
  def: Loadxrm_add_pat<zextloadi16,  i64, ToZext64, L4_loadruh_rr>;
  def: Loadxrm_add_pat<sextloadi16,  i64, ToSext64, L4_loadrh_rr>;
  def: Loadxrm_add_pat<extloadi32,   i64, ToZext64, L4_loadri_rr>;
  def: Loadxrm_add_pat<zextloadi32,  i64, ToZext64, L4_loadri_rr>;
  def: Loadxrm_add_pat<sextloadi32,  i64, ToSext64, L4_loadri_rr>;
}

// Absolute address

let AddedComplexity  = 60 in {
  def: Loada_pat<zextloadi1,      i32, anyimm0, PS_loadrubabs>;
  def: Loada_pat<sextloadi8,      i32, anyimm0, PS_loadrbabs>;
  def: Loada_pat<extloadi8,       i32, anyimm0, PS_loadrubabs>;
  def: Loada_pat<zextloadi8,      i32, anyimm0, PS_loadrubabs>;
  def: Loada_pat<sextloadi16,     i32, anyimm1, PS_loadrhabs>;
  def: Loada_pat<extloadi16,      i32, anyimm1, PS_loadruhabs>;
  def: Loada_pat<zextloadi16,     i32, anyimm1, PS_loadruhabs>;
  def: Loada_pat<load,            i32, anyimm2, PS_loadriabs>;
  def: Loada_pat<load,            i64, anyimm3, PS_loadrdabs>;
  def: Loada_pat<load,            f32, anyimm2, PS_loadriabs>;
  def: Loada_pat<load,            f64, anyimm3, PS_loadrdabs>;

  def: Loada_pat<atomic_load_8,   i32, anyimm0, PS_loadrubabs>;
  def: Loada_pat<atomic_load_16,  i32, anyimm1, PS_loadruhabs>;
  def: Loada_pat<atomic_load_32,  i32, anyimm2, PS_loadriabs>;
  def: Loada_pat<atomic_load_64,  i64, anyimm3, PS_loadrdabs>;
}

let AddedComplexity  = 30 in {
  def: Loadam_pat<extloadi8,      i64, anyimm0, ToZext64, PS_loadrubabs>;
  def: Loadam_pat<sextloadi8,     i64, anyimm0, ToSext64, PS_loadrbabs>;
  def: Loadam_pat<zextloadi8,     i64, anyimm0, ToZext64, PS_loadrubabs>;
  def: Loadam_pat<extloadi16,     i64, anyimm1, ToZext64, PS_loadruhabs>;
  def: Loadam_pat<sextloadi16,    i64, anyimm1, ToSext64, PS_loadrhabs>;
  def: Loadam_pat<zextloadi16,    i64, anyimm1, ToZext64, PS_loadruhabs>;
  def: Loadam_pat<extloadi32,     i64, anyimm2, ToZext64, PS_loadriabs>;
  def: Loadam_pat<sextloadi32,    i64, anyimm2, ToSext64, PS_loadriabs>;
  def: Loadam_pat<zextloadi32,    i64, anyimm2, ToZext64, PS_loadriabs>;

  def: Loadam_pat<load,           i1,  anyimm0, I32toI1,  PS_loadrubabs>;
  def: Loadam_pat<zextloadi1,     i64, anyimm0, ToZext64, PS_loadrubabs>;
}

// GP-relative address

let AddedComplexity  = 100 in {
  def: Loada_pat<extloadi1,       i32, addrgp,  L2_loadrubgp>;
  def: Loada_pat<zextloadi1,      i32, addrgp,  L2_loadrubgp>;
  def: Loada_pat<extloadi8,       i32, addrgp,  L2_loadrubgp>;
  def: Loada_pat<sextloadi8,      i32, addrgp,  L2_loadrbgp>;
  def: Loada_pat<zextloadi8,      i32, addrgp,  L2_loadrubgp>;
  def: Loada_pat<extloadi16,      i32, addrgp,  L2_loadruhgp>;
  def: Loada_pat<sextloadi16,     i32, addrgp,  L2_loadrhgp>;
  def: Loada_pat<zextloadi16,     i32, addrgp,  L2_loadruhgp>;
  def: Loada_pat<load,            i32, addrgp,  L2_loadrigp>;
  def: Loada_pat<load,            i64, addrgp,  L2_loadrdgp>;
  def: Loada_pat<load,            f32, addrgp,  L2_loadrigp>;
  def: Loada_pat<load,            f64, addrgp,  L2_loadrdgp>;

  def: Loada_pat<atomic_load_8,   i32, addrgp,  L2_loadrubgp>;
  def: Loada_pat<atomic_load_16,  i32, addrgp,  L2_loadruhgp>;
  def: Loada_pat<atomic_load_32,  i32, addrgp,  L2_loadrigp>;
  def: Loada_pat<atomic_load_64,  i64, addrgp,  L2_loadrdgp>;
}

let AddedComplexity  = 70 in {
  def: Loadam_pat<extloadi8,      i64, addrgp,  ToZext64, L2_loadrubgp>;
  def: Loadam_pat<sextloadi8,     i64, addrgp,  ToSext64, L2_loadrbgp>;
  def: Loadam_pat<zextloadi8,     i64, addrgp,  ToZext64, L2_loadrubgp>;
  def: Loadam_pat<extloadi16,     i64, addrgp,  ToZext64, L2_loadruhgp>;
  def: Loadam_pat<sextloadi16,    i64, addrgp,  ToSext64, L2_loadrhgp>;
  def: Loadam_pat<zextloadi16,    i64, addrgp,  ToZext64, L2_loadruhgp>;
  def: Loadam_pat<extloadi32,     i64, addrgp,  ToZext64, L2_loadrigp>;
  def: Loadam_pat<sextloadi32,    i64, addrgp,  ToSext64, L2_loadrigp>;
  def: Loadam_pat<zextloadi32,    i64, addrgp,  ToZext64, L2_loadrigp>;

  def: Loadam_pat<load,           i1,  addrgp,  I32toI1,  L2_loadrubgp>;
  def: Loadam_pat<zextloadi1,     i64, addrgp,  ToZext64, L2_loadrubgp>;
}


// Sign-extending loads of i1 need to replicate the lowest bit throughout
// the 32-bit value. Since the loaded value can only be 0 or 1, 0-v should
// do the trick.
let AddedComplexity = 20 in
def: Pat<(i32 (sextloadi1 I32:$Rs)),
         (A2_subri 0, (L2_loadrub_io IntRegs:$Rs, 0))>;

// Patterns for loads of i1:
def: Pat<(i1 (load AddrFI:$fi)),
         (C2_tfrrp (L2_loadrub_io AddrFI:$fi, 0))>;
def: Pat<(i1 (load (add I32:$Rs, anyimm0:$Off))),
         (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, imm:$Off))>;
def: Pat<(i1 (load I32:$Rs)),
         (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, 0))>;

// HVX loads

multiclass HvxLd_pat<InstHexagon MI, PatFrag Load, ValueType VT,
                     PatFrag ImmPred> {
  def: Pat<(VT (Load I32:$Rt)),                   (MI I32:$Rt, 0)>;
  def: Pat<(VT (Load (add I32:$Rt, ImmPred:$s))), (MI I32:$Rt, imm:$s)>;
  // The HVX selection code for shuffles can generate vector constants.
  // Calling "Select" on the resulting loads from CP fails without these
  // patterns.
  def: Pat<(VT (Load (HexagonCP tconstpool:$A))), (MI (A2_tfrsi imm:$A), 0)>;
  def: Pat<(VT (Load (HexagonAtPcrel tconstpool:$A))),
           (MI (C4_addipc imm:$A), 0)>;
}


let Predicates = [UseHVX] in {
  multiclass HvxLdVs_pat<InstHexagon MI, PatFrag Load> {
    defm: HvxLd_pat<MI, Load, VecI8,  IsVecOff>;
    defm: HvxLd_pat<MI, Load, VecI16, IsVecOff>;
    defm: HvxLd_pat<MI, Load, VecI32, IsVecOff>;
  }
  defm: HvxLdVs_pat<V6_vL32b_nt_ai, alignednontemporalload>;
  defm: HvxLdVs_pat<V6_vL32b_ai,    alignedload>;
  defm: HvxLdVs_pat<V6_vL32Ub_ai,   unalignedload>;

  multiclass HvxLdWs_pat<InstHexagon MI, PatFrag Load> {
    defm: HvxLd_pat<MI, Load, VecPI8,  IsVecOff>;
    defm: HvxLd_pat<MI, Load, VecPI16, IsVecOff>;
    defm: HvxLd_pat<MI, Load, VecPI32, IsVecOff>;
  }
  defm: HvxLdWs_pat<PS_vloadrw_nt_ai, alignednontemporalload>;
  defm: HvxLdWs_pat<PS_vloadrw_ai,    alignedload>;
  defm: HvxLdWs_pat<PS_vloadrwu_ai,   unalignedload>;
}


// --(13) Store ----------------------------------------------------------
//


class Storepi_pat<PatFrag Store, PatFrag Value, PatFrag Offset, InstHexagon MI>
  : Pat<(Store Value:$Rt, I32:$Rx, Offset:$s4),
        (MI I32:$Rx, imm:$s4, Value:$Rt)>;

def: Storepi_pat<post_truncsti8,  I32, s4_0ImmPred, S2_storerb_pi>;
def: Storepi_pat<post_truncsti16, I32, s4_1ImmPred, S2_storerh_pi>;
def: Storepi_pat<post_store,      I32, s4_2ImmPred, S2_storeri_pi>;
def: Storepi_pat<post_store,      I64, s4_3ImmPred, S2_storerd_pi>;

// Patterns for generating stores, where the address takes different forms:
// - frameindex,
// - frameindex + offset,
// - base + offset,
// - simple (base address without offset).
// These would usually be used together (via Storexi_pat defined below), but
// in some cases one may want to apply different properties (such as
// AddedComplexity) to the individual patterns.
class Storexi_fi_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
  : Pat<(Store Value:$Rs, AddrFI:$fi), (MI AddrFI:$fi, 0, Value:$Rs)>;

multiclass Storexi_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
                              InstHexagon MI> {
  def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
           (MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
  def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)),
           (MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
}

multiclass Storexi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
                           InstHexagon MI> {
  def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)),
           (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
  def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)),
           (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
}

class Storexi_base_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
  : Pat<(Store Value:$Rt, I32:$Rs),
        (MI IntRegs:$Rs, 0, Value:$Rt)>;

// Patterns for generating stores, where the address takes different forms,
// and where the value being stored is transformed through the value modifier
// ValueMod.  The address forms are same as above.
class Storexim_fi_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
                      InstHexagon MI>
  : Pat<(Store Value:$Rs, AddrFI:$fi),
        (MI AddrFI:$fi, 0, (ValueMod Value:$Rs))>;

multiclass Storexim_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
                               PatFrag ValueMod, InstHexagon MI> {
  def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
           (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
  def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)),
           (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
}

multiclass Storexim_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
                            PatFrag ValueMod, InstHexagon MI> {
  def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)),
           (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
  def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)),
           (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
}

class Storexim_base_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
                        InstHexagon MI>
  : Pat<(Store Value:$Rt, I32:$Rs),
        (MI IntRegs:$Rs, 0, (ValueMod Value:$Rt))>;

multiclass Storexi_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
                       InstHexagon MI> {
  defm: Storexi_fi_add_pat <Store, Value, ImmPred, MI>;
  def:  Storexi_fi_pat     <Store, Value,          MI>;
  defm: Storexi_add_pat    <Store, Value, ImmPred, MI>;
}

multiclass Storexim_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
                        PatFrag ValueMod, InstHexagon MI> {
  defm: Storexim_fi_add_pat <Store, Value, ImmPred, ValueMod, MI>;
  def:  Storexim_fi_pat     <Store, Value,          ValueMod, MI>;
  defm: Storexim_add_pat    <Store, Value, ImmPred, ValueMod, MI>;
}

// Reg<<S + Imm
class Storexu_shl_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred, InstHexagon MI>
  : Pat<(Store Value:$Rt, (add (shl I32:$Ru, u2_0ImmPred:$u2), ImmPred:$A)),
        (MI IntRegs:$Ru, imm:$u2, ImmPred:$A, Value:$Rt)>;

// Reg<<S + Reg
class Storexr_shl_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
  : Pat<(Store Value:$Ru, (add I32:$Rs, (shl I32:$Rt, u2_0ImmPred:$u2))),
        (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2, Value:$Ru)>;

// Reg + Reg
class Storexr_add_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
  : Pat<(Store Value:$Ru, (add I32:$Rs, I32:$Rt)),
        (MI IntRegs:$Rs, IntRegs:$Rt, 0, Value:$Ru)>;

class Storea_pat<PatFrag Store, PatFrag Value, PatFrag Addr, InstHexagon MI>
  : Pat<(Store Value:$val, Addr:$addr), (MI Addr:$addr, Value:$val)>;

class Stoream_pat<PatFrag Store, PatFrag Value, PatFrag Addr, PatFrag ValueMod,
                  InstHexagon MI>
  : Pat<(Store Value:$val, Addr:$addr),
        (MI Addr:$addr, (ValueMod Value:$val))>;

// Regular stores in the DAG have two operands: value and address.
// Atomic stores also have two, but they are reversed: address, value.
// To use atomic stores with the patterns, they need to have their operands
// swapped. This relies on the knowledge that the F.Fragment uses names
// "ptr" and "val".
class AtomSt<PatFrag F>
  : PatFrag<(ops node:$val, node:$ptr), F.Fragment, F.PredicateCode,
            F.OperandTransform> {
  let IsAtomic = F.IsAtomic;
  let MemoryVT = F.MemoryVT;
}


def IMM_BYTE : SDNodeXForm<imm, [{
  // -1 can be represented as 255, etc.
  // assigning to a byte restores our desired signed value.
  int8_t imm = N->getSExtValue();
  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
}]>;

def IMM_HALF : SDNodeXForm<imm, [{
  // -1 can be represented as 65535, etc.
  // assigning to a short restores our desired signed value.
  int16_t imm = N->getSExtValue();
  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
}]>;

def IMM_WORD : SDNodeXForm<imm, [{
  // -1 can be represented as 4294967295, etc.
  // Currently, it's not doing this. But some optimization
  // might convert -1 to a large +ve number.
  // assigning to a word restores our desired signed value.
  int32_t imm = N->getSExtValue();
  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
}]>;

def ToImmByte : OutPatFrag<(ops node:$R), (IMM_BYTE $R)>;
def ToImmHalf : OutPatFrag<(ops node:$R), (IMM_HALF $R)>;
def ToImmWord : OutPatFrag<(ops node:$R), (IMM_WORD $R)>;

// Even though the offset is not extendable in the store-immediate, we
// can still generate the fi# in the base address. If the final offset
// is not valid for the instruction, we will replace it with a scratch
// register.
class SmallStackStore<PatFrag Store>
  : PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{
  return isSmallStackStore(cast<StoreSDNode>(N));
}]>;

// This is the complement of SmallStackStore.
class LargeStackStore<PatFrag Store>
  : PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{
  return !isSmallStackStore(cast<StoreSDNode>(N));
}]>;

// Preferred addressing modes for various combinations of stored value
// and address computation.
// For stores where the address and value are both immediates, prefer
// store-immediate. The reason is that the constant-extender optimization
// can replace store-immediate with a store-register, but there is nothing
// to generate a store-immediate out of a store-register.
//
//         C     R     F    F+C   R+C   R+R   R<<S+C   R<<S+R
// --+-------+-----+-----+------+-----+-----+--------+--------
// C |   imm | imm | imm |  imm | imm |  rr |     ur |     rr
// R |  abs* |  io |  io |   io |  io |  rr |     ur |     rr
//
// (*) Absolute or GP-relative.
//
// Note that any expression can be matched by Reg. In particular, an immediate
// can always be placed in a register, so patterns checking for Imm should
// have a higher priority than the ones involving Reg that could also match.
// For example, *(p+4) could become r1=#4; memw(r0+r1<<#0) instead of the
// preferred memw(r0+#4). Similarly Reg+Imm or Reg+Reg should be tried before
// Reg alone.
//
// The order in which the different combinations are tried:
//
//         C     F     R    F+C   R+C   R+R   R<<S+C   R<<S+R
// --+-------+-----+-----+------+-----+-----+--------+--------
// C |     1 |   6 |   - |    5 |   9 |   - |      - |      -
// R |     2 |   8 |  12 |    7 |  10 |  11 |      3 |      4


// First, match the unusual case of doubleword store into Reg+Imm4, i.e.
// a store where the offset Imm4 is a multiple of 4, but not of 8. This
// implies that Reg is also a proper multiple of 4. To still generate a
// doubleword store, add 4 to Reg, and subtract 4 from the offset.

def s30_2ProperPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  return isShiftedInt<30,2>(v) && !isShiftedInt<29,3>(v);
}]>;
def RoundTo8 : SDNodeXForm<imm, [{
  int32_t Imm = N->getSExtValue();
  return CurDAG->getTargetConstant(Imm & -8, SDLoc(N), MVT::i32);
}]>;

let AddedComplexity = 150 in
def: Pat<(store I64:$Ru, (add I32:$Rs, s30_2ProperPred:$Off)),
         (S2_storerd_io (A2_addi I32:$Rs, 4), (RoundTo8 $Off), I64:$Ru)>;

class Storexi_abs_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
  : Pat<(Store Value:$val, anyimm:$addr),
        (MI (ToI32 $addr), 0, Value:$val)>;
class Storexim_abs_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
                       InstHexagon MI>
  : Pat<(Store Value:$val, anyimm:$addr),
        (MI (ToI32 $addr), 0, (ValueMod Value:$val))>;

let AddedComplexity = 140 in {
  def: Storexim_abs_pat<truncstorei8,  anyint, ToImmByte, S4_storeirb_io>;
  def: Storexim_abs_pat<truncstorei16, anyint, ToImmHalf, S4_storeirh_io>;
  def: Storexim_abs_pat<store,         anyint, ToImmWord, S4_storeiri_io>;

  def: Storexi_abs_pat<truncstorei8,  anyimm, S4_storeirb_io>;
  def: Storexi_abs_pat<truncstorei16, anyimm, S4_storeirh_io>;
  def: Storexi_abs_pat<store,         anyimm, S4_storeiri_io>;
}

// GP-relative address
let AddedComplexity = 120 in {
  def: Storea_pat<truncstorei8,             I32, addrgp, S2_storerbgp>;
  def: Storea_pat<truncstorei16,            I32, addrgp, S2_storerhgp>;
  def: Storea_pat<store,                    I32, addrgp, S2_storerigp>;
  def: Storea_pat<store,                    I64, addrgp, S2_storerdgp>;
  def: Storea_pat<store,                    F32, addrgp, S2_storerigp>;
  def: Storea_pat<store,                    F64, addrgp, S2_storerdgp>;
  def: Storea_pat<AtomSt<atomic_store_8>,   I32, addrgp, S2_storerbgp>;
  def: Storea_pat<AtomSt<atomic_store_16>,  I32, addrgp, S2_storerhgp>;
  def: Storea_pat<AtomSt<atomic_store_32>,  I32, addrgp, S2_storerigp>;
  def: Storea_pat<AtomSt<atomic_store_64>,  I64, addrgp, S2_storerdgp>;

  def: Stoream_pat<truncstorei8,  I64, addrgp, LoReg,    S2_storerbgp>;
  def: Stoream_pat<truncstorei16, I64, addrgp, LoReg,    S2_storerhgp>;
  def: Stoream_pat<truncstorei32, I64, addrgp, LoReg,    S2_storerigp>;
  def: Stoream_pat<store,         I1,  addrgp, I1toI32,  S2_storerbgp>;
}

// Absolute address
let AddedComplexity = 110 in {
  def: Storea_pat<truncstorei8,             I32, anyimm0, PS_storerbabs>;
  def: Storea_pat<truncstorei16,            I32, anyimm1, PS_storerhabs>;
  def: Storea_pat<store,                    I32, anyimm2, PS_storeriabs>;
  def: Storea_pat<store,                    I64, anyimm3, PS_storerdabs>;
  def: Storea_pat<store,                    F32, anyimm2, PS_storeriabs>;
  def: Storea_pat<store,                    F64, anyimm3, PS_storerdabs>;
  def: Storea_pat<AtomSt<atomic_store_8>,   I32, anyimm0, PS_storerbabs>;
  def: Storea_pat<AtomSt<atomic_store_16>,  I32, anyimm1, PS_storerhabs>;
  def: Storea_pat<AtomSt<atomic_store_32>,  I32, anyimm2, PS_storeriabs>;
  def: Storea_pat<AtomSt<atomic_store_64>,  I64, anyimm3, PS_storerdabs>;

  def: Stoream_pat<truncstorei8,  I64, anyimm0, LoReg,    PS_storerbabs>;
  def: Stoream_pat<truncstorei16, I64, anyimm1, LoReg,    PS_storerhabs>;
  def: Stoream_pat<truncstorei32, I64, anyimm2, LoReg,    PS_storeriabs>;
  def: Stoream_pat<store,         I1,  anyimm0, I1toI32,  PS_storerbabs>;
}

// Reg<<S + Imm
let AddedComplexity = 100 in {
  def: Storexu_shl_pat<truncstorei8,  I32, anyimm0, S4_storerb_ur>;
  def: Storexu_shl_pat<truncstorei16, I32, anyimm1, S4_storerh_ur>;
  def: Storexu_shl_pat<store,         I32, anyimm2, S4_storeri_ur>;
  def: Storexu_shl_pat<store,         I64, anyimm3, S4_storerd_ur>;
  def: Storexu_shl_pat<store,         F32, anyimm2, S4_storeri_ur>;
  def: Storexu_shl_pat<store,         F64, anyimm3, S4_storerd_ur>;

  def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), anyimm:$A)),
           (S4_storerb_ur IntRegs:$Rs, imm:$u2, imm:$A, (I1toI32 I1:$Pu))>;
}

// Reg<<S + Reg
let AddedComplexity = 90 in {
  def: Storexr_shl_pat<truncstorei8,  I32, S4_storerb_rr>;
  def: Storexr_shl_pat<truncstorei16, I32, S4_storerh_rr>;
  def: Storexr_shl_pat<store,         I32, S4_storeri_rr>;
  def: Storexr_shl_pat<store,         I64, S4_storerd_rr>;
  def: Storexr_shl_pat<store,         F32, S4_storeri_rr>;
  def: Storexr_shl_pat<store,         F64, S4_storerd_rr>;

  def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), I32:$Rt)),
           (S4_storerb_ur IntRegs:$Rt, IntRegs:$Rs, imm:$u2, (I1toI32 I1:$Pu))>;
}

class SS_<PatFrag F> : SmallStackStore<F>;
class LS_<PatFrag F> : LargeStackStore<F>;

multiclass IMFA_<PatFrag S, PatFrag V, PatFrag O, PatFrag M, InstHexagon I> {
  defm: Storexim_fi_add_pat<S, V, O, M, I>;
}
multiclass IFA_<PatFrag S, PatFrag V, PatFrag O, InstHexagon I> {
  defm: Storexi_fi_add_pat<S, V, O, I>;
}

// Fi+Imm, store-immediate
let AddedComplexity = 80 in {
  defm: IMFA_<SS_<truncstorei8>,  anyint, u6_0ImmPred, ToImmByte, S4_storeirb_io>;
  defm: IMFA_<SS_<truncstorei16>, anyint, u6_1ImmPred, ToImmHalf, S4_storeirh_io>;
  defm: IMFA_<SS_<store>,         anyint, u6_2ImmPred, ToImmWord, S4_storeiri_io>;

  defm: IFA_<SS_<truncstorei8>,   anyimm, u6_0ImmPred, S4_storeirb_io>;
  defm: IFA_<SS_<truncstorei16>,  anyimm, u6_1ImmPred, S4_storeirh_io>;
  defm: IFA_<SS_<store>,          anyimm, u6_2ImmPred, S4_storeiri_io>;

  // For large-stack stores, generate store-register (prefer explicit Fi
  // in the address).
  defm: IMFA_<LS_<truncstorei8>,   anyimm, u6_0ImmPred, ToI32, S2_storerb_io>;
  defm: IMFA_<LS_<truncstorei16>,  anyimm, u6_1ImmPred, ToI32, S2_storerh_io>;
  defm: IMFA_<LS_<store>,          anyimm, u6_2ImmPred, ToI32, S2_storeri_io>;
}

// Fi, store-immediate
let AddedComplexity = 70 in {
  def: Storexim_fi_pat<SS_<truncstorei8>,  anyint, ToImmByte, S4_storeirb_io>;
  def: Storexim_fi_pat<SS_<truncstorei16>, anyint, ToImmHalf, S4_storeirh_io>;
  def: Storexim_fi_pat<SS_<store>,         anyint, ToImmWord, S4_storeiri_io>;

  def: Storexi_fi_pat<SS_<truncstorei8>,   anyimm, S4_storeirb_io>;
  def: Storexi_fi_pat<SS_<truncstorei16>,  anyimm, S4_storeirh_io>;
  def: Storexi_fi_pat<SS_<store>,          anyimm, S4_storeiri_io>;

  // For large-stack stores, generate store-register (prefer explicit Fi
  // in the address).
  def: Storexim_fi_pat<LS_<truncstorei8>,  anyimm, ToI32, S2_storerb_io>;
  def: Storexim_fi_pat<LS_<truncstorei16>, anyimm, ToI32, S2_storerh_io>;
  def: Storexim_fi_pat<LS_<store>,         anyimm, ToI32, S2_storeri_io>;
}

// Fi+Imm, Fi, store-register
let AddedComplexity = 60 in {
  defm: Storexi_fi_add_pat<truncstorei8,  I32, anyimm, S2_storerb_io>;
  defm: Storexi_fi_add_pat<truncstorei16, I32, anyimm, S2_storerh_io>;
  defm: Storexi_fi_add_pat<store,         I32, anyimm, S2_storeri_io>;
  defm: Storexi_fi_add_pat<store,         I64, anyimm, S2_storerd_io>;
  defm: Storexi_fi_add_pat<store,         F32, anyimm, S2_storeri_io>;
  defm: Storexi_fi_add_pat<store,         F64, anyimm, S2_storerd_io>;
  defm: Storexim_fi_add_pat<store, I1, anyimm, I1toI32, S2_storerb_io>;

  def: Storexi_fi_pat<truncstorei8,   I32, S2_storerb_io>;
  def: Storexi_fi_pat<truncstorei16,  I32, S2_storerh_io>;
  def: Storexi_fi_pat<store,          I32, S2_storeri_io>;
  def: Storexi_fi_pat<store,          I64, S2_storerd_io>;
  def: Storexi_fi_pat<store,          F32, S2_storeri_io>;
  def: Storexi_fi_pat<store,          F64, S2_storerd_io>;
  def: Storexim_fi_pat<store, I1, I1toI32, S2_storerb_io>;
}


multiclass IMRA_<PatFrag S, PatFrag V, PatFrag O, PatFrag M, InstHexagon I> {
  defm: Storexim_add_pat<S, V, O, M, I>;
}
multiclass IRA_<PatFrag S, PatFrag V, PatFrag O, InstHexagon I> {
  defm: Storexi_add_pat<S, V, O, I>;
}

// Reg+Imm, store-immediate
let AddedComplexity = 50 in {
  defm: IMRA_<truncstorei8,   anyint, u6_0ImmPred, ToImmByte, S4_storeirb_io>;
  defm: IMRA_<truncstorei16,  anyint, u6_1ImmPred, ToImmHalf, S4_storeirh_io>;
  defm: IMRA_<store,          anyint, u6_2ImmPred, ToImmWord, S4_storeiri_io>;

  defm: IRA_<truncstorei8,    anyimm, u6_0ImmPred, S4_storeirb_io>;
  defm: IRA_<truncstorei16,   anyimm, u6_1ImmPred, S4_storeirh_io>;
  defm: IRA_<store,           anyimm, u6_2ImmPred, S4_storeiri_io>;
}

// Reg+Imm, store-register
let AddedComplexity = 40 in {
  defm: Storexi_pat<truncstorei8,   I32, anyimm0, S2_storerb_io>;
  defm: Storexi_pat<truncstorei16,  I32, anyimm1, S2_storerh_io>;
  defm: Storexi_pat<store,          I32, anyimm2, S2_storeri_io>;
  defm: Storexi_pat<store,          I64, anyimm3, S2_storerd_io>;
  defm: Storexi_pat<store,          F32, anyimm2, S2_storeri_io>;
  defm: Storexi_pat<store,          F64, anyimm3, S2_storerd_io>;

  defm: Storexim_pat<truncstorei8,  I64, anyimm0, LoReg,   S2_storerb_io>;
  defm: Storexim_pat<truncstorei16, I64, anyimm1, LoReg,   S2_storerh_io>;
  defm: Storexim_pat<truncstorei32, I64, anyimm2, LoReg,   S2_storeri_io>;
  defm: Storexim_pat<store,         I1,  anyimm0, I1toI32, S2_storerb_io>;

  defm: Storexi_pat<AtomSt<atomic_store_8>,  I32, anyimm0, S2_storerb_io>;
  defm: Storexi_pat<AtomSt<atomic_store_16>, I32, anyimm1, S2_storerh_io>;
  defm: Storexi_pat<AtomSt<atomic_store_32>, I32, anyimm2, S2_storeri_io>;
  defm: Storexi_pat<AtomSt<atomic_store_64>, I64, anyimm3, S2_storerd_io>;
}

// Reg+Reg
let AddedComplexity = 30 in {
  def: Storexr_add_pat<truncstorei8,  I32, S4_storerb_rr>;
  def: Storexr_add_pat<truncstorei16, I32, S4_storerh_rr>;
  def: Storexr_add_pat<store,         I32, S4_storeri_rr>;
  def: Storexr_add_pat<store,         I64, S4_storerd_rr>;
  def: Storexr_add_pat<store,         F32, S4_storeri_rr>;
  def: Storexr_add_pat<store,         F64, S4_storerd_rr>;

  def: Pat<(store I1:$Pu, (add I32:$Rs, I32:$Rt)),
           (S4_storerb_rr IntRegs:$Rs, IntRegs:$Rt, 0, (I1toI32 I1:$Pu))>;
}

// Reg, store-immediate
let AddedComplexity = 20 in {
  def: Storexim_base_pat<truncstorei8,  anyint, ToImmByte, S4_storeirb_io>;
  def: Storexim_base_pat<truncstorei16, anyint, ToImmHalf, S4_storeirh_io>;
  def: Storexim_base_pat<store,         anyint, ToImmWord, S4_storeiri_io>;

  def: Storexi_base_pat<truncstorei8,   anyimm, S4_storeirb_io>;
  def: Storexi_base_pat<truncstorei16,  anyimm, S4_storeirh_io>;
  def: Storexi_base_pat<store,          anyimm, S4_storeiri_io>;
}

// Reg, store-register
let AddedComplexity = 10 in {
  def: Storexi_base_pat<truncstorei8,   I32, S2_storerb_io>;
  def: Storexi_base_pat<truncstorei16,  I32, S2_storerh_io>;
  def: Storexi_base_pat<store,          I32, S2_storeri_io>;
  def: Storexi_base_pat<store,          I64, S2_storerd_io>;
  def: Storexi_base_pat<store,          F32, S2_storeri_io>;
  def: Storexi_base_pat<store,          F64, S2_storerd_io>;

  def: Storexim_base_pat<truncstorei8,  I64, LoReg,   S2_storerb_io>;
  def: Storexim_base_pat<truncstorei16, I64, LoReg,   S2_storerh_io>;
  def: Storexim_base_pat<truncstorei32, I64, LoReg,   S2_storeri_io>;
  def: Storexim_base_pat<store,         I1,  I1toI32, S2_storerb_io>;

  def: Storexi_base_pat<AtomSt<atomic_store_8>,   I32, S2_storerb_io>;
  def: Storexi_base_pat<AtomSt<atomic_store_16>,  I32, S2_storerh_io>;
  def: Storexi_base_pat<AtomSt<atomic_store_32>,  I32, S2_storeri_io>;
  def: Storexi_base_pat<AtomSt<atomic_store_64>,  I64, S2_storerd_io>;
}

// HVX stores

multiclass HvxSt_pat<InstHexagon MI, PatFrag Store, PatFrag ImmPred,
                     PatFrag Value> {
  def: Pat<(Store Value:$Vs, I32:$Rt),
           (MI I32:$Rt, 0, Value:$Vs)>;
  def: Pat<(Store Value:$Vs, (add I32:$Rt, ImmPred:$s)),
           (MI I32:$Rt, imm:$s, Value:$Vs)>;
}

let Predicates = [UseHVX] in {
  multiclass HvxStVs_pat<InstHexagon MI, PatFrag Store> {
    defm: HvxSt_pat<MI, Store, IsVecOff, HVI8>;
    defm: HvxSt_pat<MI, Store, IsVecOff, HVI16>;
    defm: HvxSt_pat<MI, Store, IsVecOff, HVI32>;
  }
  defm: HvxStVs_pat<V6_vS32b_nt_ai, alignednontemporalstore>;
  defm: HvxStVs_pat<V6_vS32b_ai,    alignedstore>;
  defm: HvxStVs_pat<V6_vS32Ub_ai,   unalignedstore>;

  multiclass HvxStWs_pat<InstHexagon MI, PatFrag Store> {
    defm: HvxSt_pat<MI, Store, IsVecOff, HWI8>;
    defm: HvxSt_pat<MI, Store, IsVecOff, HWI16>;
    defm: HvxSt_pat<MI, Store, IsVecOff, HWI32>;
  }
  defm: HvxStWs_pat<PS_vstorerw_nt_ai, alignednontemporalstore>;
  defm: HvxStWs_pat<PS_vstorerw_ai,    alignedstore>;
  defm: HvxStWs_pat<PS_vstorerwu_ai,   unalignedstore>;
}


// --(14) Memop ----------------------------------------------------------
//

def m5_0Imm8Pred : PatLeaf<(i32 imm), [{
  int8_t V = N->getSExtValue();
  return -32 < V && V <= -1;
}]>;

def m5_0Imm16Pred : PatLeaf<(i32 imm), [{
  int16_t V = N->getSExtValue();
  return -32 < V && V <= -1;
}]>;

def m5_0ImmPred  : PatLeaf<(i32 imm), [{
  int64_t V = N->getSExtValue();
  return -31 <= V && V <= -1;
}]>;

def IsNPow2_8 : PatLeaf<(i32 imm), [{
  uint8_t NV = ~N->getZExtValue();
  return isPowerOf2_32(NV);
}]>;

def IsNPow2_16 : PatLeaf<(i32 imm), [{
  uint16_t NV = ~N->getZExtValue();
  return isPowerOf2_32(NV);
}]>;

def Log2_8 : SDNodeXForm<imm, [{
  uint8_t V = N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
}]>;

def Log2_16 : SDNodeXForm<imm, [{
  uint16_t V = N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
}]>;

def LogN2_8 : SDNodeXForm<imm, [{
  uint8_t NV = ~N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
}]>;

def LogN2_16 : SDNodeXForm<imm, [{
  uint16_t NV = ~N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
}]>;

def IdImm : SDNodeXForm<imm, [{ return SDValue(N, 0); }]>;

multiclass Memopxr_base_pat<PatFrag Load, PatFrag Store, SDNode Oper,
                            InstHexagon MI> {
  // Addr: i32
  def: Pat<(Store (Oper (Load I32:$Rs), I32:$A), I32:$Rs),
           (MI I32:$Rs, 0, I32:$A)>;
  // Addr: fi
  def: Pat<(Store (Oper (Load AddrFI:$Rs), I32:$A), AddrFI:$Rs),
           (MI AddrFI:$Rs, 0, I32:$A)>;
}

multiclass Memopxr_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
                           SDNode Oper, InstHexagon MI> {
  // Addr: i32
  def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), I32:$A),
                  (add I32:$Rs, ImmPred:$Off)),
           (MI I32:$Rs, imm:$Off, I32:$A)>;
  def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), I32:$A),
                  (IsOrAdd I32:$Rs, ImmPred:$Off)),
           (MI I32:$Rs, imm:$Off, I32:$A)>;
  // Addr: fi
  def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), I32:$A),
                  (add AddrFI:$Rs, ImmPred:$Off)),
           (MI AddrFI:$Rs, imm:$Off, I32:$A)>;
  def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), I32:$A),
                  (IsOrAdd AddrFI:$Rs, ImmPred:$Off)),
           (MI AddrFI:$Rs, imm:$Off, I32:$A)>;
}

multiclass Memopxr_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
                       SDNode Oper, InstHexagon MI> {
  defm: Memopxr_base_pat <Load, Store,          Oper, MI>;
  defm: Memopxr_add_pat  <Load, Store, ImmPred, Oper, MI>;
}

let AddedComplexity = 200 in {
  // add reg
  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, add,
        /*anyext*/  L4_add_memopb_io>;
  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, add,
        /*sext*/    L4_add_memopb_io>;
  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, add,
        /*zext*/    L4_add_memopb_io>;
  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, add,
        /*anyext*/  L4_add_memoph_io>;
  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, add,
        /*sext*/    L4_add_memoph_io>;
  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, add,
        /*zext*/    L4_add_memoph_io>;
  defm: Memopxr_pat<load, store, u6_2ImmPred, add, L4_add_memopw_io>;

  // sub reg
  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, sub,
        /*anyext*/  L4_sub_memopb_io>;
  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub,
        /*sext*/    L4_sub_memopb_io>;
  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub,
        /*zext*/    L4_sub_memopb_io>;
  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, sub,
        /*anyext*/  L4_sub_memoph_io>;
  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub,
        /*sext*/    L4_sub_memoph_io>;
  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub,
        /*zext*/    L4_sub_memoph_io>;
  defm: Memopxr_pat<load, store, u6_2ImmPred, sub, L4_sub_memopw_io>;

  // and reg
  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, and,
        /*anyext*/  L4_and_memopb_io>;
  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, and,
        /*sext*/    L4_and_memopb_io>;
  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, and,
        /*zext*/    L4_and_memopb_io>;
  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, and,
        /*anyext*/  L4_and_memoph_io>;
  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, and,
        /*sext*/    L4_and_memoph_io>;
  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, and,
        /*zext*/    L4_and_memoph_io>;
  defm: Memopxr_pat<load, store, u6_2ImmPred, and, L4_and_memopw_io>;

  // or reg
  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, or,
        /*anyext*/  L4_or_memopb_io>;
  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, or,
        /*sext*/    L4_or_memopb_io>;
  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, or,
        /*zext*/    L4_or_memopb_io>;
  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, or,
        /*anyext*/  L4_or_memoph_io>;
  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, or,
        /*sext*/    L4_or_memoph_io>;
  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, or,
        /*zext*/    L4_or_memoph_io>;
  defm: Memopxr_pat<load, store, u6_2ImmPred, or, L4_or_memopw_io>;
}


multiclass Memopxi_base_pat<PatFrag Load, PatFrag Store, SDNode Oper,
                            PatFrag Arg, SDNodeXForm ArgMod, InstHexagon MI> {
  // Addr: i32
  def: Pat<(Store (Oper (Load I32:$Rs), Arg:$A), I32:$Rs),
           (MI I32:$Rs, 0, (ArgMod Arg:$A))>;
  // Addr: fi
  def: Pat<(Store (Oper (Load AddrFI:$Rs), Arg:$A), AddrFI:$Rs),
           (MI AddrFI:$Rs, 0, (ArgMod Arg:$A))>;
}

multiclass Memopxi_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
                           SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod,
                           InstHexagon MI> {
  // Addr: i32
  def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), Arg:$A),
                  (add I32:$Rs, ImmPred:$Off)),
           (MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>;
  def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), Arg:$A),
                  (IsOrAdd I32:$Rs, ImmPred:$Off)),
           (MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>;
  // Addr: fi
  def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), Arg:$A),
                  (add AddrFI:$Rs, ImmPred:$Off)),
           (MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>;
  def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), Arg:$A),
                  (IsOrAdd AddrFI:$Rs, ImmPred:$Off)),
           (MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>;
}

multiclass Memopxi_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
                       SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod,
                       InstHexagon MI> {
  defm: Memopxi_base_pat <Load, Store,          Oper, Arg, ArgMod, MI>;
  defm: Memopxi_add_pat  <Load, Store, ImmPred, Oper, Arg, ArgMod, MI>;
}

let AddedComplexity = 220 in {
  // add imm
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
        /*anyext*/  IdImm, L4_iadd_memopb_io>;
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
        /*sext*/    IdImm, L4_iadd_memopb_io>;
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
        /*zext*/    IdImm, L4_iadd_memopb_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
        /*anyext*/  IdImm, L4_iadd_memoph_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
        /*sext*/    IdImm, L4_iadd_memoph_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
        /*zext*/    IdImm, L4_iadd_memoph_io>;
  defm: Memopxi_pat<load, store, u6_2ImmPred, add, u5_0ImmPred, IdImm,
                    L4_iadd_memopw_io>;
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
        /*anyext*/  NegImm8, L4_iadd_memopb_io>;
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
        /*sext*/    NegImm8, L4_iadd_memopb_io>;
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
        /*zext*/    NegImm8, L4_iadd_memopb_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
        /*anyext*/  NegImm16, L4_iadd_memoph_io>;
  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
        /*sext*/    NegImm16, L4_iadd_memoph_io>;
  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
        /*zext*/    NegImm16, L4_iadd_memoph_io>;
  defm: Memopxi_pat<load, store, u6_2ImmPred, sub, m5_0ImmPred, NegImm32,
                    L4_iadd_memopw_io>;

  // sub imm
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
        /*anyext*/  IdImm, L4_isub_memopb_io>;
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
        /*sext*/    IdImm, L4_isub_memopb_io>;
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
        /*zext*/    IdImm, L4_isub_memopb_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
        /*anyext*/  IdImm, L4_isub_memoph_io>;
  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
        /*sext*/    IdImm, L4_isub_memoph_io>;
  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
        /*zext*/    IdImm, L4_isub_memoph_io>;
  defm: Memopxi_pat<load, store, u6_2ImmPred, sub, u5_0ImmPred, IdImm,
                    L4_isub_memopw_io>;
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
        /*anyext*/  NegImm8, L4_isub_memopb_io>;
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
        /*sext*/    NegImm8, L4_isub_memopb_io>;
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
        /*zext*/    NegImm8, L4_isub_memopb_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
        /*anyext*/  NegImm16, L4_isub_memoph_io>;
  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
        /*sext*/    NegImm16, L4_isub_memoph_io>;
  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
        /*zext*/    NegImm16, L4_isub_memoph_io>;
  defm: Memopxi_pat<load, store, u6_2ImmPred, add, m5_0ImmPred, NegImm32,
                    L4_isub_memopw_io>;

  // clrbit imm
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
        /*anyext*/  LogN2_8, L4_iand_memopb_io>;
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
        /*sext*/    LogN2_8, L4_iand_memopb_io>;
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
        /*zext*/    LogN2_8, L4_iand_memopb_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
        /*anyext*/  LogN2_16, L4_iand_memoph_io>;
  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
        /*sext*/    LogN2_16, L4_iand_memoph_io>;
  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
        /*zext*/    LogN2_16, L4_iand_memoph_io>;
  defm: Memopxi_pat<load, store, u6_2ImmPred, and, IsNPow2_32,
		    LogN2_32, L4_iand_memopw_io>;

  // setbit imm
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
        /*anyext*/  Log2_8, L4_ior_memopb_io>;
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
        /*sext*/    Log2_8, L4_ior_memopb_io>;
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
        /*zext*/    Log2_8, L4_ior_memopb_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
        /*anyext*/  Log2_16, L4_ior_memoph_io>;
  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
        /*sext*/    Log2_16, L4_ior_memoph_io>;
  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
        /*zext*/    Log2_16, L4_ior_memoph_io>;
  defm: Memopxi_pat<load, store, u6_2ImmPred, or, IsPow2_32,
		    Log2_32, L4_ior_memopw_io>;
}


// --(15) Call -----------------------------------------------------------
//

// Pseudo instructions.
def SDT_SPCallSeqStart
  : SDCallSeqStart<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def SDT_SPCallSeqEnd
  : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;

def callseq_start: SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
                          [SDNPHasChain, SDNPOutGlue]>;
def callseq_end:   SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
                          [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;

def SDT_SPCall: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;

def HexagonTCRet: SDNode<"HexagonISD::TC_RETURN", SDT_SPCall,
                         [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
def callv3: SDNode<"HexagonISD::CALL", SDT_SPCall,
                   [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
def callv3nr: SDNode<"HexagonISD::CALLnr", SDT_SPCall,
                     [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;

def: Pat<(callseq_start timm:$amt, timm:$amt2),
         (ADJCALLSTACKDOWN imm:$amt, imm:$amt2)>;
def: Pat<(callseq_end timm:$amt1, timm:$amt2),
         (ADJCALLSTACKUP imm:$amt1, imm:$amt2)>;

def: Pat<(HexagonTCRet tglobaladdr:$dst),   (PS_tailcall_i tglobaladdr:$dst)>;
def: Pat<(HexagonTCRet texternalsym:$dst),  (PS_tailcall_i texternalsym:$dst)>;
def: Pat<(HexagonTCRet I32:$dst),           (PS_tailcall_r I32:$dst)>;

def: Pat<(callv3 I32:$dst),                 (J2_callr I32:$dst)>;
def: Pat<(callv3 tglobaladdr:$dst),         (J2_call tglobaladdr:$dst)>;
def: Pat<(callv3 texternalsym:$dst),        (J2_call texternalsym:$dst)>;
def: Pat<(callv3 tglobaltlsaddr:$dst),      (J2_call tglobaltlsaddr:$dst)>;

def: Pat<(callv3nr I32:$dst),               (PS_callr_nr I32:$dst)>;
def: Pat<(callv3nr tglobaladdr:$dst),       (PS_call_nr tglobaladdr:$dst)>;
def: Pat<(callv3nr texternalsym:$dst),      (PS_call_nr texternalsym:$dst)>;

def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone,
                     [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, [SDNPHasChain]>;

def: Pat<(retflag),   (PS_jmpret (i32 R31))>;
def: Pat<(eh_return), (EH_RETURN_JMPR (i32 R31))>;


// --(16) Branch ---------------------------------------------------------
//

def: Pat<(br      bb:$dst),         (J2_jump  b30_2Imm:$dst)>;
def: Pat<(brind   I32:$dst),        (J2_jumpr I32:$dst)>;

def: Pat<(brcond I1:$Pu, bb:$dst),
         (J2_jumpt I1:$Pu, bb:$dst)>;
def: Pat<(brcond (not I1:$Pu), bb:$dst),
         (J2_jumpf I1:$Pu, bb:$dst)>;
def: Pat<(brcond (i1 (setne I1:$Pu, -1)), bb:$dst),
         (J2_jumpf I1:$Pu, bb:$dst)>;
def: Pat<(brcond (i1 (setne I1:$Pu, 0)), bb:$dst),
         (J2_jumpt I1:$Pu, bb:$dst)>;


// --(17) Misc -----------------------------------------------------------


// Generate code of the form 'C2_muxii(cmpbgtui(Rdd, C-1),0,1)'
// for C code of the form r = (c>='0' && c<='9') ? 1 : 0.
// The isdigit transformation relies on two 'clever' aspects:
// 1) The data type is unsigned which allows us to eliminate a zero test after
//    biasing the expression by 48. We are depending on the representation of
//    the unsigned types, and semantics.
// 2) The front end has converted <= 9 into < 10 on entry to LLVM.
//
// For the C code:
//   retval = (c >= '0' && c <= '9') ? 1 : 0;
// The code is transformed upstream of llvm into
//   retval = (c-48) < 10 ? 1 : 0;

def u7_0PosImmPred : ImmLeaf<i32, [{
  // True if the immediate fits in an 7-bit unsigned field and is positive.
  return Imm > 0 && isUInt<7>(Imm);
}]>;

let AddedComplexity = 139 in
def: Pat<(i32 (zext (i1 (setult (and I32:$Rs, 255), u7_0PosImmPred:$u7)))),
         (C2_muxii (A4_cmpbgtui IntRegs:$Rs, (UDEC1 imm:$u7)), 0, 1)>;

let AddedComplexity = 100 in
def: Pat<(or (or (shl (HexagonINSERT (i32 (zextloadi8 (add I32:$b, 2))),
                                     (i32 (extloadi8  (add I32:$b, 3))),
                                     24, 8),
                      (i32 16)),
                 (shl (i32 (zextloadi8 (add I32:$b, 1))), (i32 8))),
             (zextloadi8 I32:$b)),
         (A2_swiz (L2_loadri_io I32:$b, 0))>;


// We need custom lowering of ISD::PREFETCH into HexagonISD::DCFETCH
// because the SDNode ISD::PREFETCH has properties MayLoad and MayStore.
// We don't really want either one here.
def SDTHexagonDCFETCH: SDTypeProfile<0, 2, [SDTCisPtrTy<0>,SDTCisInt<1>]>;
def HexagonDCFETCH: SDNode<"HexagonISD::DCFETCH", SDTHexagonDCFETCH,
                           [SDNPHasChain]>;

def: Pat<(HexagonDCFETCH IntRegs:$Rs, u11_3ImmPred:$u11_3),
         (Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>;
def: Pat<(HexagonDCFETCH (i32 (add IntRegs:$Rs, u11_3ImmPred:$u11_3)), (i32 0)),
         (Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>;

def SDTHexagonALLOCA
  : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def HexagonALLOCA
  : SDNode<"HexagonISD::ALLOCA", SDTHexagonALLOCA, [SDNPHasChain]>;

def: Pat<(HexagonALLOCA I32:$Rs, (i32 imm:$A)),
         (PS_alloca IntRegs:$Rs, imm:$A)>;

def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDTNone, [SDNPHasChain]>;
def: Pat<(HexagonBARRIER), (Y2_barrier)>;

// Read cycle counter.
def SDTInt64Leaf: SDTypeProfile<1, 0, [SDTCisVT<0, i64>]>;
def HexagonREADCYCLE: SDNode<"HexagonISD::READCYCLE", SDTInt64Leaf,
  [SDNPHasChain]>;

def: Pat<(HexagonREADCYCLE), (A4_tfrcpp UPCYCLE)>;


def SDTVecLeaf: SDTypeProfile<1, 0, [SDTCisVec<0>]>;

def SDTHexagonVEXTRACTW: SDTypeProfile<1, 2,
  [SDTCisVT<0, i32>, SDTCisVec<1>, SDTCisVT<2, i32>]>;
def HexagonVEXTRACTW : SDNode<"HexagonISD::VEXTRACTW", SDTHexagonVEXTRACTW>;

def SDTHexagonVINSERTW0: SDTypeProfile<1, 2,
  [SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisVT<2, i32>]>;
def HexagonVINSERTW0 : SDNode<"HexagonISD::VINSERTW0", SDTHexagonVINSERTW0>;

def Combinev: OutPatFrag<(ops node:$Rs, node:$Rt),
  (REG_SEQUENCE HvxWR, $Rs, vsub_hi, $Rt, vsub_lo)>;

def LoVec: OutPatFrag<(ops node:$Vs), (EXTRACT_SUBREG $Vs, vsub_lo)>;
def HiVec: OutPatFrag<(ops node:$Vs), (EXTRACT_SUBREG $Vs, vsub_hi)>;

let Predicates = [UseHVX] in {
  def: OpR_RR_pat<V6_vpackeb,  pf2<HexagonVPACKE>,     VecI8,  HVI8>;
  def: OpR_RR_pat<V6_vpackob,  pf2<HexagonVPACKO>,     VecI8,  HVI8>;
  def: OpR_RR_pat<V6_vpackeh,  pf2<HexagonVPACKE>,    VecI16, HVI16>;
  def: OpR_RR_pat<V6_vpackoh,  pf2<HexagonVPACKO>,    VecI16, HVI16>;
}

def HexagonVZERO: SDNode<"HexagonISD::VZERO", SDTVecLeaf>;
def vzero: PatFrag<(ops), (HexagonVZERO)>;

def VSxtb: OutPatFrag<(ops node:$Vs),
           (V6_vshuffvdd (HiVec (V6_vsb $Vs)),
                         (LoVec (V6_vsb $Vs)),
                         (A2_tfrsi -2))>;
def VSxth: OutPatFrag<(ops node:$Vs),
           (V6_vshuffvdd (HiVec (V6_vsh $Vs)),
                         (LoVec (V6_vsh $Vs)),
                         (A2_tfrsi -4))>;
def VZxtb: OutPatFrag<(ops node:$Vs),
           (V6_vshuffvdd (HiVec (V6_vzb $Vs)),
                         (LoVec (V6_vzb $Vs)),
                         (A2_tfrsi -2))>;
def VZxth: OutPatFrag<(ops node:$Vs),
           (V6_vshuffvdd (HiVec (V6_vzh $Vs)),
                         (LoVec (V6_vzh $Vs)),
                         (A2_tfrsi -4))>;

let Predicates = [UseHVX] in {
  def: Pat<(VecI8  vzero), (V6_vd0)>;
  def: Pat<(VecI16 vzero), (V6_vd0)>;
  def: Pat<(VecI32 vzero), (V6_vd0)>;

  def: Pat<(VecPI8 (concat_vectors HVI8:$Vs, HVI8:$Vt)),
           (Combinev HvxVR:$Vt, HvxVR:$Vs)>;
  def: Pat<(VecPI16 (concat_vectors HVI16:$Vs, HVI16:$Vt)),
           (Combinev HvxVR:$Vt, HvxVR:$Vs)>;
  def: Pat<(VecPI32 (concat_vectors HVI32:$Vs, HVI32:$Vt)),
           (Combinev HvxVR:$Vt, HvxVR:$Vs)>;

  def: Pat<(HexagonVEXTRACTW HVI8:$Vu, I32:$Rs),
           (V6_extractw HvxVR:$Vu, I32:$Rs)>;
  def: Pat<(HexagonVEXTRACTW HVI16:$Vu, I32:$Rs),
           (V6_extractw HvxVR:$Vu, I32:$Rs)>;
  def: Pat<(HexagonVEXTRACTW HVI32:$Vu, I32:$Rs),
           (V6_extractw HvxVR:$Vu, I32:$Rs)>;

  def: Pat<(HexagonVINSERTW0 HVI8:$Vu,  I32:$Rt),
           (V6_vinsertwr HvxVR:$Vu, I32:$Rt)>;
  def: Pat<(HexagonVINSERTW0 HVI16:$Vu, I32:$Rt),
           (V6_vinsertwr HvxVR:$Vu, I32:$Rt)>;
  def: Pat<(HexagonVINSERTW0 HVI32:$Vu, I32:$Rt),
           (V6_vinsertwr HvxVR:$Vu, I32:$Rt)>;

  def: Pat<(add HVI8:$Vs,  HVI8:$Vt),   (V6_vaddb HvxVR:$Vs, HvxVR:$Vt)>;
  def: Pat<(add HVI16:$Vs, HVI16:$Vt),  (V6_vaddh HvxVR:$Vs, HvxVR:$Vt)>;
  def: Pat<(add HVI32:$Vs, HVI32:$Vt),  (V6_vaddw HvxVR:$Vs, HvxVR:$Vt)>;

  def: Pat<(sub HVI8:$Vs,  HVI8:$Vt),   (V6_vsubb HvxVR:$Vs, HvxVR:$Vt)>;
  def: Pat<(sub HVI16:$Vs, HVI16:$Vt),  (V6_vsubh HvxVR:$Vs, HvxVR:$Vt)>;
  def: Pat<(sub HVI32:$Vs, HVI32:$Vt),  (V6_vsubw HvxVR:$Vs, HvxVR:$Vt)>;

  def: Pat<(and HVI8:$Vs,  HVI8:$Vt),   (V6_vand  HvxVR:$Vs, HvxVR:$Vt)>;
  def: Pat<(or  HVI8:$Vs,  HVI8:$Vt),   (V6_vor   HvxVR:$Vs, HvxVR:$Vt)>;
  def: Pat<(xor HVI8:$Vs,  HVI8:$Vt),   (V6_vxor  HvxVR:$Vs, HvxVR:$Vt)>;

  def: Pat<(vselect HQ8:$Qu, HVI8:$Vs, HVI8:$Vt),
           (V6_vmux HvxQR:$Qu, HvxVR:$Vs, HvxVR:$Vt)>;
  def: Pat<(vselect HQ16:$Qu, HVI16:$Vs, HVI16:$Vt),
           (V6_vmux HvxQR:$Qu, HvxVR:$Vs, HvxVR:$Vt)>;
  def: Pat<(vselect HQ32:$Qu, HVI32:$Vs, HVI32:$Vt),
           (V6_vmux HvxQR:$Qu, HvxVR:$Vs, HvxVR:$Vt)>;

  def: Pat<(VecPI16 (sext HVI8:$Vs)),  (VSxtb $Vs)>;
  def: Pat<(VecPI32 (sext HVI16:$Vs)), (VSxth $Vs)>;
  def: Pat<(VecPI16 (zext HVI8:$Vs)),  (VZxtb $Vs)>;
  def: Pat<(VecPI32 (zext HVI16:$Vs)), (VZxth $Vs)>;

  def: Pat<(VecI16 (sext_invec HVI8:$Vs)),  (LoVec (VSxtb $Vs))>;
  def: Pat<(VecI32 (sext_invec HVI16:$Vs)), (LoVec (VSxth $Vs))>;
  def: Pat<(VecI32 (sext_invec HVI8:$Vs)),
           (LoVec (VSxth (LoVec (VSxtb $Vs))))>;

  def: Pat<(VecI16 (zext_invec HVI8:$Vs)),  (LoVec (VZxtb $Vs))>;
  def: Pat<(VecI32 (zext_invec HVI16:$Vs)), (LoVec (VZxth $Vs))>;
  def: Pat<(VecI32 (zext_invec HVI8:$Vs)),
           (LoVec (VZxth (LoVec (VZxtb $Vs))))>;
}