Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
//===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains instruction definitions and patterns needed for 64-bit
// code generation on SPARC v9.
//
// Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can
// also be used in 32-bit code running on a SPARC v9 CPU.
//
//===----------------------------------------------------------------------===//

let Predicates = [Is64Bit] in {
// The same integer registers are used for i32 and i64 values.
// When registers hold i32 values, the high bits are don't care.
// This give us free trunc and anyext.
def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>;
def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>;

} // Predicates = [Is64Bit]


//===----------------------------------------------------------------------===//
// 64-bit Shift Instructions.
//===----------------------------------------------------------------------===//
//
// The 32-bit shift instructions are still available. The left shift srl
// instructions shift all 64 bits, but it only accepts a 5-bit shift amount.
//
// The srl instructions only shift the low 32 bits and clear the high 32 bits.
// Finally, sra shifts the low 32 bits and sign-extends to 64 bits.

let Predicates = [Is64Bit] in {

def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>;
def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>;

def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>;
def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>;

defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>;
defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>;
defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>;

} // Predicates = [Is64Bit]


//===----------------------------------------------------------------------===//
// 64-bit Immediates.
//===----------------------------------------------------------------------===//
//
// All 32-bit immediates can be materialized with sethi+or, but 64-bit
// immediates may require more code. There may be a point where it is
// preferable to use a constant pool load instead, depending on the
// microarchitecture.

// Single-instruction patterns.

// The ALU instructions want their simm13 operands as i32 immediates.
def as_i32imm : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32);
}]>;
def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>;
def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>;

// Double-instruction patterns.

// All unsigned i32 immediates can be handled by sethi+or.
def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>,
      Requires<[Is64Bit]>;

// All negative i33 immediates can be handled by sethi+xor.
def nimm33 : PatLeaf<(imm), [{
  int64_t Imm = N->getSExtValue();
  return Imm < 0 && isInt<33>(Imm);
}]>;
// Bits 10-31 inverted. Same as assembler's %hix.
def HIX22 : SDNodeXForm<imm, [{
  uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1);
  return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32);
}]>;
// Bits 0-9 with ones in bits 10-31. Same as assembler's %lox.
def LOX10 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), SDLoc(N),
                                   MVT::i32);
}]>;
def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>,
      Requires<[Is64Bit]>;

// More possible patterns:
//
//   (sllx sethi, n)
//   (sllx simm13, n)
//
// 3 instrs:
//
//   (xor (sllx sethi), simm13)
//   (sllx (xor sethi, simm13))
//
// 4 instrs:
//
//   (or sethi, (sllx sethi))
//   (xnor sethi, (sllx sethi))
//
// 5 instrs:
//
//   (or (sllx sethi), (or sethi, simm13))
//   (xnor (sllx sethi), (or sethi, simm13))
//   (or (sllx sethi), (sllx sethi))
//   (xnor (sllx sethi), (sllx sethi))
//
// Worst case is 6 instrs:
//
//   (or (sllx (or sethi, simmm13)), (or sethi, simm13))

// Bits 42-63, same as assembler's %hh.
def HH22 : SDNodeXForm<imm, [{
  uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1);
  return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32);
}]>;
// Bits 32-41, same as assembler's %hm.
def HM10 : SDNodeXForm<imm, [{
  uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1);
  return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32);
}]>;
def : Pat<(i64 imm:$val),
          (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)),
                (ORri (SETHIi (HI22 $val)), (LO10 $val)))>,
      Requires<[Is64Bit]>;


//===----------------------------------------------------------------------===//
// 64-bit Integer Arithmetic and Logic.
//===----------------------------------------------------------------------===//

let Predicates = [Is64Bit] in {

// Register-register instructions.
let isCodeGenOnly = 1 in {
defm ANDX    : F3_12<"and", 0b000001, and, I64Regs, i64, i64imm>;
defm ORX     : F3_12<"or",  0b000010, or,  I64Regs, i64, i64imm>;
defm XORX    : F3_12<"xor", 0b000011, xor, I64Regs, i64, i64imm>;

def ANDXNrr  : F3_1<2, 0b000101,
                 (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
                 "andn $b, $c, $dst",
                 [(set i64:$dst, (and i64:$b, (not i64:$c)))]>;
def ORXNrr   : F3_1<2, 0b000110,
                 (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
                 "orn $b, $c, $dst",
                 [(set i64:$dst, (or i64:$b, (not i64:$c)))]>;
def XNORXrr  : F3_1<2, 0b000111,
                   (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
                   "xnor $b, $c, $dst",
                   [(set i64:$dst, (not (xor i64:$b, i64:$c)))]>;

defm ADDX    : F3_12<"add", 0b000000, add, I64Regs, i64, i64imm>;
defm SUBX    : F3_12<"sub", 0b000100, sub, I64Regs, i64, i64imm>;

def TLS_ADDXrr : F3_1<2, 0b000000, (outs I64Regs:$rd),
                   (ins I64Regs:$rs1, I64Regs:$rs2, TLSSym:$sym),
                   "add $rs1, $rs2, $rd, $sym",
                   [(set i64:$rd,
                       (tlsadd i64:$rs1, i64:$rs2, tglobaltlsaddr:$sym))]>;

// "LEA" form of add
def LEAX_ADDri : F3_2<2, 0b000000,
                     (outs I64Regs:$dst), (ins MEMri:$addr),
                     "add ${addr:arith}, $dst",
                     [(set iPTR:$dst, ADDRri:$addr)]>;
}

def : Pat<(SPcmpicc i64:$a, i64:$b), (CMPrr $a, $b)>;
def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (CMPri $a, (as_i32imm $b))>;
def : Pat<(ctpop i64:$src), (POPCrr $src)>;

} // Predicates = [Is64Bit]


//===----------------------------------------------------------------------===//
// 64-bit Integer Multiply and Divide.
//===----------------------------------------------------------------------===//

let Predicates = [Is64Bit] in {

def MULXrr : F3_1<2, 0b001001,
                  (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
                  "mulx $rs1, $rs2, $rd",
                  [(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>;
def MULXri : F3_2<2, 0b001001,
                  (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
                  "mulx $rs1, $simm13, $rd",
                  [(set i64:$rd, (mul i64:$rs1, (i64 simm13:$simm13)))]>;

// Division can trap.
let hasSideEffects = 1 in {
def SDIVXrr : F3_1<2, 0b101101,
                   (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
                   "sdivx $rs1, $rs2, $rd",
                   [(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>;
def SDIVXri : F3_2<2, 0b101101,
                   (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
                   "sdivx $rs1, $simm13, $rd",
                   [(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$simm13)))]>;

def UDIVXrr : F3_1<2, 0b001101,
                   (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
                   "udivx $rs1, $rs2, $rd",
                   [(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>;
def UDIVXri : F3_2<2, 0b001101,
                   (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
                   "udivx $rs1, $simm13, $rd",
                   [(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$simm13)))]>;
} // hasSideEffects = 1

} // Predicates = [Is64Bit]


//===----------------------------------------------------------------------===//
// 64-bit Loads and Stores.
//===----------------------------------------------------------------------===//
//
// All the 32-bit loads and stores are available. The extending loads are sign
// or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits
// zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned
// Word).
//
// SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads.

let Predicates = [Is64Bit] in {

// 64-bit loads.
let DecoderMethod = "DecodeLoadInt" in
  defm LDX   : Load<"ldx", 0b001011, load, I64Regs, i64>;

let mayLoad = 1, isCodeGenOnly = 1, isAsmParserOnly = 1 in
  def TLS_LDXrr : F3_1<3, 0b001011,
                       (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
                       "ldx [$addr], $dst, $sym",
                       [(set i64:$dst,
                           (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;

// Extending loads to i64.
def : Pat<(i64 (zextloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
def : Pat<(i64 (zextloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
def : Pat<(i64 (extloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
def : Pat<(i64 (extloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;

def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
def : Pat<(i64 (extloadi8 ADDRrr:$addr)),  (LDUBrr ADDRrr:$addr)>;
def : Pat<(i64 (extloadi8 ADDRri:$addr)),  (LDUBri ADDRri:$addr)>;
def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>;
def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>;

def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
def : Pat<(i64 (extloadi16 ADDRrr:$addr)),  (LDUHrr ADDRrr:$addr)>;
def : Pat<(i64 (extloadi16 ADDRri:$addr)),  (LDUHri ADDRri:$addr)>;
def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>;
def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>;

def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
def : Pat<(i64 (extloadi32 ADDRrr:$addr)),  (LDrr ADDRrr:$addr)>;
def : Pat<(i64 (extloadi32 ADDRri:$addr)),  (LDri ADDRri:$addr)>;

// Sign-extending load of i32 into i64 is a new SPARC v9 instruction.
let DecoderMethod = "DecodeLoadInt" in
  defm LDSW   : Load<"ldsw", 0b001000, sextloadi32, I64Regs, i64>;

// 64-bit stores.
let DecoderMethod = "DecodeStoreInt" in
  defm STX    : Store<"stx", 0b001110, store,  I64Regs, i64>;

// Truncating stores from i64 are identical to the i32 stores.
def : Pat<(truncstorei8  i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>;
def : Pat<(truncstorei8  i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>;
def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>;
def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>;
def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr  ADDRrr:$addr, $src)>;
def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri  ADDRri:$addr, $src)>;

// store 0, addr -> store %g0, addr
def : Pat<(store (i64 0), ADDRrr:$dst), (STXrr ADDRrr:$dst, (i64 G0))>;
def : Pat<(store (i64 0), ADDRri:$dst), (STXri ADDRri:$dst, (i64 G0))>;

} // Predicates = [Is64Bit]


//===----------------------------------------------------------------------===//
// 64-bit Conditionals.
//===----------------------------------------------------------------------===//

//
// Flag-setting instructions like subcc and addcc set both icc and xcc flags.
// The icc flags correspond to the 32-bit result, and the xcc are for the
// full 64-bit result.
//
// We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for
// 64-bit compares. See LowerBR_CC.

let Predicates = [Is64Bit] in {

let Uses = [ICC], cc = 0b10 in
  defm BPX : IPredBranch<"%xcc", [(SPbrxcc bb:$imm19, imm:$cond)]>;

// Conditional moves on %xcc.
let Uses = [ICC], Constraints = "$f = $rd" in {
let intcc = 1, cc = 0b10 in {
def MOVXCCrr : F4_1<0b101100, (outs IntRegs:$rd),
                      (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
                      "mov$cond %xcc, $rs2, $rd",
                      [(set i32:$rd,
                       (SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>;
def MOVXCCri : F4_2<0b101100, (outs IntRegs:$rd),
                      (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
                      "mov$cond %xcc, $simm11, $rd",
                      [(set i32:$rd,
                       (SPselectxcc simm11:$simm11, i32:$f, imm:$cond))]>;
} // cc

let intcc = 1, opf_cc = 0b10 in {
def FMOVS_XCC : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
                      (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
                      "fmovs$cond %xcc, $rs2, $rd",
                      [(set f32:$rd,
                       (SPselectxcc f32:$rs2, f32:$f, imm:$cond))]>;
def FMOVD_XCC : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
                      (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
                      "fmovd$cond %xcc, $rs2, $rd",
                      [(set f64:$rd,
                       (SPselectxcc f64:$rs2, f64:$f, imm:$cond))]>;
def FMOVQ_XCC : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
                      (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
                      "fmovq$cond %xcc, $rs2, $rd",
                      [(set f128:$rd,
                       (SPselectxcc f128:$rs2, f128:$f, imm:$cond))]>;
} // opf_cc
} // Uses, Constraints

// Branch On integer register with Prediction (BPr).
let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in
multiclass BranchOnReg<bits<3> cond, string OpcStr> {
  def napt : F2_4<cond, 0, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
             !strconcat(OpcStr, " $rs1, $imm16"), []>;
  def apt  : F2_4<cond, 1, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
             !strconcat(OpcStr, ",a $rs1, $imm16"), []>;
  def napn  : F2_4<cond, 0, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
             !strconcat(OpcStr, ",pn $rs1, $imm16"), []>;
  def apn : F2_4<cond, 1, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
             !strconcat(OpcStr, ",a,pn $rs1, $imm16"), []>;
}

multiclass bpr_alias<string OpcStr, Instruction NAPT, Instruction APT> {
  def : InstAlias<!strconcat(OpcStr, ",pt $rs1, $imm16"),
                  (NAPT I64Regs:$rs1, bprtarget16:$imm16), 0>;
  def : InstAlias<!strconcat(OpcStr, ",a,pt $rs1, $imm16"),
                  (APT I64Regs:$rs1, bprtarget16:$imm16), 0>;
}

defm BPZ   : BranchOnReg<0b001, "brz">;
defm BPLEZ : BranchOnReg<0b010, "brlez">;
defm BPLZ  : BranchOnReg<0b011, "brlz">;
defm BPNZ  : BranchOnReg<0b101, "brnz">;
defm BPGZ  : BranchOnReg<0b110, "brgz">;
defm BPGEZ : BranchOnReg<0b111, "brgez">;

defm : bpr_alias<"brz",   BPZnapt,   BPZapt  >;
defm : bpr_alias<"brlez", BPLEZnapt, BPLEZapt>;
defm : bpr_alias<"brlz",  BPLZnapt,  BPLZapt >;
defm : bpr_alias<"brnz",  BPNZnapt,  BPNZapt >;
defm : bpr_alias<"brgz",  BPGZnapt,  BPGZapt >;
defm : bpr_alias<"brgez", BPGEZnapt, BPGEZapt>;

// Move integer register on register condition (MOVr).
multiclass MOVR< bits<3> rcond,  string OpcStr> {
  def rr : F4_4r<0b101111, 0b00000, rcond, (outs I64Regs:$rd),
                   (ins I64Regs:$rs1, IntRegs:$rs2),
                   !strconcat(OpcStr, " $rs1, $rs2, $rd"), []>;

  def ri : F4_4i<0b101111, rcond, (outs I64Regs:$rd),
                   (ins I64Regs:$rs1, i64imm:$simm10),
                   !strconcat(OpcStr, " $rs1, $simm10, $rd"), []>;
}

defm MOVRRZ  : MOVR<0b001, "movrz">;
defm MOVRLEZ : MOVR<0b010, "movrlez">;
defm MOVRLZ  : MOVR<0b011, "movrlz">;
defm MOVRNZ  : MOVR<0b101, "movrnz">;
defm MOVRGZ  : MOVR<0b110, "movrgz">;
defm MOVRGEZ : MOVR<0b111, "movrgez">;

// Move FP register on integer register condition (FMOVr).
multiclass FMOVR<bits<3> rcond, string OpcStr> {

  def S : F4_4r<0b110101, 0b00101, rcond,
                (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2),
                !strconcat(!strconcat("fmovrs", OpcStr)," $rs1, $rs2, $rd"),
                []>;
  def D : F4_4r<0b110101, 0b00110, rcond,
                (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2),
                !strconcat(!strconcat("fmovrd", OpcStr)," $rs1, $rs2, $rd"),
                []>;
  def Q : F4_4r<0b110101, 0b00111, rcond,
                (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2),
                !strconcat(!strconcat("fmovrq", OpcStr)," $rs1, $rs2, $rd"),
                []>, Requires<[HasHardQuad]>;
}

let Predicates = [HasV9] in {
  defm FMOVRZ   : FMOVR<0b001, "z">;
  defm FMOVRLEZ : FMOVR<0b010, "lez">;
  defm FMOVRLZ  : FMOVR<0b011, "lz">;
  defm FMOVRNZ  : FMOVR<0b101, "nz">;
  defm FMOVRGZ  : FMOVR<0b110, "gz">;
  defm FMOVRGEZ : FMOVR<0b111, "gez">;
}

//===----------------------------------------------------------------------===//
// 64-bit Floating Point Conversions.
//===----------------------------------------------------------------------===//

let Predicates = [Is64Bit] in {

def FXTOS : F3_3u<2, 0b110100, 0b010000100,
                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
                 "fxtos $rs2, $rd",
                 [(set FPRegs:$rd, (SPxtof DFPRegs:$rs2))]>;
def FXTOD : F3_3u<2, 0b110100, 0b010001000,
                 (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
                 "fxtod $rs2, $rd",
                 [(set DFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>;
def FXTOQ : F3_3u<2, 0b110100, 0b010001100,
                 (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
                 "fxtoq $rs2, $rd",
                 [(set QFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>,
                 Requires<[HasHardQuad]>;

def FSTOX : F3_3u<2, 0b110100, 0b010000001,
                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
                 "fstox $rs2, $rd",
                 [(set DFPRegs:$rd, (SPftox FPRegs:$rs2))]>;
def FDTOX : F3_3u<2, 0b110100, 0b010000010,
                 (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
                 "fdtox $rs2, $rd",
                 [(set DFPRegs:$rd, (SPftox DFPRegs:$rs2))]>;
def FQTOX : F3_3u<2, 0b110100, 0b010000011,
                 (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
                 "fqtox $rs2, $rd",
                 [(set DFPRegs:$rd, (SPftox QFPRegs:$rs2))]>,
                 Requires<[HasHardQuad]>;

} // Predicates = [Is64Bit]

def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond),
          (MOVXCCrr $t, $f, imm:$cond)>;
def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond),
          (MOVXCCri (as_i32imm $t), $f, imm:$cond)>;

def : Pat<(SPselecticc i64:$t, i64:$f, imm:$cond),
          (MOVICCrr $t, $f, imm:$cond)>;
def : Pat<(SPselecticc (i64 simm11:$t), i64:$f, imm:$cond),
          (MOVICCri (as_i32imm $t), $f, imm:$cond)>;

def : Pat<(SPselectfcc i64:$t, i64:$f, imm:$cond),
          (MOVFCCrr $t, $f, imm:$cond)>;
def : Pat<(SPselectfcc (i64 simm11:$t), i64:$f, imm:$cond),
          (MOVFCCri (as_i32imm $t), $f, imm:$cond)>;

} // Predicates = [Is64Bit]


// 64 bit SETHI
let Predicates = [Is64Bit], isCodeGenOnly = 1 in {
def SETHIXi : F2_1<0b100,
                   (outs IntRegs:$rd), (ins i64imm:$imm22),
                   "sethi $imm22, $rd",
                   [(set i64:$rd, SETHIimm:$imm22)]>;
}

// ATOMICS.
let Predicates = [Is64Bit], Constraints = "$swap = $rd", asi = 0b10000000 in {
  def CASXrr: F3_1_asi<3, 0b111110,
                (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2,
                                     I64Regs:$swap),
                 "casx [$rs1], $rs2, $rd",
                 [(set i64:$rd,
                     (atomic_cmp_swap_64 i64:$rs1, i64:$rs2, i64:$swap))]>;

} // Predicates = [Is64Bit], Constraints = ...

let Predicates = [Is64Bit] in {

def : Pat<(atomic_fence imm, imm), (MEMBARi 0xf)>;

// atomic_load_64 addr -> load addr
def : Pat<(i64 (atomic_load_64 ADDRrr:$src)), (LDXrr ADDRrr:$src)>;
def : Pat<(i64 (atomic_load_64 ADDRri:$src)), (LDXri ADDRri:$src)>;

// atomic_store_64 val, addr -> store val, addr
def : Pat<(atomic_store_64 ADDRrr:$dst, i64:$val), (STXrr ADDRrr:$dst, $val)>;
def : Pat<(atomic_store_64 ADDRri:$dst, i64:$val), (STXri ADDRri:$dst, $val)>;

} // Predicates = [Is64Bit]

let Predicates = [Is64Bit], hasSideEffects = 1, Uses = [ICC], cc = 0b10 in
 defm TXCC : TRAP<"%xcc">;

// Global addresses, constant pool entries
let Predicates = [Is64Bit] in {

def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
def : Pat<(SPlo tglobaladdr:$in), (ORXri (i64 G0), tglobaladdr:$in)>;
def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
def : Pat<(SPlo tconstpool:$in), (ORXri (i64 G0), tconstpool:$in)>;

// GlobalTLS addresses
def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
def : Pat<(SPlo tglobaltlsaddr:$in), (ORXri (i64 G0), tglobaltlsaddr:$in)>;
def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
          (ADDXri (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
          (XORXri  (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;

// Blockaddress
def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
def : Pat<(SPlo tblockaddress:$in), (ORXri (i64 G0), tblockaddress:$in)>;

// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDXri $r, tglobaladdr:$in)>;
def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDXri $r, tconstpool:$in)>;
def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
                        (ADDXri $r, tblockaddress:$in)>;
}