Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
/*
 * tg.c generate WWV or IRIG signals for test
 */
/*
 * This program can generate audio signals that simulate the WWV/H
 * broadcast timecode. Alternatively, it can generate the IRIG-B
 * timecode commonly used to synchronize laboratory equipment. It is
 * intended to test the WWV/H driver (refclock_wwv.c) and the IRIG
 * driver (refclock_irig.c) in the NTP driver collection.
 *
 * Besides testing the drivers themselves, this program can be used to
 * synchronize remote machines over audio transmission lines or program
 * feeds. The program reads the time on the local machine and sets the
 * initial epoch of the signal generator within one millisecond.
 * Alernatively, the initial epoch can be set to an arbitrary time. This
 * is useful when searching for bugs and testing for correct response to
 * a leap second in UTC. Note however, the ultimate accuracy is limited
 * by the intrinsic frequency error of the codec sample clock, which can
 # reach well over 100 PPM.
 *
 * The default is to route generated signals to the line output
 * jack; the s option on the command line routes these signals to the
 * internal speaker as well. The v option controls the speaker volume
 * over the range 0-255. The signal generator by default uses WWV
 * format; the h option switches to WWVH format and the i option
 * switches to IRIG-B format.
 *
 * Once started the program runs continuously. The default initial epoch
 * for the signal generator is read from the computer system clock when
 * the program starts. The y option specifies an alternate epoch using a
 * string yydddhhmmss, where yy is the year of century, ddd the day of
 * year, hh the hour of day and mm the minute of hour. For instance,
 * 1946Z on 1 January 2006 is 060011946. The l option lights the leap
 * warning bit in the WWV/H timecode, so is handy to check for correct
 * behavior at the next leap second epoch. The remaining options are
 * specified below under the Parse Options heading. Most of these are
 * for testing.
 *
 * During operation the program displays the WWV/H timecode (9 digits)
 * or IRIG timecode (20 digits) as each new string is constructed. The
 * display is followed by the BCD binary bits as transmitted. Note that
 * the transmissionorder is low-order first as the frame is processed
 * left to right. For WWV/H The leap warning L preceeds the first bit.
 * For IRIG the on-time marker M preceeds the first (units) bit, so its
 * code is delayed one bit and the next digit (tens) needs only three
 * bits.
 *
 * The program has been tested with the Sun Blade 1500 running Solaris
 * 10, but not yet with other machines. It uses no special features and
 * should be readily portable to other hardware and operating systems.
 *
 * $Log: tg.c,v $
 * Revision 1.28  2007/02/12 23:57:45  dmw
 * v0.23 2007-02-12 dmw:
 * - Changed statistics to include calculated error
 *   of frequency, based on number of added or removed
 *   cycles over time.
 *
 * Revision 1.27  2007/02/09 02:28:59  dmw
 * v0.22 2007-02-08 dmw:
 * - Changed default for rate correction to "enabled", "-j" switch now disables.
 * - Adjusted help message accordingly.
 * - Added "2007" to modifications note at end of help message.
 *
 * Revision 1.26  2007/02/08 03:36:17  dmw
 * v0.21 2007-02-07 dmw:
 * - adjusted strings for shorten and lengthen to make
 *   fit on smaller screen.
 *
 * Revision 1.25  2007/02/01 06:08:09  dmw
 * v0.20 2007-02-01 dmw:
 * - Added periodic display of running time along with legend on IRIG-B, allows tracking how
 *   close IRIG output is to actual clock time.
 *
 * Revision 1.24  2007/01/31 19:24:11  dmw
 * v0.19 2007-01-31 dmw:
 * - Added tracking of how many seconds have been adjusted,
 *   how many cycles added (actually in milliseconds), how
 *   many cycles removed, print periodically if verbose is
 *   active.
 * - Corrected lack of lengthen or shorten of minute & hour
 *   pulses for WWV format.
 *
 * Revision 1.23  2007/01/13 07:09:12  dmw
 * v0.18 2007-01-13 dmw:
 * - added -k option, which allows force of long or short
 *   cycles, to test against IRIG-B decoder.
 *
 * Revision 1.22  2007/01/08 16:27:23  dmw
 * v0.17 2007-01-08 dmw:
 * - Changed -j option to **enable** rate correction, not disable.
 *
 * Revision 1.21  2007/01/08 06:22:36  dmw
 * v0.17 2007-01-08 dmw:
 * - Run stability check versus ongoing system clock (assume NTP correction)
 *   and adjust time code rate to try to correct, if gets too far out of sync.
 *   Disable this algorithm with -j option.
 *
 * Revision 1.20  2006/12/19 04:59:04  dmw
 * v0.16 2006-12-18 dmw
 * - Corrected print of setting of output frequency, always
 *   showed 8000 samples/sec, now as specified on command line.
 * - Modified to reflect new employer Norscan.
 *
 * Revision 1.19  2006/12/19 03:45:38  dmw
 * v0.15 2006-12-18 dmw:
 * - Added count of number of seconds to output then exit,
 *   default zero for forever.
 *
 * Revision 1.18  2006/12/18 05:43:36  dmw
 * v0.14 2006-12-17 dmw:
 * - Corrected WWV(H) signal to leave "tick" sound off of 29th and 59th second of minute.
 * - Adjusted verbose output format for WWV(H).
 *
 * Revision 1.17  2006/12/18 02:31:33  dmw
 * v0.13 2006-12-17 dmw:
 * - Put SPARC code back in, hopefully will work, but I don't have
 *   a SPARC to try it on...
 * - Reworked Verbose mode, different flag to initiate (x not v)
 *   and actually implement turn off of verbosity when this flag used.
 * - Re-claimed v flag for output level.
 * - Note that you must define OSS_MODS to get OSS to compile,
 *   otherwise will expect to compile using old SPARC options, as
 *   it used to be.
 *
 * Revision 1.16  2006/10/26 19:08:43  dmw
 * v0.12 2006-10-26 dmw:
 * - Reversed output binary dump for IRIG, makes it easier to read the numbers.
 *
 * Revision 1.15  2006/10/24 15:57:09  dmw
 * v0.11 2006-10-24 dmw:
 * - another tweak.
 *
 * Revision 1.14  2006/10/24 15:55:53  dmw
 * v0.11 2006-10-24 dmw:
 * - Curses a fix to the fix to the fix of the usaeg.
 *
 * Revision 1.13  2006/10/24 15:53:25  dmw
 * v0.11 (still) 2006-10-24 dmw:
 * - Messed with usage message that's all.
 *
 * Revision 1.12  2006/10/24 15:50:05  dmw
 * v0.11 2006-10-24 dmw:
 * - oops, needed to note "hours" in usage of that offset.
 *
 * Revision 1.11  2006/10/24 15:49:09  dmw
 * v0.11 2006-10-24 dmw:
 * - Added ability to offset actual time sent, from the UTC time
 *   as per the computer.
 *
 * Revision 1.10  2006/10/24 03:25:55  dmw
 * v0.10 2006-10-23 dmw:
 * - Corrected polarity of correction of offset when going into or out of DST.
 * - Ensure that zero offset is always positive (pet peeve).
 *
 * Revision 1.9  2006/10/24 00:00:35  dmw
 * v0.9 2006-10-23 dmw:
 * - Shift time offset when DST in or out.
 *
 * Revision 1.8  2006/10/23 23:49:28  dmw
 * v0.8 2006-10-23 dmw:
 * - made offset of zero default positive.
 *
 * Revision 1.7  2006/10/23 23:44:13  dmw
 * v0.7 2006-10-23 dmw:
 * - Added unmodulated and inverted unmodulated output.
 *
 * Revision 1.6  2006/10/23 18:10:37  dmw
 * v0.6 2006-10-23 dmw:
 * - Cleaned up usage message.
 * - Require at least one option, or prints usage message and exits.
 *
 * Revision 1.5  2006/10/23 16:58:10  dmw
 * v0.5 2006-10-23 dmw:
 * - Finally added a usage message.
 * - Added leap second pending and DST change pending into IEEE 1344.
 * - Default code type is now IRIG-B with IEEE 1344.
 *
 * Revision 1.4  2006/10/23 03:27:25  dmw
 * v0.4 2006-10-22 dmw:
 * - Added leap second addition and deletion.
 * - Added DST changing forward and backward.
 * - Changed date specification to more conventional year, month, and day of month
 *   (rather than day of year).
 *
 * Revision 1.3  2006/10/22 21:04:12  dmw
 * v0.2 2006-10-22 dmw:
 * - Corrected format of legend line.
 *
 * Revision 1.2  2006/10/22 21:01:07  dmw
 * v0.1 2006-10-22 dmw:
 * - Added some more verbose output (as is my style)
 * - Corrected frame format - there were markers in the
 *   middle of frames, now correctly as "zero" bits.
 * - Added header line to show fields of output.
 * - Added straight binary seconds, were not implemented
 *   before.
 * - Added IEEE 1344 with parity.
 *
 *
 */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#ifdef  HAVE_CONFIG_H
#include "config.h"
#undef VERSION		/* avoid conflict below */
#endif

#ifdef  HAVE_SYS_SOUNDCARD_H
#include <sys/soundcard.h>
#else
# ifdef HAVE_SYS_AUDIOIO_H
# include <sys/audioio.h>
# else
# include <sys/audio.h>
# endif
#endif

#include "ntp_stdlib.h"	/* for strlcat(), strlcpy() */

#include <math.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <ctype.h>
#include <sys/ioctl.h>
#include <sys/time.h>

#define VERSION		(0)
#define	ISSUE		(23)
#define	ISSUE_DATE	"2007-02-12"

#define	SECOND	(8000)			/* one second of 125-us samples */
#define BUFLNG	(400)			/* buffer size */
#define	DEVICE	"/dev/audio"	/* default audio device */
#define	WWV		(0)				/* WWV encoder */
#define	IRIG	(1)				/* IRIG-B encoder */
#define	OFF		(0)				/* zero amplitude */
#define	LOW		(1)				/* low amplitude */
#define	HIGH	(2)				/* high amplitude */
#define	DATA0	(200)			/* WWV/H 0 pulse */
#define	DATA1	(500)			/* WWV/H 1 pulse */
#define PI		(800)			/* WWV/H PI pulse */
#define	M2		(2)				/* IRIG 0 pulse */
#define	M5		(5)				/* IRIG 1 pulse */
#define	M8		(8)				/* IRIG PI pulse */

#define	NUL		(0)

#define	SECONDS_PER_MINUTE	(60)
#define SECONDS_PER_HOUR	(3600)

#define	OUTPUT_DATA_STRING_LENGTH	(200)

/* Attempt at unmodulated - "high" */
int u6000[] = {
	247, 247, 247, 247, 247, 247, 247, 247, 247, 247,	/*  0- 9 */
    247, 247, 247, 247, 247, 247, 247, 247, 247, 247,	/* 10-19 */
    247, 247, 247, 247, 247, 247, 247, 247, 247, 247,	/* 20-29 */
    247, 247, 247, 247, 247, 247, 247, 247, 247, 247,	/* 30-39 */
    247, 247, 247, 247, 247, 247, 247, 247, 247, 247,	/* 40-49 */
    247, 247, 247, 247, 247, 247, 247, 247, 247, 247, 	/* 50-59 */
    247, 247, 247, 247, 247, 247, 247, 247, 247, 247,	/* 60-69 */
    247, 247, 247, 247, 247, 247, 247, 247, 247, 247}; 	/* 70-79 */

/* Attempt at unmodulated - "low" */
int u3000[] = {
	119, 119, 119, 119, 119, 119, 119, 119, 119, 119,	/*  0- 9 */
    119, 119, 119, 119, 119, 119, 119, 119, 119, 119,	/* 10-19 */
    119, 119, 119, 119, 119, 119, 119, 119, 119, 119,	/* 20-29 */
    119, 119, 119, 119, 119, 119, 119, 119, 119, 119,	/* 30-39 */
    119, 119, 119, 119, 119, 119, 119, 119, 119, 119,	/* 40-49 */
    119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 	/* 50-59 */
    119, 119, 119, 119, 119, 119, 119, 119, 119, 119,	/* 60-69 */
    119, 119, 119, 119, 119, 119, 119, 119, 119, 119}; 	/* 70-79 */

/*
 * Companded sine table amplitude 3000 units
 */
int c3000[] = {1, 48, 63, 70, 78, 82, 85, 89, 92, 94,	/* 0-9 */
     96,  98,  99, 100, 101, 101, 102, 103, 103, 103,	/* 10-19 */
    103, 103, 103, 103, 102, 101, 101, 100,  99,  98,	/* 20-29 */
     96,  94,  92,  89,  85,  82,  78,  70,  63,  48,	/* 30-39 */
    129, 176, 191, 198, 206, 210, 213, 217, 220, 222,	/* 40-49 */
    224, 226, 227, 228, 229, 229, 230, 231, 231, 231, 	/* 50-59 */
    231, 231, 231, 231, 230, 229, 229, 228, 227, 226,	/* 60-69 */
    224, 222, 220, 217, 213, 210, 206, 198, 191, 176}; 	/* 70-79 */
/*
 * Companded sine table amplitude 6000 units
 */
int c6000[] = {1, 63, 78, 86, 93, 98, 101, 104, 107, 110, /* 0-9 */
    112, 113, 115, 116, 117, 117, 118, 118, 119, 119,	/* 10-19 */
    119, 119, 119, 118, 118, 117, 117, 116, 115, 113,	/* 20-29 */
    112, 110, 107, 104, 101,  98,  93,  86,  78,  63,	/* 30-39 */
    129, 191, 206, 214, 221, 226, 229, 232, 235, 238,	/* 40-49 */
    240, 241, 243, 244, 245, 245, 246, 246, 247, 247, 	/* 50-59 */
    247, 247, 247, 246, 246, 245, 245, 244, 243, 241,	/* 60-69 */
    240, 238, 235, 232, 229, 226, 221, 214, 206, 191}; 	/* 70-79 */

/*
 * Decoder operations at the end of each second are driven by a state
 * machine. The transition matrix consists of a dispatch table indexed
 * by second number. Each entry in the table contains a case switch
 * number and argument.
 */
struct progx {
	int sw;			/* case switch number */
	int arg;		/* argument */
};

/*
 * Case switch numbers
 */
#define DATA	(0)		/* send data (0, 1, PI) */
#define COEF	(1)		/* send BCD bit */
#define	DEC		(2)		/* decrement to next digit and send PI */
#define	MIN		(3)		/* minute pulse */
#define	LEAP	(4)		/* leap warning */
#define	DUT1	(5)		/* DUT1 bits */
#define	DST1	(6)		/* DST1 bit */
#define	DST2	(7)		/* DST2 bit */
#define DECZ	(8)		/* decrement to next digit and send zero */
#define DECC	(9)		/* decrement to next digit and send bit */
#define NODEC	(10)	/* no decerement to next digit, send PI */
#define DECX	(11)	/* decrement to next digit, send PI, but no tick */
#define DATAX	(12)	/* send data (0, 1, PI), but no tick */

/*
 * WWV/H format (100-Hz, 9 digits, 1 m frame)
 */
struct progx progx[] = {
	{MIN,	800},		/* 0 minute sync pulse */
	{DATA,	DATA0},		/* 1 */
	{DST2,	0},		/* 2 DST2 */
	{LEAP,	0},		/* 3 leap warning */
	{COEF,	1},		/* 4 1 year units */
	{COEF,	2},		/* 5 2 */
	{COEF,	4},		/* 6 4 */
	{COEF,	8},		/* 7 8 */
	{DEC,	DATA0},		/* 8 */
	{DATA,	PI},		/* 9 p1 */
	{COEF,	1},		/* 10 1 minute units */
	{COEF,	2},		/* 11 2 */
	{COEF,	4},		/* 12 4 */
	{COEF,	8},		/* 13 8 */
	{DEC,	DATA0},		/* 14 */
	{COEF,	1},		/* 15 10 minute tens */
	{COEF,	2},		/* 16 20 */
	{COEF,	4},		/* 17 40 */
	{COEF,	8},		/* 18 80 (not used) */
	{DEC,	PI},		/* 19 p2 */
	{COEF,	1},		/* 20 1 hour units */
	{COEF,	2},		/* 21 2 */
	{COEF,	4},		/* 22 4 */
	{COEF,	8},		/* 23 8 */
	{DEC,	DATA0},		/* 24 */
	{COEF,	1},		/* 25 10 hour tens */
	{COEF,	2},		/* 26 20 */
	{COEF,	4},		/* 27 40 (not used) */
	{COEF,	8},		/* 28 80 (not used) */
	{DECX,	PI},		/* 29 p3 */
	{COEF,	1},		/* 30 1 day units */
	{COEF,	2},		/* 31 2 */
	{COEF,	4},		/* 32 4 */
	{COEF,	8},		/* 33 8 */
	{DEC,	DATA0},		/* 34 not used */
	{COEF,	1},		/* 35 10 day tens */
	{COEF,	2},		/* 36 20 */
	{COEF,	4},		/* 37 40 */
	{COEF,	8},		/* 38 80 */
	{DEC,	PI},		/* 39 p4 */
	{COEF,	1},		/* 40 100 day hundreds */
	{COEF,	2},		/* 41 200 */
	{COEF,	4},		/* 42 400 (not used) */
	{COEF,	8},		/* 43 800 (not used) */
	{DEC,	DATA0},		/* 44 */
	{DATA,	DATA0},		/* 45 */
	{DATA,	DATA0},		/* 46 */
	{DATA,	DATA0},		/* 47 */
	{DATA,	DATA0},		/* 48 */
	{DATA,	PI},		/* 49 p5 */
	{DUT1,	8},		/* 50 DUT1 sign */
	{COEF,	1},		/* 51 10 year tens */
	{COEF,	2},		/* 52 20 */
	{COEF,	4},		/* 53 40 */
	{COEF,	8},		/* 54 80 */
	{DST1,	0},		/* 55 DST1 */
	{DUT1,	1},		/* 56 0.1 DUT1 fraction */
	{DUT1,	2},		/* 57 0.2 */
	{DUT1,	4},		/* 58 0.4 */
	{DATAX,	PI},		/* 59 p6 */
	{DATA,	DATA0},		/* 60 leap */
};

/*
 * IRIG format frames (1000 Hz, 1 second for 10 frames of data)
 */

/*
 * IRIG format frame 10 - MS straight binary seconds
 */
struct progx progu[] = {
	{COEF,	2},		/* 0 0x0 0200 seconds */
	{COEF,	4},		/* 1 0x0 0400 */
	{COEF,	8},		/* 2 0x0 0800 */
	{DECC,	1},		/* 3 0x0 1000 */
	{COEF,	2},		/* 4 0x0 2000 */
	{COEF,	4},		/* 6 0x0 4000 */
	{COEF,	8},		/* 7 0x0 8000 */
	{DECC,	1},		/* 8 0x1 0000 */
	{COEF,  2},     /* 9 0x2 0000 - but only 86,401 / 0x1 5181 seconds in a day, so always zero */
	{NODEC,	M8},	/* 9 PI */
};

/*
 * IRIG format frame 8 - MS control functions
 */
struct progx progv[] = {
	{COEF,	2},		/*  0 CF # 19 */
	{COEF,	4},		/*  1 CF # 20 */
	{COEF,	8},		/*  2 CF # 21 */
	{DECC,	1},		/*  3 CF # 22 */
	{COEF,	2},		/*  4 CF # 23 */
	{COEF,	4},		/*  6 CF # 24 */
	{COEF,	8},		/*  7 CF # 25 */
	{DECC,	1},		/*  8 CF # 26 */
	{COEF,  2},		/*  9 CF # 27 */
	{DEC,	M8},	/* 10 PI */
};

/*
 * IRIG format frames 7 & 9 - LS control functions & LS straight binary seconds
 */
struct progx progw[] = {
	{COEF,	1},		/*  0  CF # 10, 0x0 0001 seconds */
	{COEF,	2},		/*  1  CF # 11, 0x0 0002 */
	{COEF,	4},		/*  2  CF # 12, 0x0 0004 */
	{COEF,	8},		/*  3  CF # 13, 0x0 0008 */
	{DECC,	1},		/*  4  CF # 14, 0x0 0010 */
	{COEF,	2},		/*  6  CF # 15, 0x0 0020 */
	{COEF,	4},		/*  7  CF # 16, 0x0 0040 */
	{COEF,	8},		/*  8  CF # 17, 0x0 0080 */
	{DECC,  1},		/*  9  CF # 18, 0x0 0100 */
	{NODEC,	M8},	/* 10  PI */
};

/*
 * IRIG format frames 2 to 6 - minutes, hours, days, hundreds days, 2 digit years (also called control functions bits 1-9)
 */
struct progx progy[] = {
	{COEF,	1},		/* 0 1 units, CF # 1 */
	{COEF,	2},		/* 1 2 units, CF # 2 */
	{COEF,	4},		/* 2 4 units, CF # 3 */
	{COEF,	8},		/* 3 8 units, CF # 4 */
	{DECZ,	M2},	/* 4 zero bit, CF # 5 / unused, default zero in years */
	{COEF,	1},		/* 5 10 tens, CF # 6 */
	{COEF,	2},		/* 6 20 tens, CF # 7*/
	{COEF,	4},		/* 7 40 tens, CF # 8*/
	{COEF,	8},		/* 8 80 tens, CF # 9*/
	{DEC,	M8},	/* 9 PI */
};

/*
 * IRIG format first frame, frame 1 - seconds
 */
struct progx progz[] = {
	{MIN,	M8},	/* 0 PI (on-time marker for the second at zero cross of 1st cycle) */
	{COEF,	1},		/* 1 1 units */
	{COEF,	2},		/* 2 2 */
	{COEF,	4},		/* 3 4 */
	{COEF,	8},		/* 4 8 */
	{DECZ,	M2},	/* 5 zero bit */
	{COEF,	1},		/* 6 10 tens */
	{COEF,	2},		/* 7 20 */
	{COEF,	4},		/* 8 40 */
	{DEC,	M8},	/* 9 PI */
};

/* LeapState values. */
#define	LEAPSTATE_NORMAL			(0)
#define	LEAPSTATE_DELETING			(1)
#define	LEAPSTATE_INSERTING			(2)
#define	LEAPSTATE_ZERO_AFTER_INSERT	(3)


/*
 * Forward declarations
 */
void	WWV_Second(int, int);		/* send second */
void	WWV_SecondNoTick(int, int);	/* send second with no tick */
void	digit(int);		/* encode digit */
void	peep(int, int, int);	/* send cycles */
void	poop(int, int, int, int); /* Generate unmodulated from similar tables */
void	delay(int);		/* delay samples */
int		ConvertMonthDayToDayOfYear (int, int, int);	/* Calc day of year from year month & day */
void	Help (void);	/* Usage message */
void	ReverseString(char *);

/*
 * Extern declarations, don't know why not in headers
 */
//float	round ( float );

/*
 * Global variables
 */
char	buffer[BUFLNG];		/* output buffer */
int	bufcnt = 0;		/* buffer counter */
int	fd;			/* audio codec file descriptor */
int	tone = 1000;		/* WWV sync frequency */
int HourTone = 1500;	/* WWV hour on-time frequency */
int	encode = IRIG;		/* encoder select */
int	leap = 0;		/* leap indicator */
int	DstFlag = 0;		/* winter/summer time */
int	dut1 = 0;		/* DUT1 correction (sign, magnitude) */
int	utc = 0;		/* option epoch */
int IrigIncludeYear = FALSE;	/* Whether to send year in first control functions area, between P5 and P6. */
int IrigIncludeIeee = FALSE;	/* Whether to send IEEE 1344 control functions extensions between P6 and P8. */
int	StraightBinarySeconds = 0;
int	ControlFunctions = 0;
int	Debug = FALSE;
int Verbose = TRUE;
char	*CommandName;

#ifndef  HAVE_SYS_SOUNDCARD_H
int	level = AUDIO_MAX_GAIN / 8; /* output level */
int	port = AUDIO_LINE_OUT;	/* output port */
#endif

int		TotalSecondsCorrected = 0;
int		TotalCyclesAdded = 0;
int		TotalCyclesRemoved = 0;


/*
 * Main program
 */
int
main(
	int		argc,		/* command line options */
	char	**argv		/* poiniter to list of tokens */
	)
{
#ifndef  HAVE_SYS_SOUNDCARD_H
	audio_info_t info;	/* Sun audio structure */
	int	rval;           /* For IOCTL calls */
#endif

	struct	timeval	 TimeValue;				/* System clock at startup */
	time_t			 SecondsPartOfTime;		/* Sent to gmtime() for calculation of TimeStructure (can apply offset). */
	time_t			 BaseRealTime;			/* Base realtime so can determine seconds since starting. */
	time_t			 NowRealTime;			/* New realtime to can determine seconds as of now. */
	unsigned		 SecondsRunningRealTime;	/* Difference between NowRealTime and BaseRealTime. */
	unsigned		 SecondsRunningSimulationTime;	/* Time that the simulator has been running. */
	int				 SecondsRunningDifference;	/* Difference between what real time says we have been running */
												/* and what simulator says we have been running - will slowly  */
												/* change because of clock drift. */
	int				 ExpectedRunningDifference = 0;	/* Stable value that we've obtained from check at initial start-up.	*/
	unsigned		 StabilityCount;		/* Used to check stability of difference while starting */
#define	RUN_BEFORE_STABILITY_CHECK	(30)	// Must run this many seconds before even checking stability.
#define	MINIMUM_STABILITY_COUNT		(10)	// Number of consecutive differences that need to be within initial stability band to say we are stable.
#define	INITIAL_STABILITY_BAND		( 2)	// Determining initial stability for consecutive differences within +/- this value.
#define	RUNNING_STABILITY_BAND		( 5)	// When running, stability is defined as difference within +/- this value.

	struct	tm		*TimeStructure = NULL;	/* Structure returned by gmtime */
	char	device[200];	/* audio device */
	char	code[200];	/* timecode */
	int	temp;
	int	arg = 0;
	int	sw = 0;
	int	ptr = 0;

	int	Year;
	int	Month;
	int	DayOfMonth;
	int	Hour;
	int	Minute;
	int	Second = 0;
	int	DayOfYear;

	int	BitNumber;
#ifdef HAVE_SYS_SOUNDCARD_H
	int	AudioFormat;
	int	MonoStereo;     /* 0=mono, 1=stereo */
#define	MONO	(0)
#define	STEREO	(1)
	int	SampleRate;
	int	SampleRateDifference;
#endif
	int	SetSampleRate;
	char FormatCharacter = '3';		/* Default is IRIG-B with IEEE 1344 extensions */
	char AsciiValue;
	int	HexValue;
	int	OldPtr = 0;
	int FrameNumber = 0;

	/* Time offset for IEEE 1344 indication. */
	float TimeOffset = 0.0;
	int	OffsetSignBit = 0;
	int OffsetOnes = 0;
	int OffsetHalf = 0;

	int	TimeQuality = 0;	/* Time quality for IEEE 1344 indication. */
	char ParityString[200];	/* Partial output string, to calculate parity on. */
	int	ParitySum = 0;
	int	ParityValue;
	char *StringPointer;

	/* Flags to indicate requested leap second addition or deletion by command line option. */
	/* Should be mutually exclusive - generally ensured by code which interprets command line option. */
	int	InsertLeapSecond = FALSE;
	int	DeleteLeapSecond = FALSE;

	/* Date and time of requested leap second addition or deletion. */
	int	LeapYear					= 0;
	int LeapMonth					= 0;
	int	LeapDayOfMonth				= 0;
	int LeapHour					= 0;
	int	LeapMinute					= 0;
	int	LeapDayOfYear				= 0;

	/* State flag for the insertion and deletion of leap seconds, esp. deletion, */
	/* where the logic gets a bit tricky. */
	int	LeapState = LEAPSTATE_NORMAL;

	/* Flags for indication of leap second pending and leap secod polarity in IEEE 1344 */
	int	LeapSecondPending = FALSE;
	int	LeapSecondPolarity = FALSE;

	/* Date and time of requested switch into or out of DST by command line option. */
	int	DstSwitchYear				= 0;
	int DstSwitchMonth				= 0;
	int	DstSwitchDayOfMonth			= 0;
	int DstSwitchHour				= 0;
	int	DstSwitchMinute				= 0;
	int	DstSwitchDayOfYear			= 0;

	/* Indicate when we have been asked to switch into or out of DST by command line option. */
	int	DstSwitchFlag = FALSE;

	/* To allow predict for DstPendingFlag in IEEE 1344 */
	int	DstSwitchPendingYear		= 0;	/* Default value isn't valid, but I don't care. */
	int	DstSwitchPendingDayOfYear	= 0;
	int	DstSwitchPendingHour		= 0;
	int	DstSwitchPendingMinute		= 0;

	/* /Flag for indication of a DST switch pending in IEEE 1344 */
	int	DstPendingFlag = FALSE;

	/* Attempt at unmodulated */
	int	Unmodulated = FALSE;
	int UnmodulatedInverted = FALSE;

	/* Offset to actual time value sent. */
	float	UseOffsetHoursFloat;
	int		UseOffsetSecondsInt = 0;
	float	UseOffsetSecondsFloat;

	/* String to allow us to put out reversed data - so can read the binary numbers. */
	char	OutputDataString[OUTPUT_DATA_STRING_LENGTH];
	
	/* Number of seconds to send before exiting.  Default = 0 = forever. */
	int		SecondsToSend = 0;
	int		CountOfSecondsSent = 0;	/* Counter of seconds */
	
	/* Flags to indicate whether to add or remove a cycle for time adjustment. */
	int		AddCycle = FALSE;	 	// We are ahead, add cycle to slow down and get back in sync.
	int		RemoveCycle = FALSE;	// We are behind, remove cycle to slow down and get back in sync.
	int		RateCorrection;			// Aggregate flag for passing to subroutines.
	int		EnableRateCorrection = TRUE;
	
	float	RatioError;


	CommandName = argv[0];

	if	(argc < 1)
		{
		Help ();
		exit (-1);
		}

	/*
	 * Parse options
	 */
	strlcpy(device, DEVICE, sizeof(device));
	Year = 0;
	SetSampleRate = SECOND;
	
#if	HAVE_SYS_SOUNDCARD_H
	while ((temp = getopt(argc, argv, "a:b:c:df:g:hHi:jk:l:o:q:r:stu:xy:z?")) != -1) {
#else
	while ((temp = getopt(argc, argv, "a:b:c:df:g:hHi:jk:l:o:q:r:stu:v:xy:z?")) != -1) {
#endif
		switch (temp) {

		case 'a':	/* specify audio device (/dev/audio) */
			strlcpy(device, optarg, sizeof(device));
			break;

		case 'b':	/* Remove (delete) a leap second at the end of the specified minute. */
			sscanf(optarg, "%2d%2d%2d%2d%2d", &LeapYear, &LeapMonth, &LeapDayOfMonth,
			    &LeapHour, &LeapMinute);
			InsertLeapSecond = FALSE;
			DeleteLeapSecond = TRUE;
			break;
			
		case 'c':	/* specify number of seconds to send output for before exiting, 0 = forever */
			sscanf(optarg, "%d", &SecondsToSend);
			break;

		case 'd':	/* set DST for summer (WWV/H only) / start with DST active (IRIG) */
			DstFlag++;
			break;

		case 'f':	/* select format: i=IRIG-98 (default) 2=IRIG-2004 3-IRIG+IEEE-1344 w=WWV(H) */
			sscanf(optarg, "%c", &FormatCharacter);
			break;

		case 'g':	/* Date and time to switch back into / out of DST active. */
			sscanf(optarg, "%2d%2d%2d%2d%2d", &DstSwitchYear, &DstSwitchMonth, &DstSwitchDayOfMonth,
			    &DstSwitchHour, &DstSwitchMinute);
			DstSwitchFlag = TRUE;
			break;

		case 'h':
		case 'H':
		case '?':
			Help ();
			exit(-1);
			break;

		case 'i':	/* Insert (add) a leap second at the end of the specified minute. */
			sscanf(optarg, "%2d%2d%2d%2d%2d", &LeapYear, &LeapMonth, &LeapDayOfMonth,
			    &LeapHour, &LeapMinute);
			InsertLeapSecond = TRUE;
			DeleteLeapSecond = FALSE;
			break;
			
		case 'j':
			EnableRateCorrection = FALSE;
			break;

		case 'k':
			sscanf (optarg, "%d", &RateCorrection);
			EnableRateCorrection = FALSE;
			if  (RateCorrection < 0)
				{
				RemoveCycle = TRUE;
				AddCycle = FALSE;
				
				if  (Verbose)
					printf ("\n> Forcing rate correction removal of cycle...\n");
				}
			else
				{
				if  (RateCorrection > 0)
					{
					RemoveCycle = FALSE;
					AddCycle = TRUE;
				
					if  (Verbose)
						printf ("\n> Forcing rate correction addition of cycle...\n");
					}
				}
			break;

		case 'l':	/* use time offset from UTC */
			sscanf(optarg, "%f", &UseOffsetHoursFloat);
			UseOffsetSecondsFloat = UseOffsetHoursFloat * (float) SECONDS_PER_HOUR;
			UseOffsetSecondsInt = (int) (UseOffsetSecondsFloat + 0.5);
			break;

		case 'o':	/* Set IEEE 1344 time offset in hours - positive or negative, to the half hour */
			sscanf(optarg, "%f", &TimeOffset);
			if  (TimeOffset >= -0.2)
				{
				OffsetSignBit = 0;

				if  (TimeOffset > 0)
					{
					OffsetOnes    = TimeOffset;

					if  ( (TimeOffset - floor(TimeOffset)) >= 0.4)
						OffsetHalf = 1;
					else
						OffsetHalf = 0;
					}
				else
					{
					OffsetOnes    = 0;
					OffsetHalf    = 0;
					}
				}
			else
				{
				OffsetSignBit = 1;
				OffsetOnes    = -TimeOffset;

				if  ( (ceil(TimeOffset) - TimeOffset) >= 0.4)
					OffsetHalf = 1;
				else
					OffsetHalf = 0;
				}

			/*printf ("\nGot TimeOffset = %3.1f, OffsetSignBit = %d, OffsetOnes = %d, OffsetHalf = %d...\n",
					TimeOffset, OffsetSignBit, OffsetOnes, OffsetHalf);
			*/
			break;

		case 'q':	/* Hex quality code 0 to 0x0F - 0 = maximum, 0x0F = no lock */
			sscanf(optarg, "%x", &TimeQuality);
			TimeQuality &= 0x0F;
			/*printf ("\nGot TimeQuality = 0x%1X...\n", TimeQuality);
			*/
			break;

		case 'r':	/* sample rate (nominally 8000, integer close to 8000 I hope) */
			sscanf(optarg, "%d", &SetSampleRate);
			break;

		case 's':	/* set leap warning bit (WWV/H only) */
			leap++;
			break;

		case 't':	/* select WWVH sync frequency */
			tone = 1200;
			break;

		case 'u':	/* set DUT1 offset (-7 to +7) */
			sscanf(optarg, "%d", &dut1);
			if (dut1 < 0)
				dut1 = abs(dut1);
			else
				dut1 |= 0x8;
			break;

#ifndef  HAVE_SYS_SOUNDCARD_H
		case 'v':	/* set output level (0-255) */
			sscanf(optarg, "%d", &level);
			break;
#endif

		case 'x':	/* Turn off verbose output. */
			Verbose = FALSE;
			break;

		case 'y':	/* Set initial date and time */
			sscanf(optarg, "%2d%2d%2d%2d%2d%2d", &Year, &Month, &DayOfMonth,
			    &Hour, &Minute, &Second);
			utc++;
			break;

		case 'z':	/* Turn on Debug output (also turns on Verbose below) */
			Debug = TRUE;
			break;

		default:
			printf("Invalid option \"%c\", aborting...\n", temp);
			exit (-1);
			break;
		}
	}

	if  (Debug)
	    Verbose = TRUE;

	if  (InsertLeapSecond || DeleteLeapSecond)
		{
		LeapDayOfYear = ConvertMonthDayToDayOfYear (LeapYear, LeapMonth, LeapDayOfMonth);

		if	(Debug)
			{
			printf ("\nHave request for leap second %s at year %4d day %3d at %2.2dh%2.2d....\n",\
					DeleteLeapSecond ? "DELETION" : (InsertLeapSecond ? "ADDITION" : "( error ! )" ),
					LeapYear, LeapDayOfYear, LeapHour, LeapMinute);
			}
		}

	if	(DstSwitchFlag)
		{
		DstSwitchDayOfYear = ConvertMonthDayToDayOfYear (DstSwitchYear, DstSwitchMonth, DstSwitchDayOfMonth);

		/* Figure out time of minute previous to DST switch, so can put up warning flag in IEEE 1344 */
		DstSwitchPendingYear		= DstSwitchYear;
		DstSwitchPendingDayOfYear	= DstSwitchDayOfYear;
		DstSwitchPendingHour		= DstSwitchHour;
		DstSwitchPendingMinute		= DstSwitchMinute - 1;
		if 	(DstSwitchPendingMinute < 0)
			{
			DstSwitchPendingMinute = 59;
			DstSwitchPendingHour--;
			if	(DstSwitchPendingHour < 0)
				{
				DstSwitchPendingHour = 23;
				DstSwitchPendingDayOfYear--;
				if	(DstSwitchPendingDayOfYear < 1)
					{
					DstSwitchPendingYear--;
					}
				}
			}

		if	(Debug)
			{
			printf ("\nHave DST switch request for year %4d day %3d at %2.2dh%2.2d,",
					DstSwitchYear, DstSwitchDayOfYear, DstSwitchHour, DstSwitchMinute);
			printf ("\n    so will have warning at year %4d day %3d at %2.2dh%2.2d.\n",
					DstSwitchPendingYear, DstSwitchPendingDayOfYear, DstSwitchPendingHour, DstSwitchPendingMinute);
			}
		}

	switch (tolower(FormatCharacter)) {
	case 'i':
		printf ("\nFormat is IRIG-1998 (no year coded)...\n\n");
		encode = IRIG;
		IrigIncludeYear = FALSE;
		IrigIncludeIeee = FALSE;
		break;

	case '2':
		printf ("\nFormat is IRIG-2004 (BCD year coded)...\n\n");
		encode = IRIG;
		IrigIncludeYear = TRUE;
		IrigIncludeIeee = FALSE;
		break;

	case '3':
		printf ("\nFormat is IRIG with IEEE-1344 (BCD year coded, and more control functions)...\n\n");
		encode = IRIG;
		IrigIncludeYear = TRUE;
		IrigIncludeIeee = TRUE;
		break;

	case '4':
		printf ("\nFormat is unmodulated IRIG with IEEE-1344 (BCD year coded, and more control functions)...\n\n");
		encode = IRIG;
		IrigIncludeYear = TRUE;
		IrigIncludeIeee = TRUE;

		Unmodulated = TRUE;
		UnmodulatedInverted = FALSE;
		break;

	case '5':
		printf ("\nFormat is inverted unmodulated IRIG with IEEE-1344 (BCD year coded, and more control functions)...\n\n");
		encode = IRIG;
		IrigIncludeYear = TRUE;
		IrigIncludeIeee = TRUE;

		Unmodulated = TRUE;
		UnmodulatedInverted = TRUE;
		break;

	case 'w':
		printf ("\nFormat is WWV(H)...\n\n");
		encode = WWV;
		break;

	default:
		printf ("\n\nUnexpected format value of \'%c\', cannot parse, aborting...\n\n", FormatCharacter);
		exit (-1);
		break;
	}

	/*
	 * Open audio device and set options
	 */
	fd = open(device, O_WRONLY);
	if (fd <= 0) {
		printf("Unable to open audio device \"%s\", aborting: %s\n", device, strerror(errno));
		exit(1);
	}

#ifdef  HAVE_SYS_SOUNDCARD_H
	/* First set coding type */
	AudioFormat = AFMT_MU_LAW;
	if (ioctl(fd, SNDCTL_DSP_SETFMT, &AudioFormat)==-1)
	{ /* Fatal error */
	printf ("\nUnable to set output format, aborting...\n\n");
	exit(-1);
	}

	if  (AudioFormat != AFMT_MU_LAW)
	{
	printf ("\nUnable to set output format for mu law, aborting...\n\n");
	exit(-1);
	}

	/* Next set number of channels */
	MonoStereo = MONO;	/* Mono */
	if (ioctl(fd, SNDCTL_DSP_STEREO, &MonoStereo)==-1)
	{ /* Fatal error */
	printf ("\nUnable to set mono/stereo, aborting...\n\n");
	exit(-1);
	}

	if (MonoStereo != MONO)
	{
	printf ("\nUnable to set mono/stereo for mono, aborting...\n\n");
	exit(-1);
	}

	/* Now set sample rate */
	SampleRate = SetSampleRate;
	if (ioctl(fd, SNDCTL_DSP_SPEED, &SampleRate)==-1)
	{ /* Fatal error */
	printf ("\nUnable to set sample rate to %d, returned %d, aborting...\n\n", SetSampleRate, SampleRate);
	exit(-1);
	}

	SampleRateDifference = SampleRate - SetSampleRate;

	if  (SampleRateDifference < 0)
		SampleRateDifference = - SampleRateDifference;

	/* Fixed allowable sample rate error 0.1% */
	if (SampleRateDifference > (SetSampleRate/1000))
	{
	printf ("\nUnable to set sample rate to %d, result was %d, more than 0.1 percent, aborting...\n\n", SetSampleRate, SampleRate);
	exit(-1);
	}
	else
	{
	/* printf ("\nAttempt to set sample rate to %d, actual %d...\n\n", SetSampleRate, SampleRate); */
	}
#else
	rval = ioctl(fd, AUDIO_GETINFO, &info);
	if (rval < 0) {
		printf("\naudio control %s", strerror(errno));
		exit(0);
	}
	info.play.port = port;
	info.play.gain = level;
	info.play.sample_rate = SetSampleRate;
	info.play.channels = 1;
	info.play.precision = 8;
	info.play.encoding = AUDIO_ENCODING_ULAW;
	printf("\nport %d gain %d rate %d chan %d prec %d encode %d\n",
	    info.play.port, info.play.gain, info.play.sample_rate,
	    info.play.channels, info.play.precision,
	    info.play.encoding);
	ioctl(fd, AUDIO_SETINFO, &info);
#endif

 	/*
	 * Unless specified otherwise, read the system clock and
	 * initialize the time.
	 */
	gettimeofday(&TimeValue, NULL);		// Now always read the system time to keep "real time" of operation.
	NowRealTime = BaseRealTime = SecondsPartOfTime = TimeValue.tv_sec;
	SecondsRunningSimulationTime = 0;	// Just starting simulation, running zero seconds as of now.
	StabilityCount = 0;					// No stability yet.

	if	(utc)
		{
		DayOfYear = ConvertMonthDayToDayOfYear (Year, Month, DayOfMonth);
		}
	else
		{
		/* Apply offset to time. */
		if	(UseOffsetSecondsInt >= 0)
			SecondsPartOfTime += (time_t)   UseOffsetSecondsInt;
		else
			SecondsPartOfTime -= (time_t) (-UseOffsetSecondsInt);

		TimeStructure = gmtime(&SecondsPartOfTime);
		Minute = TimeStructure->tm_min;
		Hour = TimeStructure->tm_hour;
		DayOfYear = TimeStructure->tm_yday + 1;
		Year = TimeStructure->tm_year % 100;
		Second = TimeStructure->tm_sec;

		/*
		 * Delay the first second so the generator is accurately
		 * aligned with the system clock within one sample (125
		 * microseconds ).
		 */
		delay(SECOND - TimeValue.tv_usec * 8 / 1000);
		}

	StraightBinarySeconds = Second + (Minute * SECONDS_PER_MINUTE) + (Hour * SECONDS_PER_HOUR);

	memset(code, 0, sizeof(code));
	switch (encode) {

	/*
	 * For WWV/H and default time, carefully set the signal
	 * generator seconds number to agree with the current time.
	 */
	case WWV:
		printf("WWV time signal, starting point:\n");
		printf(" Year = %02d, Day of year = %03d, Time = %02d:%02d:%02d, Minute tone = %d Hz, Hour tone = %d Hz.\n",
		    Year, DayOfYear, Hour, Minute, Second, tone, HourTone);
		snprintf(code, sizeof(code), "%01d%03d%02d%02d%01d",
		    Year / 10, DayOfYear, Hour, Minute, Year % 10);
		if  (Verbose)
			{
		    printf("\n Year = %2.2d, Day of year = %3d, Time = %2.2d:%2.2d:%2.2d, Code = %s", 
				Year, DayOfYear, Hour, Minute, Second, code);

				if  ((EnableRateCorrection) || (RemoveCycle) || (AddCycle))
				printf (", CountOfSecondsSent = %d, TotalCyclesAdded = %d, TotalCyclesRemoved = %d\n", CountOfSecondsSent, TotalCyclesAdded, TotalCyclesRemoved);
			else
				printf ("\n");
			}

		ptr = 8;
		for (BitNumber = 0; BitNumber <= Second; BitNumber++) {
			if (progx[BitNumber].sw == DEC)
				ptr--;
		}
		break;

	/*
	 * For IRIG the signal generator runs every second, so requires
	 * no additional alignment.
	 */
	case IRIG:
		printf ("IRIG-B time signal, starting point:\n");
		printf (" Year = %02d, Day of year = %03d, Time = %02d:%02d:%02d, Straight binary seconds (SBS) = %05d / 0x%04X.\n",
		    Year, DayOfYear, Hour, Minute, Second, StraightBinarySeconds, StraightBinarySeconds);
		printf ("\n");
		if  (Verbose)
		    {
    		printf ("Codes: \".\" = marker/position indicator, \"-\" = zero dummy bit, \"0\" = zero bit, \"1\" = one bit.\n");
			if  ((EnableRateCorrection) || (AddCycle) || (RemoveCycle))
				{
				printf ("       \"o\" = short zero, \"*\" = long zero, \"x\" = short one, \"+\" = long one.\n");
				}
	    	printf ("Numerical values are time order reversed in output to make it easier to read.\n");
    		/*                 111111111122222222223333333333444444444455555555556666666666777777777788888888889999999999 */
	    	/*       0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789 */
		    printf ("\n");
    		printf ("Legend of output codes:\n");
	    	//printf ("\n");
		    //printf ("|  StraightBinSecs  | IEEE_1344_Control |   Year  |    Day_of_Year    |  Hours  | Minutes |Seconds |\n");
    		//printf ("|  ---------------  | ----------------- |   ----  |    -----------    |  -----  | ------- |------- |\n");
	    	//printf ("|                   |                   |         |                   |         |         |        |\n");
	    	}
		break;
	}

	/*
	 * Run the signal generator to generate new timecode strings
	 * once per minute for WWV/H and once per second for IRIG.
	 */
	for (CountOfSecondsSent=0; ((SecondsToSend==0) || (CountOfSecondsSent<SecondsToSend)); CountOfSecondsSent++)
		{
		if  ((encode == IRIG) && (((Second % 20) == 0) || (CountOfSecondsSent == 0)))
			{
	    	printf ("\n");

			printf (" Year = %02d, Day of year = %03d, Time = %02d:%02d:%02d, Straight binary seconds (SBS) = %05d / 0x%04X.\n",
			    Year, DayOfYear, Hour, Minute, Second, StraightBinarySeconds, StraightBinarySeconds);
			if  ((EnableRateCorrection) || (RemoveCycle) || (AddCycle))
				{
				printf (" CountOfSecondsSent = %d, TotalCyclesAdded = %d, TotalCyclesRemoved = %d\n", CountOfSecondsSent, TotalCyclesAdded, TotalCyclesRemoved);
				if  ((CountOfSecondsSent != 0) && ((TotalCyclesAdded != 0) || (TotalCyclesRemoved != 0)))
					{
					RatioError = ((float) (TotalCyclesAdded - TotalCyclesRemoved)) / (1000.0 * (float) CountOfSecondsSent);
					printf (" Adjusted by %2.1f%%, apparent send frequency is %4.2f Hz not %d Hz.\n\n", 
									RatioError*100.0, (1.0+RatioError)*((float) SetSampleRate), SetSampleRate);
					}
				}
			else
				printf ("\n");

		    /* printf ("|Seconds | Minutes |  Hours  |    Day_of_Year    |   Year  | IEEE_1344_Control |  StraightBinSecs  |\n");
    		printf ("|------- | ------- |  -----  |    -----------    |   ----  | ----------------- |-------------------|\n");
	    	printf ("|        |         |         |                   |         |                   |                   |\n");*/
		    printf ("|  StraightBinSecs  | IEEE_1344_Control |   Year  |    Day_of_Year    |  Hours  | Minutes |Seconds |\n");
    		printf ("|  ---------------  | ----------------- |   ----  |    -----------    |  -----  | ------- |------- |\n");
	    	printf ("|                   |                   |         |                   |         |         |        |\n");
			}

		if  (RemoveCycle)
			{
			RateCorrection = -1;
			TotalSecondsCorrected ++;
			}
		else
			{
			if  (AddCycle)
				{
				TotalSecondsCorrected ++;
				RateCorrection = +1;
				}
			else
				RateCorrection = 0;
			}

		/*
		 * Crank the state machine to propagate carries to the
		 * year of century. Note that we delayed up to one
		 * second for alignment after reading the time, so this
		 * is the next second.
		 */

		if  (LeapState == LEAPSTATE_NORMAL)
			{
			/* If on the second of a leap (second 59 in the specified minute), then add or delete a second */
			if  ((Year == LeapYear) && (DayOfYear == LeapDayOfYear) && (Hour == LeapHour) && (Minute == LeapMinute))
				{
				/* To delete a second, which means we go from 58->60 instead of 58->59->00. */
				if  ((DeleteLeapSecond) && (Second == 58))
					{
					LeapState = LEAPSTATE_DELETING;

					if	(Debug)
						printf ("\n<--- Ready to delete a leap second...\n");
					}
				else
					{	/* Delete takes precedence over insert. */
					/* To add a second, which means we go from 59->60->00 instead of 59->00. */
					if  ((InsertLeapSecond) && (Second == 59))
						{
						LeapState = LEAPSTATE_INSERTING;

						if	(Debug)
							printf ("\n<--- Ready to insert a leap second...\n");
						}
					}
				}
			}

		switch (LeapState)
			{
			case LEAPSTATE_NORMAL:
				Second = (Second + 1) % 60;
				break;

			case LEAPSTATE_DELETING:
				Second = 0;
				LeapState = LEAPSTATE_NORMAL;

				if	(Debug)
					printf ("\n<--- Deleting a leap second...\n");
				break;

			case LEAPSTATE_INSERTING:
				Second = 60;
				LeapState = LEAPSTATE_ZERO_AFTER_INSERT;

				if	(Debug)
					printf ("\n<--- Inserting a leap second...\n");
				break;

			case LEAPSTATE_ZERO_AFTER_INSERT:
				Second = 0;
				LeapState = LEAPSTATE_NORMAL;

				if	(Debug)
					printf ("\n<--- Inserted a leap second, now back to zero...\n");
				break;

			default:
				printf ("\n\nLeap second state invalid value of %d, aborting...", LeapState);
				exit (-1);
				break;
			}

		/* Check for second rollover, increment minutes and ripple upward if required. */
		if (Second == 0) {
			Minute++;
			if (Minute >= 60) {
				Minute = 0;
				Hour++;
			}

			/* Check for activation of DST switch. */
			/* If DST is active, this would mean that at the appointed time, we de-activate DST, */
			/* which translates to going backward an hour (repeating the last hour). */
			/* If DST is not active, this would mean that at the appointed time, we activate DST, */
			/* which translates to going forward an hour (skipping the next hour). */
			if	(DstSwitchFlag)
				{
				/* The actual switch happens on the zero'th second of the actual minute specified. */
				if	((Year == DstSwitchYear) && (DayOfYear == DstSwitchDayOfYear) && (Hour == DstSwitchHour) && (Minute == DstSwitchMinute))
					{
					if  (DstFlag == 0)
						{	/* DST flag is zero, not in DST, going to DST, "spring ahead", so increment hour by two instead of one. */
						Hour++;
						DstFlag = 1;

						/* Must adjust offset to keep consistent with UTC. */
						/* Here we have to increase offset by one hour.  If it goes from negative to positive, then we fix that. */
						if	(OffsetSignBit == 0)
							{	/* Offset is positive */
							if	(OffsetOnes == 0x0F)
								{
								OffsetSignBit = 1;
								OffsetOnes    = (OffsetHalf == 0) ? 8 : 7;
								}
							else
								OffsetOnes++;
							}
						else
							{	/* Offset is negative */
							if  (OffsetOnes == 0)
								{
								OffsetSignBit = 0;
								OffsetOnes    = (OffsetHalf == 0) ? 1 : 0;
								}
							else
								OffsetOnes--;
							}

						if	(Debug)
							printf ("\n<--- DST activated, spring ahead an hour, new offset !...\n");
						}
					else
						{	/* DST flag is non zero, in DST, going out of DST, "fall back", so no increment of hour. */
						Hour--;
						DstFlag = 0;

						/* Must adjust offset to keep consistent with UTC. */
						/* Here we have to reduce offset by one hour.  If it goes negative, then we fix that. */
						if	(OffsetSignBit == 0)
							{	/* Offset is positive */
							if  (OffsetOnes == 0)
								{
								OffsetSignBit = 1;
								OffsetOnes    = (OffsetHalf == 0) ? 1 : 0;
								}
							else
								OffsetOnes--;
							}
						else
							{	/* Offset is negative */
							if	(OffsetOnes == 0x0F)
								{
								OffsetSignBit = 0;
								OffsetOnes    = (OffsetHalf == 0) ? 8 : 7;
								}
							else
								OffsetOnes++;
							}

						if	(Debug)
							printf ("\n<--- DST de-activated, fall back an hour!...\n");
						}

					DstSwitchFlag = FALSE;	/* One time deal, not intended to run this program past two switches... */
					}
				}

			if (Hour >= 24) {
				/* Modified, just in case dumb case where activating DST advances 23h59:59 -> 01h00:00 */
				Hour = Hour % 24;
				DayOfYear++;
			}

			/*
			 * At year rollover check for leap second.
			 */
			if (DayOfYear >= (Year & 0x3 ? 366 : 367)) {
				if (leap) {
					WWV_Second(DATA0, RateCorrection);
					if  (Verbose)
					    printf("\nLeap!");
					leap = 0;
				}
				DayOfYear = 1;
				Year++;
			}
			if (encode == WWV) {
				snprintf(code, sizeof(code),
				    "%01d%03d%02d%02d%01d", Year / 10,
				    DayOfYear, Hour, Minute, Year % 10);
				if  (Verbose)
				    printf("\n Year = %2.2d, Day of year = %3d, Time = %2.2d:%2.2d:%2.2d, Code = %s", 
						Year, DayOfYear, Hour, Minute, Second, code);

				if  ((EnableRateCorrection) || (RemoveCycle) || (AddCycle))
					{
					printf (", CountOfSecondsSent = %d, TotalCyclesAdded = %d, TotalCyclesRemoved = %d\n", CountOfSecondsSent, TotalCyclesAdded, TotalCyclesRemoved);
					if  ((CountOfSecondsSent != 0) && ((TotalCyclesAdded != 0) || (TotalCyclesRemoved != 0)))
						{
						RatioError = ((float) (TotalCyclesAdded - TotalCyclesRemoved)) / (1000.0 * (float) CountOfSecondsSent);
						printf (" Adjusted by %2.1f%%, apparent send frequency is %4.2f Hz not %d Hz.\n\n", 
										RatioError*100.0, (1.0+RatioError)*((float) SetSampleRate), SetSampleRate);
						}
					}
				else
					printf ("\n");

				ptr = 8;
			}
		}	/* End of "if  (Second == 0)" */

		/* After all that, if we are in the minute just prior to a leap second, warn of leap second pending */
		/* and of the polarity */
		if  ((Year == LeapYear) && (DayOfYear == LeapDayOfYear) && (Hour == LeapHour) && (Minute == LeapMinute))
			{
			LeapSecondPending = TRUE;
			LeapSecondPolarity = DeleteLeapSecond;
			}
		else
			{
			LeapSecondPending = FALSE;
			LeapSecondPolarity = FALSE;
			}

		/* Notification through IEEE 1344 happens during the whole minute previous to the minute specified. */
		/* The time of that minute has been previously calculated. */
		if	((Year == DstSwitchPendingYear) && (DayOfYear == DstSwitchPendingDayOfYear) &&
					(Hour == DstSwitchPendingHour) && (Minute == DstSwitchPendingMinute))
			{
			DstPendingFlag = TRUE;
			}
		else
			{
			DstPendingFlag = FALSE;
			}


		StraightBinarySeconds = Second + (Minute * SECONDS_PER_MINUTE) + (Hour * SECONDS_PER_HOUR);

		if (encode == IRIG) {
			if  (IrigIncludeIeee)
				{
				if  ((OffsetOnes == 0) && (OffsetHalf == 0))
					OffsetSignBit = 0;

				ControlFunctions = (LeapSecondPending == 0 ? 0x00000 : 0x00001) | (LeapSecondPolarity == 0 ? 0x00000 : 0x00002)
						| (DstPendingFlag == 0 ? 0x00000 : 0x00004) | (DstFlag == 0 ? 0x00000 : 0x00008)
						| (OffsetSignBit == 0 ? 0x00000 : 0x00010)  | ((OffsetOnes & 0x0F) << 5)           | (OffsetHalf == 0 ? 0x00000 : 0x00200)
						| ((TimeQuality & 0x0F) << 10);
				/* if  (Verbose)
				        printf ("\nDstFlag = %d, OffsetSignBit = %d, OffsetOnes = %d, OffsetHalf = %d, TimeQuality = 0x%1.1X ==> ControlFunctions = 0x%5.5X...",
						    DstFlag, OffsetSignBit, OffsetOnes, OffsetHalf, TimeQuality, ControlFunctions);
				*/
				}
			else
				ControlFunctions = 0;

			/*
						      YearDay HourMin Sec
			snprintf(code, sizeof(code), "%04x%04d%06d%02d%02d%02d",
				0, Year, DayOfYear, Hour, Minute, Second);
			*/
			if  (IrigIncludeYear) {
				snprintf(ParityString, sizeof(ParityString),
				    "%04X%02d%04d%02d%02d%02d",
				    ControlFunctions & 0x7FFF, Year,
				    DayOfYear, Hour, Minute, Second);
			} else {
				snprintf(ParityString, sizeof(ParityString),
				    "%04X%02d%04d%02d%02d%02d",
				    ControlFunctions & 0x7FFF,
				    0, DayOfYear, Hour, Minute, Second);
			}

			if  (IrigIncludeIeee)
				{
				ParitySum = 0;
				for (StringPointer=ParityString; *StringPointer!=NUL; StringPointer++)
					{
					switch (toupper(*StringPointer))
						{
						case '1':
						case '2':
						case '4':
						case '8':
							ParitySum += 1;
							break;

						case '3':
						case '5':
						case '6':
						case '9':
						case 'A':
						case 'C':
							ParitySum += 2;
							break;

						case '7':
						case 'B':
						case 'D':
						case 'E':
							ParitySum += 3;
							break;

						case 'F':
							ParitySum += 4;
							break;
						}
					}

				if  ((ParitySum & 0x01) == 0x01)
					ParityValue = 0x01;
				else
					ParityValue = 0;
				}
			else
				ParityValue = 0;

			ControlFunctions |= ((ParityValue & 0x01) << 14);

			if  (IrigIncludeYear) {
				snprintf(code, sizeof(code),
				    /* YearDay HourMin Sec */
				    "%05X%05X%02d%04d%02d%02d%02d",
				    StraightBinarySeconds,
				    ControlFunctions, Year, DayOfYear,
				    Hour, Minute, Second);
			} else {
				snprintf(code, sizeof(code),
				    /* YearDay HourMin Sec */
				    "%05X%05X%02d%04d%02d%02d%02d",
				    StraightBinarySeconds,
				    ControlFunctions, 0, DayOfYear,
				    Hour, Minute, Second);
			}

			if  (Debug)
				printf("\nCode string: %s, ParityString = %s, ParitySum = 0x%2.2X, ParityValue = %d, DstFlag = %d...\n", code, ParityString, ParitySum, ParityValue, DstFlag);

			ptr = strlen(code)-1;
			OldPtr = 0;
		}

		/*
		 * Generate data for the second
		 */
		switch (encode) {

		/*
		 * The IRIG second consists of 20 BCD digits of width-
		 * modulateod pulses at 2, 5 and 8 ms and modulated 50
		 * percent on the 1000-Hz carrier.
		 */
		case IRIG:
			/* Initialize the output string */
			OutputDataString[0] = '\0';

			for (BitNumber = 0; BitNumber < 100; BitNumber++) {
				FrameNumber = (BitNumber/10) + 1;
				switch (FrameNumber)
					{
					case 1:
						/* bits 0 to 9, first frame */
						sw  = progz[BitNumber % 10].sw;
						arg = progz[BitNumber % 10].arg;
						break;

					case 2:
					case 3:
					case 4:
					case 5:
					case 6:
						/* bits 10 to 59, second to sixth frame */
						sw  = progy[BitNumber % 10].sw;
						arg = progy[BitNumber % 10].arg;
						break;

					case 7:
						/* bits 60 to 69, seventh frame */
						sw  = progw[BitNumber % 10].sw;
						arg = progw[BitNumber % 10].arg;
						break;

					case 8:
						/* bits 70 to 79, eighth frame */
						sw  = progv[BitNumber % 10].sw;
						arg = progv[BitNumber % 10].arg;
						break;

					case 9:
						/* bits 80 to 89, ninth frame */
						sw  = progw[BitNumber % 10].sw;
						arg = progw[BitNumber % 10].arg;
						break;

					case 10:
						/* bits 90 to 99, tenth frame */
						sw  = progu[BitNumber % 10].sw;
						arg = progu[BitNumber % 10].arg;
						break;

					default:
						/* , Unexpected values of FrameNumber */
						printf ("\n\nUnexpected value of FrameNumber = %d, cannot parse, aborting...\n\n", FrameNumber);
						exit (-1);
						break;
					}

				switch(sw) {

				case DECC:	/* decrement pointer and send bit. */
					ptr--;
				case COEF:	/* send BCD bit */
					AsciiValue = toupper(code[ptr]);
					HexValue   = isdigit(AsciiValue) ? AsciiValue - '0' : (AsciiValue - 'A')+10;
					/* if  (Debug) {
						if  (ptr != OldPtr) {
						if  (Verbose)
						    printf("\n(%c->%X)", AsciiValue, HexValue);
						OldPtr = ptr;
						}
					}
					*/
					// OK, adjust all unused bits in hundreds of days.
					if  ((FrameNumber == 5) && ((BitNumber % 10) > 1))
						{
						if  (RateCorrection < 0)
							{	// Need to remove cycles to catch up.
							if  ((HexValue & arg) != 0) 
								{
								if  (Unmodulated)
									{
									poop(M5, 1000, HIGH, UnmodulatedInverted);
									poop(M5-1, 1000, LOW,  UnmodulatedInverted);

									TotalCyclesRemoved += 1;
									}
								else
									{
									peep(M5, 1000, HIGH);
									peep(M5-1, 1000, LOW);

									TotalCyclesRemoved += 1;
									}
								strlcat(OutputDataString, "x", OUTPUT_DATA_STRING_LENGTH);
								}
							else 
								{
								if	(Unmodulated)
									{
									poop(M2, 1000, HIGH, UnmodulatedInverted);
									poop(M8-1, 1000, LOW,  UnmodulatedInverted);

									TotalCyclesRemoved += 1;
									}
								else
									{
									peep(M2, 1000, HIGH);
									peep(M8-1, 1000, LOW);

									TotalCyclesRemoved += 1;
									}
								strlcat(OutputDataString, "o", OUTPUT_DATA_STRING_LENGTH);
								}
							}	// End of true clause for "if  (RateCorrection < 0)"
						else
							{	// Else clause for "if  (RateCorrection < 0)"
							if  (RateCorrection > 0)
								{	// Need to add cycles to slow back down.
								if  ((HexValue & arg) != 0) 
									{
									if  (Unmodulated)
										{
										poop(M5, 1000, HIGH, UnmodulatedInverted);
										poop(M5+1, 1000, LOW,  UnmodulatedInverted);

										TotalCyclesAdded += 1;
										}
									else
										{
										peep(M5, 1000, HIGH);
										peep(M5+1, 1000, LOW);

										TotalCyclesAdded += 1;
										}
									strlcat(OutputDataString, "+", OUTPUT_DATA_STRING_LENGTH);
									}
								else 
									{
									if	(Unmodulated)
										{
										poop(M2, 1000, HIGH, UnmodulatedInverted);
										poop(M8+1, 1000, LOW,  UnmodulatedInverted);

										TotalCyclesAdded += 1;
										}
									else
										{
										peep(M2, 1000, HIGH);
										peep(M8+1, 1000, LOW);

										TotalCyclesAdded += 1;
										}
									strlcat(OutputDataString, "*", OUTPUT_DATA_STRING_LENGTH);
									}
								}	// End of true clause for "if  (RateCorrection > 0)"
							else
								{	// Else clause for "if  (RateCorrection > 0)"
								// Rate is OK, just do what you feel!
								if  ((HexValue & arg) != 0) 
									{
									if  (Unmodulated)
										{
										poop(M5, 1000, HIGH, UnmodulatedInverted);
										poop(M5, 1000, LOW,  UnmodulatedInverted);
										}
									else
										{
										peep(M5, 1000, HIGH);
										peep(M5, 1000, LOW);
										}
									strlcat(OutputDataString, "1", OUTPUT_DATA_STRING_LENGTH);
									}
								else 
									{
									if	(Unmodulated)
										{
										poop(M2, 1000, HIGH, UnmodulatedInverted);
										poop(M8, 1000, LOW,  UnmodulatedInverted);
										}
									else
										{
										peep(M2, 1000, HIGH);
										peep(M8, 1000, LOW);
										}
									strlcat(OutputDataString, "0", OUTPUT_DATA_STRING_LENGTH);
									}
								}	// End of else clause for "if  (RateCorrection > 0)"
							}	// End of else claues for "if  (RateCorrection < 0)"
						}	// End of true clause for "if  ((FrameNumber == 5) && (BitNumber == 8))"
					else
						{	// Else clause for "if  ((FrameNumber == 5) && (BitNumber == 8))"
						if  ((HexValue & arg) != 0) 
							{
							if  (Unmodulated)
								{
								poop(M5, 1000, HIGH, UnmodulatedInverted);
								poop(M5, 1000, LOW,  UnmodulatedInverted);
								}
							else
								{
								peep(M5, 1000, HIGH);
								peep(M5, 1000, LOW);
								}
							strlcat(OutputDataString, "1", OUTPUT_DATA_STRING_LENGTH);
							}
						else 
							{
							if	(Unmodulated)
								{
								poop(M2, 1000, HIGH, UnmodulatedInverted);
								poop(M8, 1000, LOW,  UnmodulatedInverted);
								}
							else
								{
								peep(M2, 1000, HIGH);
								peep(M8, 1000, LOW);
								}
							strlcat(OutputDataString, "0", OUTPUT_DATA_STRING_LENGTH);
							}
						} // end of else clause for "if  ((FrameNumber == 5) && (BitNumber == 8))"
					break;

				case DECZ:	/* decrement pointer and send zero bit */
					ptr--;
					if	(Unmodulated)
						{
						poop(M2, 1000, HIGH, UnmodulatedInverted);
						poop(M8, 1000, LOW,  UnmodulatedInverted);
						}
					else
						{
						peep(M2, 1000, HIGH);
						peep(M8, 1000, LOW);
						}
					strlcat(OutputDataString, "-", OUTPUT_DATA_STRING_LENGTH);
					break;

				case DEC:	/* send marker/position indicator IM/PI bit */
					ptr--;
				case NODEC:	/* send marker/position indicator IM/PI bit but no decrement pointer */
				case MIN:	/* send "second start" marker/position indicator IM/PI bit */
					if  (Unmodulated)
						{
						poop(arg,      1000, HIGH, UnmodulatedInverted);
						poop(10 - arg, 1000, LOW,  UnmodulatedInverted);
						}
					else
						{
						peep(arg,      1000, HIGH);
						peep(10 - arg, 1000, LOW);
						}
					strlcat(OutputDataString, ".", OUTPUT_DATA_STRING_LENGTH);
					break;

				default:
					printf ("\n\nUnknown state machine value \"%d\", unable to continue, aborting...\n\n", sw);
					exit (-1);
					break;
				}
				if (ptr < 0)
					break;
			}
			ReverseString ( OutputDataString );
			if  (Verbose)
				{
    			printf("%s", OutputDataString);
				if  (RateCorrection > 0)
					printf(" fast\n");
				else
					{
					if  (RateCorrection < 0)
						printf (" slow\n");
					else
						printf ("\n");
					}
				}
			break;

		/*
		 * The WWV/H second consists of 9 BCD digits of width-
		 * modulateod pulses 200, 500 and 800 ms at 100-Hz.
		 */
		case WWV:
			sw = progx[Second].sw;
			arg = progx[Second].arg;
			switch(sw) {

			case DATA:		/* send data bit */
				WWV_Second(arg, RateCorrection);
				if  (Verbose)
					{
					if  (arg == DATA0)
						printf ("0");
					else
						{
						if  (arg == DATA1)
							printf ("1");
						else
							{
							if  (arg == PI)
								printf ("P");
							else
								printf ("?");
							}
						}
					}
				break;

			case DATAX:		/* send data bit */
				WWV_SecondNoTick(arg, RateCorrection);
				if  (Verbose)
					{
					if  (arg == DATA0)
						printf ("0");
					else
						{
						if  (arg == DATA1)
							printf ("1");
						else
							{
							if  (arg == PI)
								printf ("P");
							else
								printf ("?");
							}
						}
					}
				break;

			case COEF:		/* send BCD bit */
				if (code[ptr] & arg) {
					WWV_Second(DATA1, RateCorrection);
					if  (Verbose)
					    printf("1");
				} else {
					WWV_Second(DATA0, RateCorrection);
					if  (Verbose)
					    printf("0");
				}
				break;

			case LEAP:		/* send leap bit */
				if (leap) {
					WWV_Second(DATA1, RateCorrection);
					if  (Verbose)
					    printf("L");
				} else {
					WWV_Second(DATA0, RateCorrection);
					if  (Verbose)
					    printf("0");
				}
				break;

			case DEC:		/* send data bit */
				ptr--;
				WWV_Second(arg, RateCorrection);
				if  (Verbose)
					{
					if  (arg == DATA0)
						printf ("0");
					else
						{
						if  (arg == DATA1)
							printf ("1");
						else
							{
							if  (arg == PI)
								printf ("P");
							else
								printf ("?");
							}
						}
					}
				break;

			case DECX:		/* send data bit with no tick */
				ptr--;
				WWV_SecondNoTick(arg, RateCorrection);
				if  (Verbose)
					{
					if  (arg == DATA0)
						printf ("0");
					else
						{
						if  (arg == DATA1)
							printf ("1");
						else
							{
							if  (arg == PI)
								printf ("P");
							else
								printf ("?");
							}
						}
					}
				break;

			case MIN:		/* send minute sync */
				if  (Minute == 0)
					{
					peep(arg, HourTone, HIGH);

					if  (RateCorrection < 0)
						{
						peep( 990 - arg, HourTone, OFF);
						TotalCyclesRemoved += 10;

						if  (Debug)
							printf ("\n* Shorter Second: ");
						}
					else
						{
						if	(RateCorrection > 0)
							{
							peep(1010 - arg, HourTone, OFF);

							TotalCyclesAdded += 10;

							if  (Debug)
								printf ("\n* Longer Second: ");
							}
						else
							{
							peep(1000 - arg, HourTone, OFF);
							}
						}

					if  (Verbose)
					    printf("H");
					}
				else
					{
					peep(arg, tone, HIGH);

					if  (RateCorrection < 0)
						{
						peep( 990 - arg, tone, OFF);
						TotalCyclesRemoved += 10;

						if  (Debug)
							printf ("\n* Shorter Second: ");
						}
					else
						{
						if	(RateCorrection > 0)
							{
							peep(1010 - arg, tone, OFF);

							TotalCyclesAdded += 10;

							if  (Debug)
								printf ("\n* Longer Second: ");
							}
						else
							{
							peep(1000 - arg, tone, OFF);
							}
						}

					if  (Verbose)
					    printf("M");
					}
				break;

			case DUT1:		/* send DUT1 bits */
				if (dut1 & arg)
					{
					WWV_Second(DATA1, RateCorrection);
					if  (Verbose)
					    printf("1");
					}
				else
					{
					WWV_Second(DATA0, RateCorrection);
					if  (Verbose)
					    printf("0");
					}
				break;

			case DST1:		/* send DST1 bit */
				ptr--;
				if (DstFlag)
					{
					WWV_Second(DATA1, RateCorrection);
					if  (Verbose)
					    printf("1");
					}
				else
					{
					WWV_Second(DATA0, RateCorrection);
					if  (Verbose)
					    printf("0");
					}
				break;

			case DST2:		/* send DST2 bit */
				if (DstFlag)
					{
					WWV_Second(DATA1, RateCorrection);
					if  (Verbose)
					    printf("1");
					}
				else
					{
					WWV_Second(DATA0, RateCorrection);
					if  (Verbose)
					    printf("0");
					}
				break;
			}
		}

	if  (EnableRateCorrection)
		{
		SecondsRunningSimulationTime++;

		gettimeofday(&TimeValue, NULL);
		NowRealTime = TimeValue.tv_sec;

		if  (NowRealTime >= BaseRealTime)		// Just in case system time corrects backwards, do not blow up.
			{
			SecondsRunningRealTime = (unsigned) (NowRealTime - BaseRealTime);
			SecondsRunningDifference = SecondsRunningSimulationTime - SecondsRunningRealTime;

			if  (Debug)
				{
				printf ("> NowRealTime = 0x%8.8X, BaseRealtime = 0x%8.8X, SecondsRunningRealTime = 0x%8.8X, SecondsRunningSimulationTime = 0x%8.8X.\n",
							(unsigned) NowRealTime, (unsigned) BaseRealTime, SecondsRunningRealTime, SecondsRunningSimulationTime);
				printf ("> SecondsRunningDifference = 0x%8.8X, ExpectedRunningDifference = 0x%8.8X.\n",
							SecondsRunningDifference, ExpectedRunningDifference);
				}

			if  (SecondsRunningSimulationTime > RUN_BEFORE_STABILITY_CHECK)
				{
				if  (StabilityCount < MINIMUM_STABILITY_COUNT)
					{
					if  (StabilityCount == 0)
						{
						ExpectedRunningDifference = SecondsRunningDifference;
						StabilityCount++;
						if  (Debug)
							printf ("> Starting stability check.\n");
						}
					else
						{	// Else for "if  (StabilityCount == 0)"
						if  ((ExpectedRunningDifference+INITIAL_STABILITY_BAND > SecondsRunningDifference)
								&& (ExpectedRunningDifference-INITIAL_STABILITY_BAND < SecondsRunningDifference))
							{	// So far, still within stability band, increment count.
							StabilityCount++;
							if  (Debug)
								printf ("> StabilityCount = %d.\n", StabilityCount);
							}
						else
							{	// Outside of stability band, start over.
							StabilityCount = 0;
							if  (Debug)
								printf ("> Out of stability band, start over.\n");
							}
						} // End of else for "if  (StabilityCount == 0)"
					}	// End of true clause for "if  (StabilityCount < MINIMUM_STABILITY_COUNT))"
				else
					{	// Else clause for "if  (StabilityCount < MINIMUM_STABILITY_COUNT))" - OK, so we are supposed to be stable.
					if  (AddCycle)
						{
						if  (ExpectedRunningDifference >= SecondsRunningDifference)
							{
							if  (Debug)
								printf ("> Was adding cycles, ExpectedRunningDifference >= SecondsRunningDifference, can stop it now.\n");

							AddCycle = FALSE;
							RemoveCycle = FALSE;
							}
						else
							{
							if  (Debug)
								printf ("> Was adding cycles, not done yet.\n");
							}
						}
					else
						{
						if  (RemoveCycle)
							{
							if  (ExpectedRunningDifference <= SecondsRunningDifference)
								{
								if  (Debug)
									printf ("> Was removing cycles, ExpectedRunningDifference <= SecondsRunningDifference, can stop it now.\n");

								AddCycle = FALSE;
								RemoveCycle = FALSE;
								}
							else
								{
								if  (Debug)
									printf ("> Was removing cycles, not done yet.\n");
								}
							}
						else
							{
							if  ((ExpectedRunningDifference+RUNNING_STABILITY_BAND > SecondsRunningDifference)
									&& (ExpectedRunningDifference-RUNNING_STABILITY_BAND < SecondsRunningDifference))
								{	// All is well, within tolerances.
								if  (Debug)
									printf ("> All is well, within tolerances.\n");
								}
							else
								{	// Oops, outside tolerances.  Else clause of "if  ((ExpectedRunningDifference...SecondsRunningDifference)"
								if  (ExpectedRunningDifference > SecondsRunningDifference)
									{
									if  (Debug)
										printf ("> ExpectedRunningDifference > SecondsRunningDifference, running behind real time.\n");

									// Behind real time, have to add a cycle to slow down and get back in sync.
									AddCycle = FALSE;
									RemoveCycle = TRUE;
									}
								else
									{	// Else clause of "if  (ExpectedRunningDifference < SecondsRunningDifference)"
									if  (ExpectedRunningDifference < SecondsRunningDifference)
										{
										if  (Debug)
											printf ("> ExpectedRunningDifference < SecondsRunningDifference, running ahead of real time.\n");

										// Ahead of real time, have to remove a cycle to speed up and get back in sync.
										AddCycle = TRUE;
										RemoveCycle = FALSE;
										}
									else
										{
										if  (Debug)
											printf ("> Oops, outside tolerances, but doesn't fit the profiles, how can this be?\n");
										}
									}	// End of else clause of "if  (ExpectedRunningDifference > SecondsRunningDifference)"
								}	// End of else clause of "if  ((ExpectedRunningDifference...SecondsRunningDifference)"
							}	// End of else clause of "if  (RemoveCycle)".
						}	// End of else clause of "if  (AddCycle)".
					}	// End of else clause for "if  (StabilityCount < MINIMUM_STABILITY_COUNT))"
				}	// End of true clause for "if  ((SecondsRunningSimulationTime > RUN_BEFORE_STABILITY_CHECK)"
			}	// End of true clause for "if  (NowRealTime >= BaseRealTime)"
		else
			{
			if  (Debug)
				printf ("> Hmm, time going backwards?\n");
			}
		}	// End of true clause for "if  (EnableRateCorrection)"
		
	fflush (stdout);
	}
	
	
printf ("\n\n>> Completed %d seconds, exiting...\n\n", SecondsToSend);
return (0);
}


/*
 * Generate WWV/H 0 or 1 data pulse.
 */
void WWV_Second(
	int	code,		/* DATA0, DATA1, PI */
	int Rate		/* <0 -> do a short second, 0 -> normal second, >0 -> long second */
	)
{
	/*
	 * The WWV data pulse begins with 5 ms of 1000 Hz follwed by a
	 * guard time of 25 ms. The data pulse is 170, 570 or 770 ms at
	 * 100 Hz corresponding to 0, 1 or position indicator (PI),
	 * respectively. Note the 100-Hz data pulses are transmitted 6
	 * dB below the 1000-Hz sync pulses. Originally the data pulses
	 * were transmited 10 dB below the sync pulses, but the station
	 * engineers increased that to 6 dB because the Heath GC-1000
	 * WWV/H radio clock worked much better.
	 */
	peep(5, tone, HIGH);		/* send seconds tick */
	peep(25, tone, OFF);
	peep(code - 30, 100, LOW);	/* send data */
	
	/* The quiet time is shortened or lengthened to get us back on time */
	if  (Rate < 0)
		{
		peep( 990 - code, 100, OFF);
		
		TotalCyclesRemoved += 10;

		if  (Debug)
			printf ("\n* Shorter Second: ");
		}
	else
		{
		if  (Rate > 0)
			{
			peep(1010 - code, 100, OFF);

			TotalCyclesAdded += 10;

			if  (Debug)
				printf ("\n* Longer Second: ");
			}
		else
			peep(1000 - code, 100, OFF);
		}
}

/*
 * Generate WWV/H 0 or 1 data pulse, with no tick, for 29th and 59th seconds
 */
void WWV_SecondNoTick(
	int	code,		/* DATA0, DATA1, PI */
	int Rate		/* <0 -> do a short second, 0 -> normal second, >0 -> long second */
	)
{
	/*
	 * The WWV data pulse begins with 5 ms of 1000 Hz follwed by a
	 * guard time of 25 ms. The data pulse is 170, 570 or 770 ms at
	 * 100 Hz corresponding to 0, 1 or position indicator (PI),
	 * respectively. Note the 100-Hz data pulses are transmitted 6
	 * dB below the 1000-Hz sync pulses. Originally the data pulses
	 * were transmited 10 dB below the sync pulses, but the station
	 * engineers increased that to 6 dB because the Heath GC-1000
	 * WWV/H radio clock worked much better.
	 */
	peep(30, tone, OFF);		/* send seconds non-tick */
	peep(code - 30, 100, LOW);	/* send data */

	/* The quiet time is shortened or lengthened to get us back on time */
	if  (Rate < 0)
		{
		peep( 990 - code, 100, OFF);

		TotalCyclesRemoved += 10;

		if  (Debug)
			printf ("\n* Shorter Second: ");
		}
	else
		{
		if  (Rate > 0)
			{
			peep(1010 - code, 100, OFF);

			TotalCyclesAdded += 10;

			if  (Debug)
				printf ("\n* Longer Second: ");
			}
		else
			peep(1000 - code, 100, OFF);
		}
}

/*
 * Generate cycles of 100 Hz or any multiple of 100 Hz.
 */
void peep(
	int	pulse,		/* pulse length (ms) */
	int	freq,		/* frequency (Hz) */
	int	amp		/* amplitude */
	)
{
	int	increm;		/* phase increment */
	int	i, j;

	if (amp == OFF || freq == 0)
		increm = 10;
	else
		increm = freq / 100;
	j = 0;
	for (i = 0 ; i < pulse * 8; i++) {
		switch (amp) {

		case HIGH:
			buffer[bufcnt++] = ~c6000[j];
			break;

		case LOW:
			buffer[bufcnt++] = ~c3000[j];
			break;

		default:
			buffer[bufcnt++] = ~0;
		}
		if (bufcnt >= BUFLNG) {
			write(fd, buffer, BUFLNG);
			bufcnt = 0;
		}
		j = (j + increm) % 80;
	}
}


/*
 * Generate unmodulated from similar tables.
 */
void poop(
	int	pulse,		/* pulse length (ms) */
	int	freq,		/* frequency (Hz) */
	int	amp,		/* amplitude */
	int inverted	/* is upside down */
	)
{
	int	increm;		/* phase increment */
	int	i, j;

	if (amp == OFF || freq == 0)
		increm = 10;
	else
		increm = freq / 100;
	j = 0;
	for (i = 0 ; i < pulse * 8; i++) {
		switch (amp) {

		case HIGH:
			if  (inverted)
				buffer[bufcnt++] = ~u3000[j];
			else
				buffer[bufcnt++] = ~u6000[j];
			break;

		case LOW:
			if  (inverted)
				buffer[bufcnt++] = ~u6000[j];
			else
				buffer[bufcnt++] = ~u3000[j];
			break;

		default:
			buffer[bufcnt++] = ~0;
		}
		if (bufcnt >= BUFLNG) {
			write(fd, buffer, BUFLNG);
			bufcnt = 0;
		}
		j = (j + increm) % 80;
	}
}

/*
 * Delay for initial phasing
 */
void delay (
	int	Delay		/* delay in samples */
	)
{
	int	samples;	/* samples remaining */

	samples = Delay;
	memset(buffer, 0, BUFLNG);
	while (samples >= BUFLNG) {
		write(fd, buffer, BUFLNG);
		samples -= BUFLNG;
	}
		write(fd, buffer, samples);
}


/* Calc day of year from year month & day */
/* Year - 0 means 2000, 100 means 2100. */
/* Month - 1 means January, 12 means December. */
/* DayOfMonth - 1 is first day of month */
int
ConvertMonthDayToDayOfYear (int YearValue, int MonthValue, int DayOfMonthValue)
	{
	int	ReturnValue;
	int	LeapYear;
	int	MonthCounter;

	/* Array of days in a month.  Note that here January is zero. */
	/* NB: have to add 1 to days in February in a leap year! */
	int DaysInMonth[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};


	LeapYear = FALSE;
	if  ((YearValue % 4) == 0)
		{
		if  ((YearValue % 100) == 0)
			{
			if  ((YearValue % 400) == 0)
				{
				LeapYear = TRUE;
				}
			}
		else
			{
			LeapYear = TRUE;
			}
		}

	if  (Debug)
		printf ("\nConvertMonthDayToDayOfYear(): Year %d %s a leap year.\n", YearValue+2000, LeapYear ? "is" : "is not");

	/* Day of month given us starts in this algorithm. */
	ReturnValue = DayOfMonthValue;

	/* Add in days in month for each month past January. */
	for (MonthCounter=1; MonthCounter<MonthValue; MonthCounter++)
		{
		ReturnValue += DaysInMonth [ MonthCounter - 1 ];
		}

	/* Add a day for leap years where we are past February. */
	if  ((LeapYear) && (MonthValue > 2))
		{
		ReturnValue++;
		}

	if  (Debug)
		printf ("\nConvertMonthDayToDayOfYear(): %4.4d-%2.2d-%2.2d represents day %3d of year.\n",
				YearValue+2000, MonthValue, DayOfMonthValue, ReturnValue);

	return (ReturnValue);
	}


void
Help ( void )
	{
	printf ("\n\nTime Code Generation - IRIG-B or WWV, v%d.%d, %s dmw", VERSION, ISSUE, ISSUE_DATE);
	printf ("\n\nRCS Info:");
	printf (  "\n  $Header: /home/dmw/src/IRIG_generation/ntp-4.2.2p3/util/RCS/tg.c,v 1.28 2007/02/12 23:57:45 dmw Exp $");
	printf ("\n\nUsage: %s [option]*", CommandName);
	printf ("\n\nOptions: -a device_name                 Output audio device name (default /dev/audio)");
	printf (  "\n         -b yymmddhhmm                  Remove leap second at end of minute specified");
	printf (  "\n         -c seconds_to_send             Number of seconds to send (default 0 = forever)");
	printf (  "\n         -d                             Start with IEEE 1344 DST active");
	printf (  "\n         -f format_type                 i = Modulated IRIG-B 1998 (no year coded)");
	printf (  "\n                                        2 = Modulated IRIG-B 2002 (year coded)");
	printf (  "\n                                        3 = Modulated IRIG-B w/IEEE 1344 (year & control funcs) (default)");
	printf (  "\n                                        4 = Unmodulated IRIG-B w/IEEE 1344 (year & control funcs)");
	printf (  "\n                                        5 = Inverted unmodulated IRIG-B w/IEEE 1344 (year & control funcs)");
	printf (  "\n                                        w = WWV(H)");
	printf (  "\n         -g yymmddhhmm                  Switch into/out of DST at beginning of minute specified");
	printf (  "\n         -i yymmddhhmm                  Insert leap second at end of minute specified");
	printf (  "\n         -j                             Disable time rate correction against system clock (default enabled)");
	printf (  "\n         -k nn                          Force rate correction for testing (+1 = add cycle, -1 = remove cycle)");
	printf (  "\n         -l time_offset                 Set offset of time sent to UTC as per computer, +/- float hours");
	printf (  "\n         -o time_offset                 Set IEEE 1344 time offset, +/-, to 0.5 hour (default 0)");
	printf (  "\n         -q quality_code_hex            Set IEEE 1344 quality code (default 0)");
	printf (  "\n         -r sample_rate                 Audio sample rate (default 8000)");
	printf (  "\n         -s                             Set leap warning bit (WWV[H] only)");
	printf (  "\n         -t sync_frequency              WWV(H) on-time pulse tone frequency (default 1200)");
	printf (  "\n         -u DUT1_offset                 Set WWV(H) DUT1 offset -7 to +7 (default 0)");
#ifndef  HAVE_SYS_SOUNDCARD_H
	printf (  "\n         -v initial_output_level        Set initial output level (default %d, must be 0 to 255)", AUDIO_MAX_GAIN/8);
#endif
	printf (  "\n         -x                             Turn off verbose output (default on)");
	printf (  "\n         -y yymmddhhmmss                Set initial date and time as specified (default system time)");
	printf ("\n\nThis software licenced under the GPL, modifications performed 2006 & 2007 by Dean Weiten");
	printf (  "\nContact: Dean Weiten, Norscan Instruments Ltd., Winnipeg, MB, Canada, ph (204)-233-9138, E-mail dmw@norscan.com");
	printf ("\n\n");
	}

/* Reverse string order for nicer print. */
void
ReverseString(char *str)
	{
	int		StringLength;
	int		IndexCounter;
	int		CentreOfString;
	char	TemporaryCharacter;


	StringLength	= strlen(str);
	CentreOfString	= (StringLength/2)+1;
	for (IndexCounter = StringLength; IndexCounter >= CentreOfString; IndexCounter--)
		{
		TemporaryCharacter				= str[IndexCounter-1];
		str[IndexCounter-1]				= str[StringLength-IndexCounter];
		str[StringLength-IndexCounter]	= TemporaryCharacter;
		}
	}