Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
/*
 * Copyright (c) 2013 Qualcomm Atheros, Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
 * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
 * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
 * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
 * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
 * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
 * PERFORMANCE OF THIS SOFTWARE.
 */

#include "opt_ah.h"

#include "ah.h"
#include "ah_internal.h"

#include "ar9300/ar9300.h"
#include "ar9300/ar9300reg.h"

/*
 * Note: The key cache hardware requires that each double-word
 * pair be written in even/odd order (since the destination is
 * a 64-bit register).  Don't reorder the writes in this code
 * w/o considering this!
 */
#define KEY_XOR         0xaa

#define IS_MIC_ENABLED(ah) \
    (AH9300(ah)->ah_sta_id1_defaults & AR_STA_ID1_CRPT_MIC_ENABLE)

/*
 * This isn't the keytable type; this is actually something separate
 * for the TX descriptor.
 */
static const int keyType[] = {
	1,	/* HAL_CIPHER_WEP */
	0,	/* HAL_CIPHER_AES_OCB */
	2,	/* HAL_CIPHER_AES_CCM */
	0,	/* HAL_CIPHER_CKIP */
	3,	/* HAL_CIPHER_TKIP */
	0	/* HAL_CIPHER_CLR */
};

/*
 * Return the size of the hardware key cache.
 */
u_int32_t
ar9300_get_key_cache_size(struct ath_hal *ah)
{
    return AH_PRIVATE(ah)->ah_caps.halKeyCacheSize;
}

/*
 * Return AH_TRUE if the specific key cache entry is valid.
 */
HAL_BOOL
ar9300_is_key_cache_entry_valid(struct ath_hal *ah, u_int16_t entry)
{
    if (entry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
        u_int32_t val = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
        if (val & AR_KEYTABLE_VALID) {
            return AH_TRUE;
        }
    }
    return AH_FALSE;
}

/*
 * Clear the specified key cache entry and any associated MIC entry.
 */
HAL_BOOL
ar9300_reset_key_cache_entry(struct ath_hal *ah, u_int16_t entry)
{
    u_int32_t key_type;
    struct ath_hal_9300 *ahp = AH9300(ah);

    if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
        HALDEBUG(ah, HAL_DEBUG_KEYCACHE,
            "%s: entry %u out of range\n", __func__, entry);
        return AH_FALSE;
    }

    ahp->ah_keytype[entry] = keyType[HAL_CIPHER_CLR];

    key_type = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));

    /* XXX why not clear key type/valid bit first? */
    OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
    OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
    OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
    OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
    OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
    OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
    OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
    OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
    if (key_type == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
        u_int16_t micentry = entry + 64;  /* MIC goes at slot+64 */

        HALASSERT(micentry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize);
        OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
        OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
        OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
        OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
        /* NB: key type and MAC are known to be ok */
    }

    if (AH_PRIVATE(ah)->ah_curchan == AH_NULL) {
        return AH_TRUE;
    }

    if (ar9300_get_capability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL)
        == HAL_OK) {
        if (key_type == AR_KEYTABLE_TYPE_TKIP    ||
            key_type == AR_KEYTABLE_TYPE_40      ||
            key_type == AR_KEYTABLE_TYPE_104     ||
            key_type == AR_KEYTABLE_TYPE_128) {
            /* SW WAR for Bug 31602 */
            if (--ahp->ah_rifs_sec_cnt == 0) {
                HALDEBUG(ah, HAL_DEBUG_KEYCACHE,
                    "%s: Count = %d, enabling RIFS\n",
                    __func__, ahp->ah_rifs_sec_cnt);
                ar9300_set_rifs_delay(ah, AH_TRUE);
            }
        }
    }
    return AH_TRUE;
}

/*
 * Sets the mac part of the specified key cache entry (and any
 * associated MIC entry) and mark them valid.
 */
HAL_BOOL
ar9300_set_key_cache_entry_mac(
    struct ath_hal *ah,
    u_int16_t entry,
    const u_int8_t *mac)
{
    u_int32_t mac_hi, mac_lo;
    u_int32_t unicast_addr = AR_KEYTABLE_VALID;

    if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
        HALDEBUG(ah, HAL_DEBUG_KEYCACHE,
            "%s: entry %u out of range\n", __func__, entry);
        return AH_FALSE;
    }
    /*
     * Set MAC address -- shifted right by 1.  mac_lo is
     * the 4 MSBs, and mac_hi is the 2 LSBs.
     */
    if (mac != AH_NULL) {
        /*
         *  If upper layers have requested mcast MACaddr lookup, then
         *  signify this to the hw by setting the (poorly named) valid_bit
         *  to 0.  Yes, really 0. The hardware specs, pcu_registers.txt, is
         *  has incorrectly named valid_bit. It should be called "Unicast".
         *  When the Key Cache entry is to decrypt Unicast frames, this bit
         *  should be '1'; for multicast and broadcast frames, this bit is '0'.
         */
        if (mac[0] & 0x01) {
            unicast_addr = 0;    /* Not an unicast address */
        }

        mac_hi = (mac[5] << 8)  |  mac[4];
        mac_lo = (mac[3] << 24) | (mac[2] << 16)
              | (mac[1] << 8)  |  mac[0];
        mac_lo >>= 1; /* Note that the bit 0 is shifted out. This bit is used to
                      * indicate that this is a multicast key cache. */
        mac_lo |= (mac_hi & 1) << 31; /* carry */
        mac_hi >>= 1;
    } else {
        mac_lo = mac_hi = 0;
    }
    OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), mac_lo);
    OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), mac_hi | unicast_addr);
    return AH_TRUE;
}

/*
 * Sets the contents of the specified key cache entry
 * and any associated MIC entry.
 */
HAL_BOOL
ar9300_set_key_cache_entry(struct ath_hal *ah, u_int16_t entry,
                       const HAL_KEYVAL *k, const u_int8_t *mac,
                       int xor_key)
{
    const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
    u_int32_t key0, key1, key2, key3, key4;
    u_int32_t key_type;
    u_int32_t xor_mask = xor_key ?
        (KEY_XOR << 24 | KEY_XOR << 16 | KEY_XOR << 8 | KEY_XOR) : 0;
    struct ath_hal_9300 *ahp = AH9300(ah);
    u_int32_t pwrmgt, pwrmgt_mic, uapsd_cfg, psta = 0;
    int is_proxysta_key = k->kv_type & HAL_KEY_PROXY_STA_MASK;


    if (entry >= p_cap->halKeyCacheSize) {
        HALDEBUG(ah, HAL_DEBUG_KEYCACHE,
            "%s: entry %u out of range\n", __func__, entry);
        return AH_FALSE;
    }
    HALDEBUG(ah, HAL_DEBUG_KEYCACHE, "%s[%d] mac %s proxy %d\n",
        __func__, __LINE__, mac ? ath_hal_ether_sprintf(mac) : "null",
        is_proxysta_key);
	
    switch (k->kv_type & AH_KEYTYPE_MASK) {
    case HAL_CIPHER_AES_OCB:
        key_type = AR_KEYTABLE_TYPE_AES;
        break;
    case HAL_CIPHER_AES_CCM:
        if (!p_cap->halCipherAesCcmSupport) {
            HALDEBUG(ah, HAL_DEBUG_KEYCACHE, "%s: AES-CCM not supported by "
                "mac rev 0x%x\n",
                __func__, AH_PRIVATE(ah)->ah_macRev);
            return AH_FALSE;
        }
        key_type = AR_KEYTABLE_TYPE_CCM;
        break;
    case HAL_CIPHER_TKIP:
        key_type = AR_KEYTABLE_TYPE_TKIP;
        if (IS_MIC_ENABLED(ah) && entry + 64 >= p_cap->halKeyCacheSize) {
            HALDEBUG(ah, HAL_DEBUG_KEYCACHE,
                "%s: entry %u inappropriate for TKIP\n",
                __func__, entry);
            return AH_FALSE;
        }
        break;
    case HAL_CIPHER_WEP:
        if (k->kv_len < 40 / NBBY) {
            HALDEBUG(ah, HAL_DEBUG_KEYCACHE, "%s: WEP key length %u too small\n",
                __func__, k->kv_len);
            return AH_FALSE;
        }
        if (k->kv_len <= 40 / NBBY) {
            key_type = AR_KEYTABLE_TYPE_40;
        } else if (k->kv_len <= 104 / NBBY) {
            key_type = AR_KEYTABLE_TYPE_104;
        } else {
            key_type = AR_KEYTABLE_TYPE_128;
        }
        break;
    case HAL_CIPHER_CLR:
        key_type = AR_KEYTABLE_TYPE_CLR;
        break;
    default:
        HALDEBUG(ah, HAL_DEBUG_KEYCACHE, "%s: cipher %u not supported\n",
            __func__, k->kv_type);
        return AH_FALSE;
    }

    key0 =  LE_READ_4(k->kv_val +  0) ^ xor_mask;
    key1 = (LE_READ_2(k->kv_val +  4) ^ xor_mask) & 0xffff;
    key2 =  LE_READ_4(k->kv_val +  6) ^ xor_mask;
    key3 = (LE_READ_2(k->kv_val + 10) ^ xor_mask) & 0xffff;
    key4 =  LE_READ_4(k->kv_val + 12) ^ xor_mask;
    if (k->kv_len <= 104 / NBBY) {
        key4 &= 0xff;
    }

    /* Extract the UAPSD AC bits and shift it appropriately */
    uapsd_cfg = k->kv_apsd;
    uapsd_cfg = (u_int32_t) SM(uapsd_cfg, AR_KEYTABLE_UAPSD);

    /* Need to preserve the power management bit used by MAC */
    pwrmgt = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry)) & AR_KEYTABLE_PWRMGT;
    
    if (is_proxysta_key) {
        u_int8_t bcast_mac[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
        if (!mac || OS_MEMCMP(mac, bcast_mac, 6)) {
            psta = AR_KEYTABLE_DIR_ACK_BIT;
        }
    }
    /*
     * Note: key cache hardware requires that each double-word
     * pair be written in even/odd order (since the destination is
     * a 64-bit register).  Don't reorder these writes w/o
     * considering this!
     */
    if (key_type == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
        u_int16_t micentry = entry + 64;  /* MIC goes at slot+64 */

        /* Need to preserve the power management bit used by MAC */
        pwrmgt_mic =
            OS_REG_READ(ah, AR_KEYTABLE_TYPE(micentry)) & AR_KEYTABLE_PWRMGT;

        /*
         * Invalidate the encrypt/decrypt key until the MIC
         * key is installed so pending rx frames will fail
         * with decrypt errors rather than a MIC error.
         */
        OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
        OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
        OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
        OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
        OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
        OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry),
            key_type | pwrmgt | uapsd_cfg | psta);
        ar9300_set_key_cache_entry_mac(ah, entry, mac);

        /*
         * since the AR_MISC_MODE register was written with the contents of
         * ah_misc_mode (if any) in ar9300_attach, just check ah_misc_mode and
         * save a pci read per key set.
         */
        if (ahp->ah_misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
            u_int32_t mic0, mic1, mic2, mic3, mic4;
            /*
             * both RX and TX mic values can be combined into
             * one cache slot entry.
             * 8*N + 800         31:0    RX Michael key 0
             * 8*N + 804         15:0    TX Michael key 0 [31:16]
             * 8*N + 808         31:0    RX Michael key 1
             * 8*N + 80C         15:0    TX Michael key 0 [15:0]
             * 8*N + 810         31:0    TX Michael key 1
             * 8*N + 814         15:0    reserved
             * 8*N + 818         31:0    reserved
             * 8*N + 81C         14:0    reserved
             *                   15      key valid == 0
             */
            /* RX mic */
            mic0 = LE_READ_4(k->kv_mic + 0);
            mic2 = LE_READ_4(k->kv_mic + 4);
            /* TX mic */
            mic1 = LE_READ_2(k->kv_txmic + 2) & 0xffff;
            mic3 = LE_READ_2(k->kv_txmic + 0) & 0xffff;
            mic4 = LE_READ_4(k->kv_txmic + 4);
            OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
            OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
            OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
            OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
            OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
            OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
                         AR_KEYTABLE_TYPE_CLR | pwrmgt_mic | uapsd_cfg);

        } else {
            u_int32_t mic0, mic2;

            mic0 = LE_READ_4(k->kv_mic + 0);
            mic2 = LE_READ_4(k->kv_mic + 4);
            OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
            OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
            OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
            OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
            OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
            OS_REG_WRITE(ah,
                AR_KEYTABLE_TYPE(micentry | pwrmgt_mic | uapsd_cfg),
                AR_KEYTABLE_TYPE_CLR);
        }
        /* NB: MIC key is not marked valid and has no MAC address */
        OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
        OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);

        /* correct intentionally corrupted key */
        OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
        OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
    } else {
        OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
        OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
        OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
        OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
        OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
        OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry),
            key_type | pwrmgt | uapsd_cfg | psta);

        /*
        ath_hal_printf(ah, "%s[%d] mac %s proxy %d\n",
            __func__, __LINE__, mac ? ath_hal_ether_sprintf(mac) : "null",
            is_proxysta_key);
         */

        ar9300_set_key_cache_entry_mac(ah, entry, mac);
    }

    ahp->ah_keytype[entry] = keyType[k->kv_type];
    HALDEBUG(ah, HAL_DEBUG_KEYCACHE, "%s: entry=%d, k->kv_type=%d,"
      "keyType=%d\n", __func__, entry, k->kv_type, keyType[k->kv_type]);


    if (AH_PRIVATE(ah)->ah_curchan == AH_NULL) {
        return AH_TRUE;
    }

    if (ar9300_get_capability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL)
        == HAL_OK) {
        if (key_type == AR_KEYTABLE_TYPE_TKIP    ||
            key_type == AR_KEYTABLE_TYPE_40      ||
            key_type == AR_KEYTABLE_TYPE_104     ||
            key_type == AR_KEYTABLE_TYPE_128) {
            /* SW WAR for Bug 31602 */
            ahp->ah_rifs_sec_cnt++;
            HALDEBUG(ah, HAL_DEBUG_KEYCACHE,
                "%s: Count = %d, disabling RIFS\n",
                __func__, ahp->ah_rifs_sec_cnt);
            ar9300_set_rifs_delay(ah, AH_FALSE);
        }
    }
    HALDEBUG(ah, HAL_DEBUG_KEYCACHE, "%s[%d] mac %s proxy %d\n",
        __func__, __LINE__, mac ? ath_hal_ether_sprintf(mac) : "null",
        is_proxysta_key);

    return AH_TRUE;
}

/*
 * Enable the Keysearch for every subframe of an aggregate
 */
void
ar9300_enable_keysearch_always(struct ath_hal *ah, int enable)
{
    u_int32_t val;

    if (!ah) {
        return;
    }
    val = OS_REG_READ(ah, AR_PCU_MISC);
    if (enable) {
        val |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
    } else {
        val &= ~AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
    }
    OS_REG_WRITE(ah, AR_PCU_MISC, val);
}
void ar9300_dump_keycache(struct ath_hal *ah, int n, u_int32_t *entry)
{
#define AH_KEY_REG_SIZE	8
    int i;

    for (i = 0; i < AH_KEY_REG_SIZE; i++) {
        entry[i] = OS_REG_READ(ah, AR_KEYTABLE_KEY0(n) + i * 4);
    }
#undef AH_KEY_REG_SIZE
}

#if ATH_SUPPORT_KEYPLUMB_WAR
/*
 * Check the contents of the specified key cache entry
 * and any associated MIC entry.
 */
    HAL_BOOL
ar9300_check_key_cache_entry(struct ath_hal *ah, u_int16_t entry,
        const HAL_KEYVAL *k, int xorKey)
{
    const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
    u_int32_t key0, key1, key2, key3, key4;
    u_int32_t keyType;
    u_int32_t xorMask = xorKey ?
        (KEY_XOR << 24 | KEY_XOR << 16 | KEY_XOR << 8 | KEY_XOR) : 0;
    struct ath_hal_9300 *ahp = AH9300(ah);


    if (entry >= pCap->hal_key_cache_size) {
        HALDEBUG(ah, HAL_DEBUG_KEYCACHE,
                "%s: entry %u out of range\n", __func__, entry);
        return AH_FALSE;
    }
    switch (k->kv_type) {
        case HAL_CIPHER_AES_OCB:
            keyType = AR_KEYTABLE_TYPE_AES;
            break;
        case HAL_CIPHER_AES_CCM:
            if (!pCap->hal_cipher_aes_ccm_support) {
                HALDEBUG(ah, HAL_DEBUG_KEYCACHE, "%s: AES-CCM not supported by "
                        "mac rev 0x%x\n",
                        __func__, AH_PRIVATE(ah)->ah_macRev);
                return AH_FALSE;
            }
            keyType = AR_KEYTABLE_TYPE_CCM;
            break;
        case HAL_CIPHER_TKIP:
            keyType = AR_KEYTABLE_TYPE_TKIP;
            if (IS_MIC_ENABLED(ah) && entry + 64 >= pCap->hal_key_cache_size) {
                HALDEBUG(ah, HAL_DEBUG_KEYCACHE,
                        "%s: entry %u inappropriate for TKIP\n",
                        __func__, entry);
                return AH_FALSE;
            }
            break;
        case HAL_CIPHER_WEP:
            if (k->kv_len < 40 / NBBY) {
                HALDEBUG(ah, HAL_DEBUG_KEYCACHE, "%s: WEP key length %u too small\n",
                        __func__, k->kv_len);
                return AH_FALSE;
            }
            if (k->kv_len <= 40 / NBBY) {
                keyType = AR_KEYTABLE_TYPE_40;
            } else if (k->kv_len <= 104 / NBBY) {
                keyType = AR_KEYTABLE_TYPE_104;
            } else {
                keyType = AR_KEYTABLE_TYPE_128;
            }
            break;
        case HAL_CIPHER_CLR:
            keyType = AR_KEYTABLE_TYPE_CLR;
            return AH_TRUE;
        default:
            HALDEBUG(ah, HAL_DEBUG_KEYCACHE, "%s: cipher %u not supported\n",
                    __func__, k->kv_type);
            return AH_TRUE;
    }

    key0 =  LE_READ_4(k->kv_val +  0) ^ xorMask;
    key1 = (LE_READ_2(k->kv_val +  4) ^ xorMask) & 0xffff;
    key2 =  LE_READ_4(k->kv_val +  6) ^ xorMask;
    key3 = (LE_READ_2(k->kv_val + 10) ^ xorMask) & 0xffff;
    key4 =  LE_READ_4(k->kv_val + 12) ^ xorMask;
    if (k->kv_len <= 104 / NBBY) {
        key4 &= 0xff;
    }

    /*
     * Note: key cache hardware requires that each double-word
     * pair be written in even/odd order (since the destination is
     * a 64-bit register).  Don't reorder these writes w/o
     * considering this!
     */
    if (keyType == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
        u_int16_t micentry = entry + 64;  /* MIC goes at slot+64 */


        /*
         * Invalidate the encrypt/decrypt key until the MIC
         * key is installed so pending rx frames will fail
         * with decrypt errors rather than a MIC error.
         */
        if ((OS_REG_READ(ah, AR_KEYTABLE_KEY0(entry)) == key0) && 
                (OS_REG_READ(ah, AR_KEYTABLE_KEY1(entry)) == key1) &&
                (OS_REG_READ(ah, AR_KEYTABLE_KEY2(entry)) == key2) &&
                (OS_REG_READ(ah, AR_KEYTABLE_KEY3(entry)) == key3) &&
                (OS_REG_READ(ah, AR_KEYTABLE_KEY4(entry)) == key4) &&
                ((OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry)) & AR_KEY_TYPE) == (keyType & AR_KEY_TYPE))) 
        {

            /*
             * since the AR_MISC_MODE register was written with the contents of
             * ah_miscMode (if any) in ar9300Attach, just check ah_miscMode and
             * save a pci read per key set.
             */
            if (ahp->ah_misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
                u_int32_t mic0,mic1,mic2,mic3,mic4;
                /*
                 * both RX and TX mic values can be combined into
                 * one cache slot entry.
                 * 8*N + 800         31:0    RX Michael key 0
                 * 8*N + 804         15:0    TX Michael key 0 [31:16]
                 * 8*N + 808         31:0    RX Michael key 1
                 * 8*N + 80C         15:0    TX Michael key 0 [15:0]
                 * 8*N + 810         31:0    TX Michael key 1
                 * 8*N + 814         15:0    reserved
                 * 8*N + 818         31:0    reserved
                 * 8*N + 81C         14:0    reserved
                 *                   15      key valid == 0
                 */
                /* RX mic */
                mic0 = LE_READ_4(k->kv_mic + 0);
                mic2 = LE_READ_4(k->kv_mic + 4);
                /* TX mic */
                mic1 = LE_READ_2(k->kv_txmic + 2) & 0xffff;
                mic3 = LE_READ_2(k->kv_txmic + 0) & 0xffff;
                mic4 = LE_READ_4(k->kv_txmic + 4);
                if ((OS_REG_READ(ah, AR_KEYTABLE_KEY0(micentry)) == mic0) &&
                        (OS_REG_READ(ah, AR_KEYTABLE_KEY1(micentry)) == mic1) &&
                        (OS_REG_READ(ah, AR_KEYTABLE_KEY2(micentry)) == mic2) &&
                        (OS_REG_READ(ah, AR_KEYTABLE_KEY3(micentry)) == mic3) &&
                        (OS_REG_READ(ah, AR_KEYTABLE_KEY4(micentry)) == mic4) &&
                        ((OS_REG_READ(ah, AR_KEYTABLE_TYPE(micentry)) & AR_KEY_TYPE) == (AR_KEYTABLE_TYPE_CLR & AR_KEY_TYPE))) {
                    return AH_TRUE;
                }

            } else {
                return AH_TRUE;
            }
        }
    } else {
        if ((OS_REG_READ(ah, AR_KEYTABLE_KEY0(entry)) == key0) &&
                (OS_REG_READ(ah, AR_KEYTABLE_KEY1(entry)) == key1) &&
                (OS_REG_READ(ah, AR_KEYTABLE_KEY2(entry)) == key2) &&
                (OS_REG_READ(ah, AR_KEYTABLE_KEY3(entry)) == key3) &&
                (OS_REG_READ(ah, AR_KEYTABLE_KEY4(entry)) == key4) &&
                ((OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry)) & AR_KEY_TYPE) == (keyType & AR_KEY_TYPE))) {
            return AH_TRUE;
        }
    }
    return AH_FALSE;
}
#endif