Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
/***********************license start***************
 * Copyright (c) 2003-2010  Cavium Inc. (support@cavium.com). All rights
 * reserved.
 *
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.

 *   * Neither the name of Cavium Inc. nor the names of
 *     its contributors may be used to endorse or promote products
 *     derived from this software without specific prior written
 *     permission.

 * This Software, including technical data, may be subject to U.S. export  control
 * laws, including the U.S. Export Administration Act and its  associated
 * regulations, and may be subject to export or import  regulations in other
 * countries.

 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
 * AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
 * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE  RISK ARISING OUT OF USE OR
 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
 ***********************license end**************************************/







/**
 * @file
 *
 * Support library for the SPI4000 card
 *
 * <hr>$Revision: 70030 $<hr>
 */
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
#include <linux/module.h>
#include <asm/octeon/cvmx.h>
#include <asm/octeon/cvmx-spi.h>
#include <asm/octeon/cvmx-twsi.h>
#include <asm/octeon/cvmx-gmxx-defs.h>
#else
#include "cvmx.h"
#include "cvmx-spi.h"
#include "cvmx-twsi.h"
#endif

/* If someone is using an old config, make the SPI4000 act like RGMII for backpressure */
#ifndef CVMX_HELPER_DISABLE_SPI4000_BACKPRESSURE
#ifndef CVMX_HELPER_DISABLE_RGMII_BACKPRESSURE
#define CVMX_HELPER_DISABLE_RGMII_BACKPRESSURE 0
#endif
#define CVMX_HELPER_DISABLE_SPI4000_BACKPRESSURE CVMX_HELPER_DISABLE_RGMII_BACKPRESSURE
#endif

#define SPI4000_READ_ADDRESS_HIGH   0xf0
#define SPI4000_READ_ADDRESS_LOW    0xf1
#define SPI4000_WRITE_ADDRESS_HIGH  0xf2
#define SPI4000_WRITE_ADDRESS_LOW   0xf3
#define SPI4000_READ_DATA0          0xf4    /* High byte */
#define SPI4000_READ_DATA1          0xf5
#define SPI4000_READ_DATA2          0xf6
#define SPI4000_READ_DATA3          0xf7    /* Low byte */
#define SPI4000_WRITE_DATA0         0xf8    /* High byte */
#define SPI4000_WRITE_DATA1         0xf9
#define SPI4000_WRITE_DATA2         0xfa
#define SPI4000_WRITE_DATA3         0xfb    /* Low byte */
#define SPI4000_DO_READ             0xfc    /* Issue a read, returns read status */
#define SPI4000_GET_READ_STATUS     0xfd    /* 0xff: initial state, 2: Read failed, 1: Read pending, 0: Read success */
#define SPI4000_DO_WRITE            0xfe    /* Issue a write, returns write status */
#define SPI4000_GET_WRITE_STATUS    0xff    /* 0xff: initial state, 6: Write failed, 5: Write pending, 4: Write success */
#define SPI4000_TWSI_ID(interface)  (0x66 + interface)

/* MDI Single Command (register 0x680) */
typedef union
{
    uint32_t u32;
    struct
    {
        uint32_t    reserved_21_31  : 11;
        uint32_t    mdi_command     : 1; /**< Performs an MDIO access. When set, this bit
                                            self clears upon completion of the access. */
        uint32_t    reserved_18_19  : 2;
        uint32_t    op_code         : 2; /**< MDIO Op Code
                                            00 = Reserved
                                            01 = Write Access
                                            10 = Read Access
                                            11 = Reserved */
        uint32_t    reserved_13_15  : 3;
        uint32_t    phy_address     : 5; /**< Address of external PHY device */
        uint32_t    reserved_5_7    : 3;
        uint32_t    reg_address     : 5; /**< Address of register within external PHY */
    } s;
} mdio_single_command_t;


static CVMX_SHARED int interface_is_spi4000[2] = {0,0};


/**
 * @INTERNAL
 * Write data to the specified SPI4000 address
 *
 * @param interface Interface the SPI4000 is on. (0 or 1)
 * @param address   Address to write to
 * @param data      Data to write
 */
static void __cvmx_spi4000_write(int interface, int address, uint32_t data)
{
    int status;
    cvmx_twsix_write_ia(0, SPI4000_TWSI_ID(interface), SPI4000_WRITE_ADDRESS_HIGH, 2, 1, address);
    cvmx_twsix_write_ia(0, SPI4000_TWSI_ID(interface), SPI4000_WRITE_DATA0, 4, 1, data);

    status = cvmx_twsi_read8(SPI4000_TWSI_ID(interface), SPI4000_DO_WRITE);
    while ((status == 5) || (status == 0xff))
        status = cvmx_twsi_read8(SPI4000_TWSI_ID(interface), SPI4000_GET_WRITE_STATUS);

    if (status != 4)
        cvmx_dprintf("SPI4000: write failed with status=0x%x\n", status);
}


/**
 * @INTERNAL
 * Read data from the SPI4000.
 *
 * @param interface Interface the SPI4000 is on. (0 or 1)
 * @param address   Address to read from
 *
 * @return Value at the specified address
 */
static uint32_t __cvmx_spi4000_read(int interface, int address)
{
    int status;
    uint64_t data;

    cvmx_twsix_write_ia(0, SPI4000_TWSI_ID(interface), SPI4000_READ_ADDRESS_HIGH, 2, 1, address);

    status = cvmx_twsi_read8(SPI4000_TWSI_ID(interface), SPI4000_DO_READ);
    while ((status == 1) || (status == 0xff))
        status = cvmx_twsi_read8(SPI4000_TWSI_ID(interface), SPI4000_GET_READ_STATUS);

    if (status)
    {
        cvmx_dprintf("SPI4000: read failed with %d\n", status);
        return 0;
    }

    status = cvmx_twsix_read_ia(0, SPI4000_TWSI_ID(interface), SPI4000_READ_DATA0, 4, 1, &data);
    if (status != 4)
    {
        cvmx_dprintf("SPI4000: read failed with %d\n", status);
        return 0;
    }

    return data;
}


/**
 * @INTERNAL
 * Write to a PHY using MDIO on the SPI4000
 *
 * @param interface Interface the SPI4000 is on. (0 or 1)
 * @param port      SPI4000 RGMII port to write to. (0-9)
 * @param location  MDIO register to write
 * @param val       Value to write
 */
static void __cvmx_spi4000_mdio_write(int interface, int port, int location, int val)
{
    static int last_value=-1;
    mdio_single_command_t mdio;

    mdio.u32 = 0;
    mdio.s.mdi_command = 1;
    mdio.s.op_code = 1;
    mdio.s.phy_address = port;
    mdio.s.reg_address = location;

    /* Since the TWSI accesses are very slow, don't update the write value
        if it is the same as the last value */
    if (val != last_value)
    {
        last_value = val;
        __cvmx_spi4000_write(interface, 0x0681, val);
    }

    __cvmx_spi4000_write(interface, 0x0680, mdio.u32);
}


/**
 * @INTERNAL
 * Read from a PHY using MDIO on the SPI4000
 *
 * @param interface Interface the SPI4000 is on. (0 or 1)
 * @param port      SPI4000 RGMII port to read from. (0-9)
 * @param location  MDIO register to read
 * @return The MDI read result
 */
static int __cvmx_spi4000_mdio_read(int interface, int port, int location)
{
    mdio_single_command_t mdio;

    mdio.u32 = 0;
    mdio.s.mdi_command = 1;
    mdio.s.op_code = 2;
    mdio.s.phy_address = port;
    mdio.s.reg_address = location;
    __cvmx_spi4000_write(interface, 0x0680, mdio.u32);

    do
    {
        mdio.u32 = __cvmx_spi4000_read(interface, 0x0680);
    } while (mdio.s.mdi_command);

    return __cvmx_spi4000_read(interface, 0x0681) >> 16;
}


/**
 * @INTERNAL
 * Configure the SPI4000 MACs
 */
static void __cvmx_spi4000_configure_mac(int interface)
{
    int port;
    // IXF1010 configuration
    // ---------------------
    //
    // Step 1: Apply soft reset to TxFIFO and MAC
    //         MAC soft reset register. address=0x505
    //         TxFIFO soft reset. address=0x620
    __cvmx_spi4000_write(interface, 0x0505, 0x3ff);  // reset all the MACs
    __cvmx_spi4000_write(interface, 0x0620, 0x3ff);  // reset the TX FIFOs

    //         Global address and Configuration Register. address=0x500
    //
    // Step 2: Apply soft reset to RxFIFO and SPI.
    __cvmx_spi4000_write(interface, 0x059e, 0x3ff);  // reset the RX FIFOs

    // Step 3a: Take the MAC out of softreset
    //          MAC soft reset register. address=0x505
    __cvmx_spi4000_write(interface, 0x0505, 0x0);    // reset all the MACs

    // Step 3b: De-assert port enables.
    //          Global address and Configuration Register. address=0x500
    __cvmx_spi4000_write(interface, 0x0500, 0x0);    // disable all ports

    // Step 4: Assert Clock mode change En.
    //         Clock and interface mode Change En. address=Serdes base + 0x14
    //         Serdes (Serializer/de-serializer). address=0x780
    //         [Can't find this one]

    for (port=0; port < 10; port++)
    {
        int port_offset = port << 7;

        // Step 5: Set MAC interface mode GMII speed.
        //         MAC interface mode and RGMII speed register.
        //             address=port_index+0x10
        //
        //         OUT port_index+0x10, 0x07     //RGMII 1000 Mbps operation.
        __cvmx_spi4000_write(interface, port_offset | 0x0010, 0x3);

        // Set the max packet size to 16383 bytes, including the CRC
        __cvmx_spi4000_write(interface, port_offset | 0x000f, 0x3fff);

        // Step 6: Change Interface to Copper mode
        //         Interface mode register. address=0x501
        //         [Can't find this]

        // Step 7: MAC configuration
        //         Station address configuration.
        //         Source MAC address low register. Source MAC address 31-0.
        //             address=port_index+0x00
        //         Source MAC address high register. Source MAC address 47-32.
        //             address=port_index+0x01
        //         where Port index is 0x0 to 0x5.
        //         This address is inserted in the source address filed when
        //         transmitting pause frames, and is also used to compare against
        //         unicast pause frames at the receiving side.
        //
        //         OUT port_index+0x00, source MAC address low.
        __cvmx_spi4000_write(interface, port_offset | 0x0000, 0x0000);
        //         OUT port_index+0x01, source MAC address high.
        __cvmx_spi4000_write(interface, port_offset | 0x0001, 0x0000);

        // Step 8: Set desired duplex mode
        //         Desired duplex register. address=port_index+0x02
        //         [Reserved]

        // Step 9: Other configuration.
        //         FC Enable Register.             address=port_index+0x12
        //         Discard Unknown Control Frame.  address=port_index+0x15
        //         Diverse config write register.  address=port_index+0x18
        //         RX Packet Filter register.      address=port_index+0x19
        //
        // Step 9a: Tx FD FC Enabled / Rx FD FC Enabled
        if (CVMX_HELPER_DISABLE_SPI4000_BACKPRESSURE)
            __cvmx_spi4000_write(interface, port_offset | 0x0012, 0);
        else
            __cvmx_spi4000_write(interface, port_offset | 0x0012, 0x7);

        // Step 9b: Discard unknown control frames
        __cvmx_spi4000_write(interface, port_offset | 0x0015, 0x1);

        // Step 9c: Enable auto-CRC and auto-padding
        __cvmx_spi4000_write(interface, port_offset | 0x0018, 0x11cd); //??

        // Step 9d: Drop bad CRC / Drop Pause / No DAF
        __cvmx_spi4000_write(interface, port_offset | 0x0019, 0x00);
    }

    // Step 9d: Drop frames
    __cvmx_spi4000_write(interface, 0x059f, 0x03ff);

    for (port=0; port < 10; port++)
    {
        // Step 9e: Set the TX FIFO marks
        __cvmx_spi4000_write(interface, port + 0x0600, 0x0900); // TXFIFO High watermark
        __cvmx_spi4000_write(interface, port + 0x060a, 0x0800); // TXFIFO Low watermark
        __cvmx_spi4000_write(interface, port + 0x0614, 0x0380); // TXFIFO threshold
    }

    // Step 12: De-assert RxFIFO and SPI Rx/Tx reset
    __cvmx_spi4000_write(interface, 0x059e, 0x0);    // reset the RX FIFOs

    // Step 13: De-assert TxFIFO and MAC reset
    __cvmx_spi4000_write(interface, 0x0620, 0x0);    // reset the TX FIFOs

    // Step 14: Assert port enable
    //          Global address and Configuration Register. address=0x500
    __cvmx_spi4000_write(interface, 0x0500, 0x03ff); // enable all ports

    // Step 15: Disable loopback
    //          [Can't find this one]
}


/**
 * @INTERNAL
 * Configure the SPI4000 PHYs
 */
static void __cvmx_spi4000_configure_phy(int interface)
{
    int port;

    /* We use separate loops below since it allows us to save a write
        to the SPI4000 for each repeated value. This adds up to a couple
        of seconds */

    /* Update the link state before resets. It takes a while for the links to
        come back after the resets. Most likely they'll come back the same as
        they are now */
    for (port=0; port < 10; port++)
        cvmx_spi4000_check_speed(interface, port);
    /* Enable RGMII DELAYS for TX_CLK and RX_CLK (see spec) */
    for (port=0; port < 10; port++)
        __cvmx_spi4000_mdio_write(interface, port, 0x14, 0x00e2);
    /* Advertise pause and 100 Full Duplex. Don't advertise half duplex or 10Mbpa */
    for (port=0; port < 10; port++)
        __cvmx_spi4000_mdio_write(interface, port, 0x4, 0x0d01);
    /* Enable PHY reset */
    for (port=0; port < 10; port++)
        __cvmx_spi4000_mdio_write(interface, port, 0x0, 0x9140);
}


/**
 * Poll all the SPI4000 port and check its speed
 *
 * @param interface Interface the SPI4000 is on
 * @param port      Port to poll (0-9)
 * @return Status of the port. 0=down. All other values the port is up.
 */
cvmx_gmxx_rxx_rx_inbnd_t cvmx_spi4000_check_speed(int interface, int port)
{
    static int phy_status[10] = {0,};
    cvmx_gmxx_rxx_rx_inbnd_t link;
    int read_status;

    link.u64 = 0;

    if (!interface_is_spi4000[interface])
        return link;
    if (port>=10)
        return link;

    /* Register 0x11: PHY Specific Status Register
         Register   Function         Setting                     Mode   HW Rst SW Rst Notes
                                                                 RO     00     Retain note
         17.15:14   Speed            11 = Reserved
                                                                                      17.a
                                     10 = 1000 Mbps
                                     01 = 100 Mbps
                                     00 = 10 Mbps
         17.13      Duplex           1 = Full-duplex             RO     0      Retain note
                                     0 = Half-duplex                                  17.a
         17.12      Page Received    1 = Page received           RO, LH 0      0
                                     0 = Page not received
                                     1 = Resolved                RO     0      0      note
         17.11      Speed and
                                     0 = Not resolved                                 17.a
                    Duplex
                    Resolved
         17.10      Link (real time) 1 = Link up                 RO     0      0
                                     0 = Link down
                                                                 RO     000    000    note
                                     000 = < 50m
         17.9:7     Cable Length
                                     001 = 50 - 80m                                   17.b
                    (100/1000
                                     010 = 80 - 110m
                    modes only)
                                     011 = 110 - 140m
                                     100 = >140m
         17.6       MDI Crossover    1 = MDIX                    RO     0      0      note
                    Status           0 = MDI                                          17.a
         17.5       Downshift Sta-   1 = Downshift               RO     0      0
                    tus              0 = No Downshift
         17.4       Energy Detect    1 = Sleep                   RO     0      0
                    Status           0 = Active
         17.3       Transmit Pause   1 = Transmit pause enabled  RO     0      0      note17.
                    Enabled          0 = Transmit pause disabled                      a, 17.c
         17.2       Receive Pause    1 = Receive pause enabled   RO     0      0      note17.
                    Enabled          0 = Receive pause disabled                       a, 17.c
         17.1       Polarity (real   1 = Reversed                RO     0      0
                    time)            0 = Normal
         17.0       Jabber (real     1 = Jabber                  RO     0      Retain
                    time)            0 = No jabber
    */
    read_status = __cvmx_spi4000_mdio_read(interface, port, 0x11);
    if ((read_status & (1<<10)) == 0)
        read_status = 0; /* If the link is down, force zero */
    else
        read_status &= 0xe400; /* Strip off all the don't care bits */
    if (read_status != phy_status[port])
    {
        phy_status[port] = read_status;
        if (read_status & (1<<10))
        {
            /* If the link is up, we need to set the speed based on the PHY status */
            if (read_status & (1<<15))
                __cvmx_spi4000_write(interface, (port<<7) | 0x0010, 0x3); /* 1Gbps */
            else
                __cvmx_spi4000_write(interface, (port<<7) | 0x0010, 0x1); /* 100Mbps */
        }
        else
        {
            /* If the link is down, force 1Gbps so TX traffic dumps fast */
            __cvmx_spi4000_write(interface, (port<<7) | 0x0010, 0x3); /* 1Gbps */
        }
    }

    if (read_status & (1<<10))
    {
        link.s.status = 1; /* Link up */
        if (read_status & (1<<15))
            link.s.speed = 2;
        else
            link.s.speed = 1;
    }
    else
    {
        link.s.speed = 2; /* Use 1Gbps when down */
        link.s.status = 0; /* Link Down */
    }
    link.s.duplex = ((read_status & (1<<13)) != 0);

    return link;
}
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
EXPORT_SYMBOL(cvmx_spi4000_check_speed);
#endif


/**
 * Return non-zero if the SPI interface has a SPI4000 attached
 *
 * @param interface SPI interface the SPI4000 is connected to
 *
 * @return
 */
int cvmx_spi4000_is_present(int interface)
{
    if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
        return 0;
    // Check for the presence of a SPI4000. If it isn't there,
    // these writes will timeout.
    if (cvmx_twsi_write8(SPI4000_TWSI_ID(interface), SPI4000_WRITE_ADDRESS_HIGH, 0))
        return 0;
    if (cvmx_twsi_write8(SPI4000_TWSI_ID(interface), SPI4000_WRITE_ADDRESS_LOW, 0))
        return 0;
    interface_is_spi4000[interface] = 1;
    return 1;
}


/**
 * Initialize the SPI4000 for use
 *
 * @param interface SPI interface the SPI4000 is connected to
 */
int cvmx_spi4000_initialize(int interface)
{
    if (!cvmx_spi4000_is_present(interface))
        return -1;

    __cvmx_spi4000_configure_mac(interface);
    __cvmx_spi4000_configure_phy(interface);
    return 0;
}