/***********************license start***************
* Copyright (c) 2003-2010 Cavium Inc. (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Cavium Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
* This Software, including technical data, may be subject to U.S. export control
* laws, including the U.S. Export Administration Act and its associated
* regulations, and may be subject to export or import regulations in other
* countries.
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
* THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
* DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
* SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
* MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
* VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
* CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
* PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
***********************license end**************************************/
/**
* @file
*
* Support library for the SPI4000 card
*
* <hr>$Revision: 70030 $<hr>
*/
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
#include <linux/module.h>
#include <asm/octeon/cvmx.h>
#include <asm/octeon/cvmx-spi.h>
#include <asm/octeon/cvmx-twsi.h>
#include <asm/octeon/cvmx-gmxx-defs.h>
#else
#include "cvmx.h"
#include "cvmx-spi.h"
#include "cvmx-twsi.h"
#endif
/* If someone is using an old config, make the SPI4000 act like RGMII for backpressure */
#ifndef CVMX_HELPER_DISABLE_SPI4000_BACKPRESSURE
#ifndef CVMX_HELPER_DISABLE_RGMII_BACKPRESSURE
#define CVMX_HELPER_DISABLE_RGMII_BACKPRESSURE 0
#endif
#define CVMX_HELPER_DISABLE_SPI4000_BACKPRESSURE CVMX_HELPER_DISABLE_RGMII_BACKPRESSURE
#endif
#define SPI4000_READ_ADDRESS_HIGH 0xf0
#define SPI4000_READ_ADDRESS_LOW 0xf1
#define SPI4000_WRITE_ADDRESS_HIGH 0xf2
#define SPI4000_WRITE_ADDRESS_LOW 0xf3
#define SPI4000_READ_DATA0 0xf4 /* High byte */
#define SPI4000_READ_DATA1 0xf5
#define SPI4000_READ_DATA2 0xf6
#define SPI4000_READ_DATA3 0xf7 /* Low byte */
#define SPI4000_WRITE_DATA0 0xf8 /* High byte */
#define SPI4000_WRITE_DATA1 0xf9
#define SPI4000_WRITE_DATA2 0xfa
#define SPI4000_WRITE_DATA3 0xfb /* Low byte */
#define SPI4000_DO_READ 0xfc /* Issue a read, returns read status */
#define SPI4000_GET_READ_STATUS 0xfd /* 0xff: initial state, 2: Read failed, 1: Read pending, 0: Read success */
#define SPI4000_DO_WRITE 0xfe /* Issue a write, returns write status */
#define SPI4000_GET_WRITE_STATUS 0xff /* 0xff: initial state, 6: Write failed, 5: Write pending, 4: Write success */
#define SPI4000_TWSI_ID(interface) (0x66 + interface)
/* MDI Single Command (register 0x680) */
typedef union
{
uint32_t u32;
struct
{
uint32_t reserved_21_31 : 11;
uint32_t mdi_command : 1; /**< Performs an MDIO access. When set, this bit
self clears upon completion of the access. */
uint32_t reserved_18_19 : 2;
uint32_t op_code : 2; /**< MDIO Op Code
00 = Reserved
01 = Write Access
10 = Read Access
11 = Reserved */
uint32_t reserved_13_15 : 3;
uint32_t phy_address : 5; /**< Address of external PHY device */
uint32_t reserved_5_7 : 3;
uint32_t reg_address : 5; /**< Address of register within external PHY */
} s;
} mdio_single_command_t;
static CVMX_SHARED int interface_is_spi4000[2] = {0,0};
/**
* @INTERNAL
* Write data to the specified SPI4000 address
*
* @param interface Interface the SPI4000 is on. (0 or 1)
* @param address Address to write to
* @param data Data to write
*/
static void __cvmx_spi4000_write(int interface, int address, uint32_t data)
{
int status;
cvmx_twsix_write_ia(0, SPI4000_TWSI_ID(interface), SPI4000_WRITE_ADDRESS_HIGH, 2, 1, address);
cvmx_twsix_write_ia(0, SPI4000_TWSI_ID(interface), SPI4000_WRITE_DATA0, 4, 1, data);
status = cvmx_twsi_read8(SPI4000_TWSI_ID(interface), SPI4000_DO_WRITE);
while ((status == 5) || (status == 0xff))
status = cvmx_twsi_read8(SPI4000_TWSI_ID(interface), SPI4000_GET_WRITE_STATUS);
if (status != 4)
cvmx_dprintf("SPI4000: write failed with status=0x%x\n", status);
}
/**
* @INTERNAL
* Read data from the SPI4000.
*
* @param interface Interface the SPI4000 is on. (0 or 1)
* @param address Address to read from
*
* @return Value at the specified address
*/
static uint32_t __cvmx_spi4000_read(int interface, int address)
{
int status;
uint64_t data;
cvmx_twsix_write_ia(0, SPI4000_TWSI_ID(interface), SPI4000_READ_ADDRESS_HIGH, 2, 1, address);
status = cvmx_twsi_read8(SPI4000_TWSI_ID(interface), SPI4000_DO_READ);
while ((status == 1) || (status == 0xff))
status = cvmx_twsi_read8(SPI4000_TWSI_ID(interface), SPI4000_GET_READ_STATUS);
if (status)
{
cvmx_dprintf("SPI4000: read failed with %d\n", status);
return 0;
}
status = cvmx_twsix_read_ia(0, SPI4000_TWSI_ID(interface), SPI4000_READ_DATA0, 4, 1, &data);
if (status != 4)
{
cvmx_dprintf("SPI4000: read failed with %d\n", status);
return 0;
}
return data;
}
/**
* @INTERNAL
* Write to a PHY using MDIO on the SPI4000
*
* @param interface Interface the SPI4000 is on. (0 or 1)
* @param port SPI4000 RGMII port to write to. (0-9)
* @param location MDIO register to write
* @param val Value to write
*/
static void __cvmx_spi4000_mdio_write(int interface, int port, int location, int val)
{
static int last_value=-1;
mdio_single_command_t mdio;
mdio.u32 = 0;
mdio.s.mdi_command = 1;
mdio.s.op_code = 1;
mdio.s.phy_address = port;
mdio.s.reg_address = location;
/* Since the TWSI accesses are very slow, don't update the write value
if it is the same as the last value */
if (val != last_value)
{
last_value = val;
__cvmx_spi4000_write(interface, 0x0681, val);
}
__cvmx_spi4000_write(interface, 0x0680, mdio.u32);
}
/**
* @INTERNAL
* Read from a PHY using MDIO on the SPI4000
*
* @param interface Interface the SPI4000 is on. (0 or 1)
* @param port SPI4000 RGMII port to read from. (0-9)
* @param location MDIO register to read
* @return The MDI read result
*/
static int __cvmx_spi4000_mdio_read(int interface, int port, int location)
{
mdio_single_command_t mdio;
mdio.u32 = 0;
mdio.s.mdi_command = 1;
mdio.s.op_code = 2;
mdio.s.phy_address = port;
mdio.s.reg_address = location;
__cvmx_spi4000_write(interface, 0x0680, mdio.u32);
do
{
mdio.u32 = __cvmx_spi4000_read(interface, 0x0680);
} while (mdio.s.mdi_command);
return __cvmx_spi4000_read(interface, 0x0681) >> 16;
}
/**
* @INTERNAL
* Configure the SPI4000 MACs
*/
static void __cvmx_spi4000_configure_mac(int interface)
{
int port;
// IXF1010 configuration
// ---------------------
//
// Step 1: Apply soft reset to TxFIFO and MAC
// MAC soft reset register. address=0x505
// TxFIFO soft reset. address=0x620
__cvmx_spi4000_write(interface, 0x0505, 0x3ff); // reset all the MACs
__cvmx_spi4000_write(interface, 0x0620, 0x3ff); // reset the TX FIFOs
// Global address and Configuration Register. address=0x500
//
// Step 2: Apply soft reset to RxFIFO and SPI.
__cvmx_spi4000_write(interface, 0x059e, 0x3ff); // reset the RX FIFOs
// Step 3a: Take the MAC out of softreset
// MAC soft reset register. address=0x505
__cvmx_spi4000_write(interface, 0x0505, 0x0); // reset all the MACs
// Step 3b: De-assert port enables.
// Global address and Configuration Register. address=0x500
__cvmx_spi4000_write(interface, 0x0500, 0x0); // disable all ports
// Step 4: Assert Clock mode change En.
// Clock and interface mode Change En. address=Serdes base + 0x14
// Serdes (Serializer/de-serializer). address=0x780
// [Can't find this one]
for (port=0; port < 10; port++)
{
int port_offset = port << 7;
// Step 5: Set MAC interface mode GMII speed.
// MAC interface mode and RGMII speed register.
// address=port_index+0x10
//
// OUT port_index+0x10, 0x07 //RGMII 1000 Mbps operation.
__cvmx_spi4000_write(interface, port_offset | 0x0010, 0x3);
// Set the max packet size to 16383 bytes, including the CRC
__cvmx_spi4000_write(interface, port_offset | 0x000f, 0x3fff);
// Step 6: Change Interface to Copper mode
// Interface mode register. address=0x501
// [Can't find this]
// Step 7: MAC configuration
// Station address configuration.
// Source MAC address low register. Source MAC address 31-0.
// address=port_index+0x00
// Source MAC address high register. Source MAC address 47-32.
// address=port_index+0x01
// where Port index is 0x0 to 0x5.
// This address is inserted in the source address filed when
// transmitting pause frames, and is also used to compare against
// unicast pause frames at the receiving side.
//
// OUT port_index+0x00, source MAC address low.
__cvmx_spi4000_write(interface, port_offset | 0x0000, 0x0000);
// OUT port_index+0x01, source MAC address high.
__cvmx_spi4000_write(interface, port_offset | 0x0001, 0x0000);
// Step 8: Set desired duplex mode
// Desired duplex register. address=port_index+0x02
// [Reserved]
// Step 9: Other configuration.
// FC Enable Register. address=port_index+0x12
// Discard Unknown Control Frame. address=port_index+0x15
// Diverse config write register. address=port_index+0x18
// RX Packet Filter register. address=port_index+0x19
//
// Step 9a: Tx FD FC Enabled / Rx FD FC Enabled
if (CVMX_HELPER_DISABLE_SPI4000_BACKPRESSURE)
__cvmx_spi4000_write(interface, port_offset | 0x0012, 0);
else
__cvmx_spi4000_write(interface, port_offset | 0x0012, 0x7);
// Step 9b: Discard unknown control frames
__cvmx_spi4000_write(interface, port_offset | 0x0015, 0x1);
// Step 9c: Enable auto-CRC and auto-padding
__cvmx_spi4000_write(interface, port_offset | 0x0018, 0x11cd); //??
// Step 9d: Drop bad CRC / Drop Pause / No DAF
__cvmx_spi4000_write(interface, port_offset | 0x0019, 0x00);
}
// Step 9d: Drop frames
__cvmx_spi4000_write(interface, 0x059f, 0x03ff);
for (port=0; port < 10; port++)
{
// Step 9e: Set the TX FIFO marks
__cvmx_spi4000_write(interface, port + 0x0600, 0x0900); // TXFIFO High watermark
__cvmx_spi4000_write(interface, port + 0x060a, 0x0800); // TXFIFO Low watermark
__cvmx_spi4000_write(interface, port + 0x0614, 0x0380); // TXFIFO threshold
}
// Step 12: De-assert RxFIFO and SPI Rx/Tx reset
__cvmx_spi4000_write(interface, 0x059e, 0x0); // reset the RX FIFOs
// Step 13: De-assert TxFIFO and MAC reset
__cvmx_spi4000_write(interface, 0x0620, 0x0); // reset the TX FIFOs
// Step 14: Assert port enable
// Global address and Configuration Register. address=0x500
__cvmx_spi4000_write(interface, 0x0500, 0x03ff); // enable all ports
// Step 15: Disable loopback
// [Can't find this one]
}
/**
* @INTERNAL
* Configure the SPI4000 PHYs
*/
static void __cvmx_spi4000_configure_phy(int interface)
{
int port;
/* We use separate loops below since it allows us to save a write
to the SPI4000 for each repeated value. This adds up to a couple
of seconds */
/* Update the link state before resets. It takes a while for the links to
come back after the resets. Most likely they'll come back the same as
they are now */
for (port=0; port < 10; port++)
cvmx_spi4000_check_speed(interface, port);
/* Enable RGMII DELAYS for TX_CLK and RX_CLK (see spec) */
for (port=0; port < 10; port++)
__cvmx_spi4000_mdio_write(interface, port, 0x14, 0x00e2);
/* Advertise pause and 100 Full Duplex. Don't advertise half duplex or 10Mbpa */
for (port=0; port < 10; port++)
__cvmx_spi4000_mdio_write(interface, port, 0x4, 0x0d01);
/* Enable PHY reset */
for (port=0; port < 10; port++)
__cvmx_spi4000_mdio_write(interface, port, 0x0, 0x9140);
}
/**
* Poll all the SPI4000 port and check its speed
*
* @param interface Interface the SPI4000 is on
* @param port Port to poll (0-9)
* @return Status of the port. 0=down. All other values the port is up.
*/
cvmx_gmxx_rxx_rx_inbnd_t cvmx_spi4000_check_speed(int interface, int port)
{
static int phy_status[10] = {0,};
cvmx_gmxx_rxx_rx_inbnd_t link;
int read_status;
link.u64 = 0;
if (!interface_is_spi4000[interface])
return link;
if (port>=10)
return link;
/* Register 0x11: PHY Specific Status Register
Register Function Setting Mode HW Rst SW Rst Notes
RO 00 Retain note
17.15:14 Speed 11 = Reserved
17.a
10 = 1000 Mbps
01 = 100 Mbps
00 = 10 Mbps
17.13 Duplex 1 = Full-duplex RO 0 Retain note
0 = Half-duplex 17.a
17.12 Page Received 1 = Page received RO, LH 0 0
0 = Page not received
1 = Resolved RO 0 0 note
17.11 Speed and
0 = Not resolved 17.a
Duplex
Resolved
17.10 Link (real time) 1 = Link up RO 0 0
0 = Link down
RO 000 000 note
000 = < 50m
17.9:7 Cable Length
001 = 50 - 80m 17.b
(100/1000
010 = 80 - 110m
modes only)
011 = 110 - 140m
100 = >140m
17.6 MDI Crossover 1 = MDIX RO 0 0 note
Status 0 = MDI 17.a
17.5 Downshift Sta- 1 = Downshift RO 0 0
tus 0 = No Downshift
17.4 Energy Detect 1 = Sleep RO 0 0
Status 0 = Active
17.3 Transmit Pause 1 = Transmit pause enabled RO 0 0 note17.
Enabled 0 = Transmit pause disabled a, 17.c
17.2 Receive Pause 1 = Receive pause enabled RO 0 0 note17.
Enabled 0 = Receive pause disabled a, 17.c
17.1 Polarity (real 1 = Reversed RO 0 0
time) 0 = Normal
17.0 Jabber (real 1 = Jabber RO 0 Retain
time) 0 = No jabber
*/
read_status = __cvmx_spi4000_mdio_read(interface, port, 0x11);
if ((read_status & (1<<10)) == 0)
read_status = 0; /* If the link is down, force zero */
else
read_status &= 0xe400; /* Strip off all the don't care bits */
if (read_status != phy_status[port])
{
phy_status[port] = read_status;
if (read_status & (1<<10))
{
/* If the link is up, we need to set the speed based on the PHY status */
if (read_status & (1<<15))
__cvmx_spi4000_write(interface, (port<<7) | 0x0010, 0x3); /* 1Gbps */
else
__cvmx_spi4000_write(interface, (port<<7) | 0x0010, 0x1); /* 100Mbps */
}
else
{
/* If the link is down, force 1Gbps so TX traffic dumps fast */
__cvmx_spi4000_write(interface, (port<<7) | 0x0010, 0x3); /* 1Gbps */
}
}
if (read_status & (1<<10))
{
link.s.status = 1; /* Link up */
if (read_status & (1<<15))
link.s.speed = 2;
else
link.s.speed = 1;
}
else
{
link.s.speed = 2; /* Use 1Gbps when down */
link.s.status = 0; /* Link Down */
}
link.s.duplex = ((read_status & (1<<13)) != 0);
return link;
}
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
EXPORT_SYMBOL(cvmx_spi4000_check_speed);
#endif
/**
* Return non-zero if the SPI interface has a SPI4000 attached
*
* @param interface SPI interface the SPI4000 is connected to
*
* @return
*/
int cvmx_spi4000_is_present(int interface)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
return 0;
// Check for the presence of a SPI4000. If it isn't there,
// these writes will timeout.
if (cvmx_twsi_write8(SPI4000_TWSI_ID(interface), SPI4000_WRITE_ADDRESS_HIGH, 0))
return 0;
if (cvmx_twsi_write8(SPI4000_TWSI_ID(interface), SPI4000_WRITE_ADDRESS_LOW, 0))
return 0;
interface_is_spi4000[interface] = 1;
return 1;
}
/**
* Initialize the SPI4000 for use
*
* @param interface SPI interface the SPI4000 is connected to
*/
int cvmx_spi4000_initialize(int interface)
{
if (!cvmx_spi4000_is_present(interface))
return -1;
__cvmx_spi4000_configure_mac(interface);
__cvmx_spi4000_configure_phy(interface);
return 0;
}