Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
/*-
 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
/*
 * BLIST.C -	Bitmap allocator/deallocator, using a radix tree with hinting
 *
 *	This module implements a general bitmap allocator/deallocator.  The
 *	allocator eats around 2 bits per 'block'.  The module does not
 *	try to interpret the meaning of a 'block' other than to return
 *	SWAPBLK_NONE on an allocation failure.
 *
 *	A radix tree controls access to pieces of the bitmap, and includes
 *	auxiliary information at each interior node about the availabilty of
 *	contiguous free blocks in the subtree rooted at that node.  Two radix
 *	constants are involved: one for the size of the bitmaps contained in the
 *	leaf nodes (BLIST_BMAP_RADIX), and one for the number of descendents of
 *	each of the meta (interior) nodes (BLIST_META_RADIX).  Each subtree is
 *	associated with a range of blocks.  The root of any subtree stores a
 *	hint field that defines an upper bound on the size of the largest
 *	allocation that can begin in the associated block range.  A hint is an
 *	upper bound on a potential allocation, but not necessarily a tight upper
 *	bound.
 *
 *	The radix tree also implements two collapsed states for meta nodes:
 *	the ALL-ALLOCATED state and the ALL-FREE state.  If a meta node is
 *	in either of these two states, all information contained underneath
 *	the node is considered stale.  These states are used to optimize
 *	allocation and freeing operations.
 *
 * 	The hinting greatly increases code efficiency for allocations while
 *	the general radix structure optimizes both allocations and frees.  The
 *	radix tree should be able to operate well no matter how much
 *	fragmentation there is and no matter how large a bitmap is used.
 *
 *	The blist code wires all necessary memory at creation time.  Neither
 *	allocations nor frees require interaction with the memory subsystem.
 *	The non-blocking features of the blist code are used in the swap code
 *	(vm/swap_pager.c).
 *
 *	LAYOUT: The radix tree is laid out recursively using a
 *	linear array.  Each meta node is immediately followed (laid out
 *	sequentially in memory) by BLIST_META_RADIX lower level nodes.  This
 *	is a recursive structure but one that can be easily scanned through
 *	a very simple 'skip' calculation.  In order to support large radixes,
 *	portions of the tree may reside outside our memory allocation.  We
 *	handle this with an early-termination optimization (when bighint is
 *	set to -1) on the scan.  The memory allocation is only large enough
 *	to cover the number of blocks requested at creation time even if it
 *	must be encompassed in larger root-node radix.
 *
 *	NOTE: the allocator cannot currently allocate more than
 *	BLIST_BMAP_RADIX blocks per call.  It will panic with 'allocation too
 *	large' if you try.  This is an area that could use improvement.  The
 *	radix is large enough that this restriction does not effect the swap
 *	system, though.  Currently only the allocation code is affected by
 *	this algorithmic unfeature.  The freeing code can handle arbitrary
 *	ranges.
 *
 *	This code can be compiled stand-alone for debugging.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#ifdef _KERNEL

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/blist.h>
#include <sys/malloc.h>
#include <sys/sbuf.h>
#include <sys/proc.h>
#include <sys/mutex.h>

#else

#ifndef BLIST_NO_DEBUG
#define BLIST_DEBUG
#endif

#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/sbuf.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdbool.h>

#define	bitcount64(x)	__bitcount64((uint64_t)(x))
#define malloc(a,b,c)	calloc(a, 1)
#define free(a,b)	free(a)
static __inline int imax(int a, int b) { return (a > b ? a : b); }

#include <sys/blist.h>

void panic(const char *ctl, ...);

#endif

/*
 * static support functions
 */
static daddr_t	blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count);
static daddr_t	blst_meta_alloc(blmeta_t *scan, daddr_t cursor, daddr_t count,
		    u_daddr_t radix);
static void blst_leaf_free(blmeta_t *scan, daddr_t relblk, int count);
static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count,
		    u_daddr_t radix);
static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix,
		    blist_t dest, daddr_t count);
static daddr_t blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count);
static daddr_t blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count,
		    u_daddr_t radix);
static daddr_t	blst_radix_init(blmeta_t *scan, daddr_t radix, daddr_t count);
#ifndef _KERNEL
static void	blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix,
		    int tab);
#endif

#ifdef _KERNEL
static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
#endif

_Static_assert(BLIST_BMAP_RADIX % BLIST_META_RADIX == 0,
    "radix divisibility error");
#define	BLIST_BMAP_MASK	(BLIST_BMAP_RADIX - 1)
#define	BLIST_META_MASK	(BLIST_META_RADIX - 1)

/*
 * For a subtree that can represent the state of up to 'radix' blocks, the
 * number of leaf nodes of the subtree is L=radix/BLIST_BMAP_RADIX.  If 'm'
 * is short for BLIST_META_RADIX, then for a tree of height h with L=m**h
 * leaf nodes, the total number of tree nodes is 1 + m + m**2 + ... + m**h,
 * or, equivalently, (m**(h+1)-1)/(m-1).  This quantity is called 'skip'
 * in the 'meta' functions that process subtrees.  Since integer division
 * discards remainders, we can express this computation as
 * skip = (m * m**h) / (m - 1)
 * skip = (m * (radix / BLIST_BMAP_RADIX)) / (m - 1)
 * and since m divides BLIST_BMAP_RADIX, we can simplify further to
 * skip = (radix / (BLIST_BMAP_RADIX / m)) / (m - 1)
 * skip = radix / ((BLIST_BMAP_RADIX / m) * (m - 1))
 * so that simple integer division by a constant can safely be used for the
 * calculation.
 */
static inline daddr_t
radix_to_skip(daddr_t radix)
{

	return (radix /
	    ((BLIST_BMAP_RADIX / BLIST_META_RADIX) * BLIST_META_MASK));
}

/*
 * Use binary search, or a faster method, to find the 1 bit in a u_daddr_t.
 * Assumes that the argument has only one bit set.
 */
static inline int
bitpos(u_daddr_t mask)
{
	int hi, lo, mid;

	switch (sizeof(mask)) {
#ifdef HAVE_INLINE_FFSLL
	case sizeof(long long):
		return (ffsll(mask) - 1);
#endif
	default:
		lo = 0;
		hi = BLIST_BMAP_RADIX;
		while (lo + 1 < hi) {
			mid = (lo + hi) >> 1;
			if ((mask >> mid) != 0)
				lo = mid;
			else
				hi = mid;
		}
		return (lo);
	}
}

/*
 * blist_create() - create a blist capable of handling up to the specified
 *		    number of blocks
 *
 *	blocks - must be greater than 0
 * 	flags  - malloc flags
 *
 *	The smallest blist consists of a single leaf node capable of
 *	managing BLIST_BMAP_RADIX blocks.
 */
blist_t
blist_create(daddr_t blocks, int flags)
{
	blist_t bl;
	daddr_t nodes, radix;

	/*
	 * Calculate the radix field used for scanning.
	 */
	radix = BLIST_BMAP_RADIX;
	while (radix < blocks) {
		radix *= BLIST_META_RADIX;
	}
	nodes = 1 + blst_radix_init(NULL, radix, blocks);

	bl = malloc(sizeof(struct blist), M_SWAP, flags);
	if (bl == NULL)
		return (NULL);

	bl->bl_blocks = blocks;
	bl->bl_radix = radix;
	bl->bl_cursor = 0;
	bl->bl_root = malloc(nodes * sizeof(blmeta_t), M_SWAP, flags);
	if (bl->bl_root == NULL) {
		free(bl, M_SWAP);
		return (NULL);
	}
	blst_radix_init(bl->bl_root, radix, blocks);

#if defined(BLIST_DEBUG)
	printf(
		"BLIST representing %lld blocks (%lld MB of swap)"
		", requiring %lldK of ram\n",
		(long long)bl->bl_blocks,
		(long long)bl->bl_blocks * 4 / 1024,
		(long long)(nodes * sizeof(blmeta_t) + 1023) / 1024
	);
	printf("BLIST raw radix tree contains %lld records\n",
	    (long long)nodes);
#endif

	return (bl);
}

void
blist_destroy(blist_t bl)
{
	free(bl->bl_root, M_SWAP);
	free(bl, M_SWAP);
}

/*
 * blist_alloc() -   reserve space in the block bitmap.  Return the base
 *		     of a contiguous region or SWAPBLK_NONE if space could
 *		     not be allocated.
 */
daddr_t
blist_alloc(blist_t bl, daddr_t count)
{
	daddr_t blk;

	/*
	 * This loop iterates at most twice.  An allocation failure in the
	 * first iteration leads to a second iteration only if the cursor was
	 * non-zero.  When the cursor is zero, an allocation failure will
	 * reduce the hint, stopping further iterations.
	 */
	while (count <= bl->bl_root->bm_bighint) {
		blk = blst_meta_alloc(bl->bl_root, bl->bl_cursor, count,
		    bl->bl_radix);
		if (blk != SWAPBLK_NONE) {
			bl->bl_cursor = blk + count;
			if (bl->bl_cursor == bl->bl_blocks)
				bl->bl_cursor = 0;
			return (blk);
		} else if (bl->bl_cursor != 0)
			bl->bl_cursor = 0;
	}
	return (SWAPBLK_NONE);
}

/*
 * blist_avail() -	return the number of free blocks.
 */
daddr_t
blist_avail(blist_t bl)
{

	if (bl->bl_radix == BLIST_BMAP_RADIX)
		return (bitcount64(bl->bl_root->u.bmu_bitmap));
	else
		return (bl->bl_root->u.bmu_avail);
}

/*
 * blist_free() -	free up space in the block bitmap.  Return the base
 *		     	of a contiguous region.  Panic if an inconsistancy is
 *			found.
 */
void
blist_free(blist_t bl, daddr_t blkno, daddr_t count)
{

	blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix);
}

/*
 * blist_fill() -	mark a region in the block bitmap as off-limits
 *			to the allocator (i.e. allocate it), ignoring any
 *			existing allocations.  Return the number of blocks
 *			actually filled that were free before the call.
 */
daddr_t
blist_fill(blist_t bl, daddr_t blkno, daddr_t count)
{

	return (blst_meta_fill(bl->bl_root, blkno, count, bl->bl_radix));
}

/*
 * blist_resize() -	resize an existing radix tree to handle the
 *			specified number of blocks.  This will reallocate
 *			the tree and transfer the previous bitmap to the new
 *			one.  When extending the tree you can specify whether
 *			the new blocks are to left allocated or freed.
 */
void
blist_resize(blist_t *pbl, daddr_t count, int freenew, int flags)
{
    blist_t newbl = blist_create(count, flags);
    blist_t save = *pbl;

    *pbl = newbl;
    if (count > save->bl_blocks)
	    count = save->bl_blocks;
    blst_copy(save->bl_root, 0, save->bl_radix, newbl, count);

    /*
     * If resizing upwards, should we free the new space or not?
     */
    if (freenew && count < newbl->bl_blocks) {
	    blist_free(newbl, count, newbl->bl_blocks - count);
    }
    blist_destroy(save);
}

#ifdef BLIST_DEBUG

/*
 * blist_print()    - dump radix tree
 */
void
blist_print(blist_t bl)
{
	printf("BLIST cursor = %08jx {\n", (uintmax_t)bl->bl_cursor);
	blst_radix_print(bl->bl_root, 0, bl->bl_radix, 4);
	printf("}\n");
}

#endif

static const u_daddr_t fib[] = {
	1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584,
	4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811,
	514229, 832040, 1346269, 2178309, 3524578,
};

/*
 * Use 'gap' to describe a maximal range of unallocated blocks/bits.
 */
struct gap_stats {
	daddr_t	start;		/* current gap start, or SWAPBLK_NONE */
	daddr_t	num;		/* number of gaps observed */
	daddr_t	max;		/* largest gap size */
	daddr_t	avg;		/* average gap size */
	daddr_t	err;		/* sum - num * avg */
	daddr_t	histo[nitems(fib)]; /* # gaps in each size range */
	int	max_bucket;	/* last histo elt with nonzero val */
};

/*
 * gap_stats_counting()    - is the state 'counting 1 bits'?
 *                           or 'skipping 0 bits'?
 */
static inline bool
gap_stats_counting(const struct gap_stats *stats)
{

	return (stats->start != SWAPBLK_NONE);
}

/*
 * init_gap_stats()    - initialize stats on gap sizes
 */
static inline void
init_gap_stats(struct gap_stats *stats)
{

	bzero(stats, sizeof(*stats));
	stats->start = SWAPBLK_NONE;
}

/*
 * update_gap_stats()    - update stats on gap sizes
 */
static void
update_gap_stats(struct gap_stats *stats, daddr_t posn)
{
	daddr_t size;
	int hi, lo, mid;

	if (!gap_stats_counting(stats)) {
		stats->start = posn;
		return;
	}
	size = posn - stats->start;
	stats->start = SWAPBLK_NONE;
	if (size > stats->max)
		stats->max = size;

	/*
	 * Find the fibonacci range that contains size,
	 * expecting to find it in an early range.
	 */
	lo = 0;
	hi = 1;
	while (hi < nitems(fib) && fib[hi] <= size) {
		lo = hi;
		hi *= 2;
	}
	if (hi >= nitems(fib))
		hi = nitems(fib);
	while (lo + 1 != hi) {
		mid = (lo + hi) >> 1;
		if (fib[mid] <= size)
			lo = mid;
		else
			hi = mid;
	}
	stats->histo[lo]++;
	if (lo > stats->max_bucket)
		stats->max_bucket = lo;
	stats->err += size - stats->avg;
	stats->num++;
	stats->avg += stats->err / stats->num;
	stats->err %= stats->num;
}

/*
 * dump_gap_stats()    - print stats on gap sizes
 */
static inline void
dump_gap_stats(const struct gap_stats *stats, struct sbuf *s)
{
	int i;

	sbuf_printf(s, "number of maximal free ranges: %jd\n",
	    (intmax_t)stats->num);
	sbuf_printf(s, "largest free range: %jd\n", (intmax_t)stats->max);
	sbuf_printf(s, "average maximal free range size: %jd\n",
	    (intmax_t)stats->avg);
	sbuf_printf(s, "number of maximal free ranges of different sizes:\n");
	sbuf_printf(s, "               count  |  size range\n");
	sbuf_printf(s, "               -----  |  ----------\n");
	for (i = 0; i < stats->max_bucket; i++) {
		if (stats->histo[i] != 0) {
			sbuf_printf(s, "%20jd  |  ",
			    (intmax_t)stats->histo[i]);
			if (fib[i] != fib[i + 1] - 1)
				sbuf_printf(s, "%jd to %jd\n", (intmax_t)fib[i],
				    (intmax_t)fib[i + 1] - 1);
			else
				sbuf_printf(s, "%jd\n", (intmax_t)fib[i]);
		}
	}
	sbuf_printf(s, "%20jd  |  ", (intmax_t)stats->histo[i]);
	if (stats->histo[i] > 1)
		sbuf_printf(s, "%jd to %jd\n", (intmax_t)fib[i],
		    (intmax_t)stats->max);
	else
		sbuf_printf(s, "%jd\n", (intmax_t)stats->max);
}

/*
 * blist_stats()    - dump radix tree stats
 */
void
blist_stats(blist_t bl, struct sbuf *s)
{
	struct gap_stats gstats;
	struct gap_stats *stats = &gstats;
	daddr_t i, nodes, radix;
	u_daddr_t bit, diff, mask;

	init_gap_stats(stats);
	nodes = 0;
	i = bl->bl_radix;
	while (i < bl->bl_radix + bl->bl_blocks) {
		/*
		 * Find max size subtree starting at i.
		 */
		radix = BLIST_BMAP_RADIX;
		while (((i / radix) & BLIST_META_MASK) == 0)
			radix *= BLIST_META_RADIX;

		/*
		 * Check for skippable subtrees starting at i.
		 */
		while (radix > BLIST_BMAP_RADIX) {
			if (bl->bl_root[nodes].u.bmu_avail == 0) {
				if (gap_stats_counting(stats))
					update_gap_stats(stats, i);
				break;
			}
			if (bl->bl_root[nodes].u.bmu_avail == radix) {
				if (!gap_stats_counting(stats))
					update_gap_stats(stats, i);
				break;
			}

			/*
			 * Skip subtree root.
			 */
			nodes++;
			radix /= BLIST_META_RADIX;
		}
		if (radix == BLIST_BMAP_RADIX) {
			/*
			 * Scan leaf.
			 */
			mask = bl->bl_root[nodes].u.bmu_bitmap;
			diff = mask ^ (mask << 1);
			if (gap_stats_counting(stats))
				diff ^= 1;
			while (diff != 0) {
				bit = diff & -diff;
				update_gap_stats(stats, i + bitpos(bit));
				diff ^= bit;
			}
		}
		nodes += radix_to_skip(radix);
		i += radix;
	}
	update_gap_stats(stats, i);
	dump_gap_stats(stats, s);
}

/************************************************************************
 *			  ALLOCATION SUPPORT FUNCTIONS			*
 ************************************************************************
 *
 *	These support functions do all the actual work.  They may seem
 *	rather longish, but that's because I've commented them up.  The
 *	actual code is straight forward.
 *
 */

/*
 * blist_leaf_alloc() -	allocate at a leaf in the radix tree (a bitmap).
 *
 *	This is the core of the allocator and is optimized for the
 *	BLIST_BMAP_RADIX block allocation case.  Otherwise, execution
 *	time is proportional to log2(count) + bitpos time.
 */
static daddr_t
blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count)
{
	u_daddr_t mask;
	int count1, hi, lo, num_shifts, range1, range_ext;

	range1 = 0;
	count1 = count - 1;
	num_shifts = fls(count1);
	mask = scan->u.bmu_bitmap;
	while ((-mask & ~mask) != 0 && num_shifts > 0) {
		/*
		 * If bit i is set in mask, then bits in [i, i+range1] are set
		 * in scan->u.bmu_bitmap.  The value of range1 is equal to
		 * count1 >> num_shifts.  Grow range and reduce num_shifts to 0,
		 * while preserving these invariants.  The updates to mask leave
		 * fewer bits set, but each bit that remains set represents a
		 * longer string of consecutive bits set in scan->u.bmu_bitmap.
		 * If more updates to mask cannot clear more bits, because mask
		 * is partitioned with all 0 bits preceding all 1 bits, the loop
		 * terminates immediately.
		 */
		num_shifts--;
		range_ext = range1 + ((count1 >> num_shifts) & 1);
		/*
		 * mask is a signed quantity for the shift because when it is
		 * shifted right, the sign bit should copied; when the last
		 * block of the leaf is free, pretend, for a while, that all the
		 * blocks that follow it are also free.
		 */
		mask &= (daddr_t)mask >> range_ext;
		range1 += range_ext;
	}
	if (mask == 0) {
		/*
		 * Update bighint.  There is no allocation bigger than range1
		 * starting in this leaf.
		 */
		scan->bm_bighint = range1;
		return (SWAPBLK_NONE);
	}

	/* Discard any candidates that appear before blk. */
	mask &= (u_daddr_t)-1 << (blk & BLIST_BMAP_MASK);
	if (mask == 0)
		return (SWAPBLK_NONE);

	/*
	 * The least significant set bit in mask marks the start of the first
	 * available range of sufficient size.  Clear all the bits but that one,
	 * and then find its position.
	 */
	mask &= -mask;
	lo = bitpos(mask);

	hi = lo + count;
	if (hi > BLIST_BMAP_RADIX) {
		/*
		 * An allocation within this leaf is impossible, so a successful
		 * allocation depends on the next leaf providing some of the blocks.
		 */
		if (((blk / BLIST_BMAP_RADIX + 1) & BLIST_META_MASK) == 0) {
			/*
			 * The next leaf has a different meta-node parent, so it
			 * is not necessarily initialized.  Update bighint,
			 * comparing the range found at the end of mask to the
			 * largest earlier range that could have been made to
			 * vanish in the initial processing of mask.
			 */
			scan->bm_bighint = imax(BLIST_BMAP_RADIX - lo, range1);
			return (SWAPBLK_NONE);
		}
		hi -= BLIST_BMAP_RADIX;
		if (((scan[1].u.bmu_bitmap + 1) & ~((u_daddr_t)-1 << hi)) != 0) {
			/*
			 * The next leaf doesn't have enough free blocks at the
			 * beginning to complete the spanning allocation.  The
			 * hint cannot be updated, because the same allocation
			 * request could be satisfied later, by this leaf, if
			 * the state of the next leaf changes, and without any
			 * changes to this leaf.
			 */
			return (SWAPBLK_NONE);
		}
		/* Clear the first 'hi' bits in the next leaf, allocating them. */
		scan[1].u.bmu_bitmap &= (u_daddr_t)-1 << hi;
		hi = BLIST_BMAP_RADIX;
	}

	/* Set the bits of mask at position 'lo' and higher. */
	mask = -mask;
	if (hi == BLIST_BMAP_RADIX) {
		/*
		 * Update bighint.  There is no allocation bigger than range1
		 * available in this leaf after this allocation completes.
		 */
		scan->bm_bighint = range1;
	} else {
		/* Clear the bits of mask at position 'hi' and higher. */
		mask &= (u_daddr_t)-1 >> (BLIST_BMAP_RADIX - hi);
		/* If this allocation uses all the bits, clear the hint. */
		if (mask == scan->u.bmu_bitmap)
			scan->bm_bighint = 0;
	}
	/* Clear the allocated bits from this leaf. */
	scan->u.bmu_bitmap &= ~mask;
	return ((blk & ~BLIST_BMAP_MASK) + lo);
}

/*
 * blist_meta_alloc() -	allocate at a meta in the radix tree.
 *
 *	Attempt to allocate at a meta node.  If we can't, we update
 *	bighint and return a failure.  Updating bighint optimize future
 *	calls that hit this node.  We have to check for our collapse cases
 *	and we have a few optimizations strewn in as well.
 */
static daddr_t
blst_meta_alloc(blmeta_t *scan, daddr_t cursor, daddr_t count, u_daddr_t radix)
{
	daddr_t blk, i, next_skip, r, skip;
	int child;
	bool scan_from_start;

	if (radix == BLIST_BMAP_RADIX)
		return (blst_leaf_alloc(scan, cursor, count));
	if (scan->u.bmu_avail < count) {
		/*
		 * The meta node's hint must be too large if the allocation
		 * exceeds the number of free blocks.  Reduce the hint, and
		 * return failure.
		 */
		scan->bm_bighint = scan->u.bmu_avail;
		return (SWAPBLK_NONE);
	}
	blk = cursor & -radix;
	skip = radix_to_skip(radix);
	next_skip = skip / BLIST_META_RADIX;

	/*
	 * An ALL-FREE meta node requires special handling before allocating
	 * any of its blocks.
	 */
	if (scan->u.bmu_avail == radix) {
		radix /= BLIST_META_RADIX;

		/*
		 * Reinitialize each of the meta node's children.  An ALL-FREE
		 * meta node cannot have a terminator in any subtree.
		 */
		for (i = 1; i < skip; i += next_skip) {
			if (next_skip == 1)
				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
			else
				scan[i].u.bmu_avail = radix;
			scan[i].bm_bighint = radix;
		}
	} else {
		radix /= BLIST_META_RADIX;
	}

	if (count > radix) {
		/*
		 * The allocation exceeds the number of blocks that are
		 * managed by a subtree of this meta node.
		 */
		panic("allocation too large");
	}
	scan_from_start = cursor == blk;
	child = (cursor - blk) / radix;
	blk += child * radix;
	for (i = 1 + child * next_skip; i < skip; i += next_skip) {
		if (count <= scan[i].bm_bighint) {
			/*
			 * The allocation might fit beginning in the i'th subtree.
			 */
			r = blst_meta_alloc(&scan[i],
			    cursor > blk ? cursor : blk, count, radix);
			if (r != SWAPBLK_NONE) {
				scan->u.bmu_avail -= count;
				return (r);
			}
		} else if (scan[i].bm_bighint == (daddr_t)-1) {
			/*
			 * Terminator
			 */
			break;
		}
		blk += radix;
	}

	/*
	 * We couldn't allocate count in this subtree, update bighint.
	 */
	if (scan_from_start && scan->bm_bighint >= count)
		scan->bm_bighint = count - 1;

	return (SWAPBLK_NONE);
}

/*
 * BLST_LEAF_FREE() -	free allocated block from leaf bitmap
 *
 */
static void
blst_leaf_free(blmeta_t *scan, daddr_t blk, int count)
{
	u_daddr_t mask;
	int n;

	/*
	 * free some data in this bitmap
	 * mask=0000111111111110000
	 *          \_________/\__/
	 *		count   n
	 */
	n = blk & BLIST_BMAP_MASK;
	mask = ((u_daddr_t)-1 << n) &
	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
	if (scan->u.bmu_bitmap & mask)
		panic("freeing free block");
	scan->u.bmu_bitmap |= mask;

	/*
	 * We could probably do a better job here.  We are required to make
	 * bighint at least as large as the biggest contiguous block of
	 * data.  If we just shoehorn it, a little extra overhead will
	 * be incured on the next allocation (but only that one typically).
	 */
	scan->bm_bighint = BLIST_BMAP_RADIX;
}

/*
 * BLST_META_FREE() - free allocated blocks from radix tree meta info
 *
 *	This support routine frees a range of blocks from the bitmap.
 *	The range must be entirely enclosed by this radix node.  If a
 *	meta node, we break the range down recursively to free blocks
 *	in subnodes (which means that this code can free an arbitrary
 *	range whereas the allocation code cannot allocate an arbitrary
 *	range).
 */
static void
blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count, u_daddr_t radix)
{
	daddr_t blk, i, next_skip, skip, v;
	int child;

	if (scan->bm_bighint == (daddr_t)-1)
		panic("freeing invalid range");
	if (radix == BLIST_BMAP_RADIX)
		return (blst_leaf_free(scan, freeBlk, count));
	skip = radix_to_skip(radix);
	next_skip = skip / BLIST_META_RADIX;

	if (scan->u.bmu_avail == 0) {
		/*
		 * ALL-ALLOCATED special case, with possible
		 * shortcut to ALL-FREE special case.
		 */
		scan->u.bmu_avail = count;
		scan->bm_bighint = count;

		if (count != radix)  {
			for (i = 1; i < skip; i += next_skip) {
				if (scan[i].bm_bighint == (daddr_t)-1)
					break;
				scan[i].bm_bighint = 0;
				if (next_skip == 1) {
					scan[i].u.bmu_bitmap = 0;
				} else {
					scan[i].u.bmu_avail = 0;
				}
			}
			/* fall through */
		}
	} else {
		scan->u.bmu_avail += count;
		/* scan->bm_bighint = radix; */
	}

	/*
	 * ALL-FREE special case.
	 */

	if (scan->u.bmu_avail == radix)
		return;
	if (scan->u.bmu_avail > radix)
		panic("blst_meta_free: freeing already free blocks (%lld) %lld/%lld",
		    (long long)count, (long long)scan->u.bmu_avail,
		    (long long)radix);

	/*
	 * Break the free down into its components
	 */

	blk = freeBlk & -radix;
	radix /= BLIST_META_RADIX;

	child = (freeBlk - blk) / radix;
	blk += child * radix;
	i = 1 + child * next_skip;
	while (i < skip && blk < freeBlk + count) {
		v = blk + radix - freeBlk;
		if (v > count)
			v = count;
		blst_meta_free(&scan[i], freeBlk, v, radix);
		if (scan->bm_bighint < scan[i].bm_bighint)
			scan->bm_bighint = scan[i].bm_bighint;
		count -= v;
		freeBlk += v;
		blk += radix;
		i += next_skip;
	}
}

/*
 * BLIST_RADIX_COPY() - copy one radix tree to another
 *
 *	Locates free space in the source tree and frees it in the destination
 *	tree.  The space may not already be free in the destination.
 */
static void
blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix, blist_t dest,
    daddr_t count)
{
	daddr_t i, next_skip, skip;

	/*
	 * Leaf node
	 */

	if (radix == BLIST_BMAP_RADIX) {
		u_daddr_t v = scan->u.bmu_bitmap;

		if (v == (u_daddr_t)-1) {
			blist_free(dest, blk, count);
		} else if (v != 0) {
			int i;

			for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
				if (v & ((u_daddr_t)1 << i))
					blist_free(dest, blk + i, 1);
			}
		}
		return;
	}

	/*
	 * Meta node
	 */

	if (scan->u.bmu_avail == 0) {
		/*
		 * Source all allocated, leave dest allocated
		 */
		return;
	}
	if (scan->u.bmu_avail == radix) {
		/*
		 * Source all free, free entire dest
		 */
		if (count < radix)
			blist_free(dest, blk, count);
		else
			blist_free(dest, blk, radix);
		return;
	}


	skip = radix_to_skip(radix);
	next_skip = skip / BLIST_META_RADIX;
	radix /= BLIST_META_RADIX;

	for (i = 1; count && i < skip; i += next_skip) {
		if (scan[i].bm_bighint == (daddr_t)-1)
			break;

		if (count >= radix) {
			blst_copy(&scan[i], blk, radix, dest, radix);
			count -= radix;
		} else {
			if (count) {
				blst_copy(&scan[i], blk, radix, dest, count);
			}
			count = 0;
		}
		blk += radix;
	}
}

/*
 * BLST_LEAF_FILL() -	allocate specific blocks in leaf bitmap
 *
 *	This routine allocates all blocks in the specified range
 *	regardless of any existing allocations in that range.  Returns
 *	the number of blocks allocated by the call.
 */
static daddr_t
blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count)
{
	daddr_t nblks;
	u_daddr_t mask;
	int n;

	n = blk & BLIST_BMAP_MASK;
	mask = ((u_daddr_t)-1 << n) &
	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));

	/* Count the number of blocks that we are allocating. */
	nblks = bitcount64(scan->u.bmu_bitmap & mask);

	scan->u.bmu_bitmap &= ~mask;
	return (nblks);
}

/*
 * BLIST_META_FILL() -	allocate specific blocks at a meta node
 *
 *	This routine allocates the specified range of blocks,
 *	regardless of any existing allocations in the range.  The
 *	range must be within the extent of this node.  Returns the
 *	number of blocks allocated by the call.
 */
static daddr_t
blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count, u_daddr_t radix)
{
	daddr_t blk, i, nblks, next_skip, skip, v;
	int child;

	if (scan->bm_bighint == (daddr_t)-1)
		panic("filling invalid range");
	if (count > radix) {
		/*
		 * The allocation exceeds the number of blocks that are
		 * managed by this node.
		 */
		panic("fill too large");
	}
	if (radix == BLIST_BMAP_RADIX)
		return (blst_leaf_fill(scan, allocBlk, count));
	if (count == radix || scan->u.bmu_avail == 0)  {
		/*
		 * ALL-ALLOCATED special case
		 */
		nblks = scan->u.bmu_avail;
		scan->u.bmu_avail = 0;
		scan->bm_bighint = 0;
		return (nblks);
	}
	skip = radix_to_skip(radix);
	next_skip = skip / BLIST_META_RADIX;
	blk = allocBlk & -radix;

	/*
	 * An ALL-FREE meta node requires special handling before allocating
	 * any of its blocks.
	 */
	if (scan->u.bmu_avail == radix) {
		radix /= BLIST_META_RADIX;

		/*
		 * Reinitialize each of the meta node's children.  An ALL-FREE
		 * meta node cannot have a terminator in any subtree.
		 */
		for (i = 1; i < skip; i += next_skip) {
			if (next_skip == 1)
				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
			else
				scan[i].u.bmu_avail = radix;
			scan[i].bm_bighint = radix;
		}
	} else {
		radix /= BLIST_META_RADIX;
	}

	nblks = 0;
	child = (allocBlk - blk) / radix;
	blk += child * radix;
	i = 1 + child * next_skip;
	while (i < skip && blk < allocBlk + count) {
		v = blk + radix - allocBlk;
		if (v > count)
			v = count;
		nblks += blst_meta_fill(&scan[i], allocBlk, v, radix);
		count -= v;
		allocBlk += v;
		blk += radix;
		i += next_skip;
	}
	scan->u.bmu_avail -= nblks;
	return (nblks);
}

/*
 * BLST_RADIX_INIT() - initialize radix tree
 *
 *	Initialize our meta structures and bitmaps and calculate the exact
 *	amount of space required to manage 'count' blocks - this space may
 *	be considerably less than the calculated radix due to the large
 *	RADIX values we use.
 */
static daddr_t
blst_radix_init(blmeta_t *scan, daddr_t radix, daddr_t count)
{
	daddr_t i, memindex, next_skip, skip;

	memindex = 0;

	/*
	 * Leaf node
	 */

	if (radix == BLIST_BMAP_RADIX) {
		if (scan) {
			scan->bm_bighint = 0;
			scan->u.bmu_bitmap = 0;
		}
		return (memindex);
	}

	/*
	 * Meta node.  If allocating the entire object we can special
	 * case it.  However, we need to figure out how much memory
	 * is required to manage 'count' blocks, so we continue on anyway.
	 */

	if (scan) {
		scan->bm_bighint = 0;
		scan->u.bmu_avail = 0;
	}

	skip = radix_to_skip(radix);
	next_skip = skip / BLIST_META_RADIX;
	radix /= BLIST_META_RADIX;

	for (i = 1; i < skip; i += next_skip) {
		if (count >= radix) {
			/*
			 * Allocate the entire object
			 */
			memindex = i +
			    blst_radix_init(((scan) ? &scan[i] : NULL), radix,
			    radix);
			count -= radix;
		} else if (count > 0) {
			/*
			 * Allocate a partial object
			 */
			memindex = i +
			    blst_radix_init(((scan) ? &scan[i] : NULL), radix,
			    count);
			count = 0;
		} else {
			/*
			 * Add terminator and break out.  Make terminator bitmap
			 * zero to avoid a spanning leaf allocation that
			 * includes the terminator.
			 */
			if (scan) {
				scan[i].bm_bighint = (daddr_t)-1;
				scan[i].u.bmu_bitmap = 0;
			}
			break;
		}
	}
	if (memindex < i)
		memindex = i;
	return (memindex);
}

#ifdef BLIST_DEBUG

static void
blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int tab)
{
	daddr_t i, next_skip, skip;

	if (radix == BLIST_BMAP_RADIX) {
		printf(
		    "%*.*s(%08llx,%lld): bitmap %016llx big=%lld\n",
		    tab, tab, "",
		    (long long)blk, (long long)radix,
		    (long long)scan->u.bmu_bitmap,
		    (long long)scan->bm_bighint
		);
		return;
	}

	if (scan->u.bmu_avail == 0) {
		printf(
		    "%*.*s(%08llx,%lld) ALL ALLOCATED\n",
		    tab, tab, "",
		    (long long)blk,
		    (long long)radix
		);
		return;
	}
	if (scan->u.bmu_avail == radix) {
		printf(
		    "%*.*s(%08llx,%lld) ALL FREE\n",
		    tab, tab, "",
		    (long long)blk,
		    (long long)radix
		);
		return;
	}

	printf(
	    "%*.*s(%08llx,%lld): subtree (%lld/%lld) big=%lld {\n",
	    tab, tab, "",
	    (long long)blk, (long long)radix,
	    (long long)scan->u.bmu_avail,
	    (long long)radix,
	    (long long)scan->bm_bighint
	);

	skip = radix_to_skip(radix);
	next_skip = skip / BLIST_META_RADIX;
	radix /= BLIST_META_RADIX;
	tab += 4;

	for (i = 1; i < skip; i += next_skip) {
		if (scan[i].bm_bighint == (daddr_t)-1) {
			printf(
			    "%*.*s(%08llx,%lld): Terminator\n",
			    tab, tab, "",
			    (long long)blk, (long long)radix
			);
			break;
		}
		blst_radix_print(&scan[i], blk, radix, tab);
		blk += radix;
	}
	tab -= 4;

	printf(
	    "%*.*s}\n",
	    tab, tab, ""
	);
}

#endif

#ifdef BLIST_DEBUG

int
main(int ac, char **av)
{
	int size = 1024;
	int i;
	blist_t bl;
	struct sbuf *s;

	for (i = 1; i < ac; ++i) {
		const char *ptr = av[i];
		if (*ptr != '-') {
			size = strtol(ptr, NULL, 0);
			continue;
		}
		ptr += 2;
		fprintf(stderr, "Bad option: %s\n", ptr - 2);
		exit(1);
	}
	bl = blist_create(size, M_WAITOK);
	blist_free(bl, 0, size);

	for (;;) {
		char buf[1024];
		long long da = 0;
		long long count = 0;

		printf("%lld/%lld/%lld> ", (long long)blist_avail(bl),
		    (long long)size, (long long)bl->bl_radix);
		fflush(stdout);
		if (fgets(buf, sizeof(buf), stdin) == NULL)
			break;
		switch(buf[0]) {
		case 'r':
			if (sscanf(buf + 1, "%lld", &count) == 1) {
				blist_resize(&bl, count, 1, M_WAITOK);
			} else {
				printf("?\n");
			}
		case 'p':
			blist_print(bl);
			break;
		case 's':
			s = sbuf_new_auto();
			blist_stats(bl, s);
			sbuf_finish(s);
			printf("%s", sbuf_data(s));
			sbuf_delete(s);
			break;
		case 'a':
			if (sscanf(buf + 1, "%lld", &count) == 1) {
				daddr_t blk = blist_alloc(bl, count);
				printf("    R=%08llx\n", (long long)blk);
			} else {
				printf("?\n");
			}
			break;
		case 'f':
			if (sscanf(buf + 1, "%llx %lld", &da, &count) == 2) {
				blist_free(bl, da, count);
			} else {
				printf("?\n");
			}
			break;
		case 'l':
			if (sscanf(buf + 1, "%llx %lld", &da, &count) == 2) {
				printf("    n=%jd\n",
				    (intmax_t)blist_fill(bl, da, count));
			} else {
				printf("?\n");
			}
			break;
		case '?':
		case 'h':
			puts(
			    "p          -print\n"
			    "s          -stats\n"
			    "a %d       -allocate\n"
			    "f %x %d    -free\n"
			    "l %x %d    -fill\n"
			    "r %d       -resize\n"
			    "h/?        -help"
			);
			break;
		default:
			printf("?\n");
			break;
		}
	}
	return(0);
}

void
panic(const char *ctl, ...)
{
	va_list va;

	va_start(va, ctl);
	vfprintf(stderr, ctl, va);
	fprintf(stderr, "\n");
	va_end(va);
	exit(1);
}

#endif