Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

/*-
 * Copyright (c) 2003-2009 RMI Corporation
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of RMI Corporation, nor the names of its contributors,
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * RMI_BSD
 * $FreeBSD$
 */
#ifndef _RMI_PIC_H_
#define	_RMI_PIC_H_

#include <sys/cdefs.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <mips/rmi/iomap.h>

#define	PIC_IRT_WD_INDEX		0
#define	PIC_IRT_TIMER_INDEX(i)		(1 + (i))
#define	PIC_IRT_UART_0_INDEX		9
#define	PIC_IRT_UART_1_INDEX		10
#define	PIC_IRT_I2C_0_INDEX		11
#define	PIC_IRT_I2C_1_INDEX		12
#define	PIC_IRT_PCMCIA_INDEX		13
#define	PIC_IRT_GPIO_INDEX		14
#define	PIC_IRT_HYPER_INDEX		15
#define	PIC_IRT_PCIX_INDEX		16
#define	PIC_IRT_GMAC0_INDEX		17
#define	PIC_IRT_GMAC1_INDEX		18
#define	PIC_IRT_GMAC2_INDEX		19
#define	PIC_IRT_GMAC3_INDEX		20
#define	PIC_IRT_XGS0_INDEX		21
#define	PIC_IRT_XGS1_INDEX		22
#define	PIC_IRT_HYPER_FATAL_INDEX	23
#define	PIC_IRT_PCIX_FATAL_INDEX	24
#define	PIC_IRT_BRIDGE_AERR_INDEX	25
#define	PIC_IRT_BRIDGE_BERR_INDEX	26
#define	PIC_IRT_BRIDGE_TB_INDEX		27
#define	PIC_IRT_BRIDGE_AERR_NMI_INDEX	28

/* numbering for XLS */
#define	PIC_IRT_BRIDGE_ERR_INDEX	25
#define	PIC_IRT_PCIE_LINK0_INDEX	26
#define	PIC_IRT_PCIE_LINK1_INDEX	27
#define	PIC_IRT_PCIE_LINK2_INDEX	23
#define	PIC_IRT_PCIE_LINK3_INDEX	24
#define	PIC_IRT_PCIE_B0_LINK2_INDEX	28
#define	PIC_IRT_PCIE_B0_LINK3_INDEX	29
#define	PIC_IRT_PCIE_INT_INDEX		28
#define	PIC_IRT_PCIE_FATAL_INDEX	29
#define	PIC_IRT_GPIO_B_INDEX		30
#define	PIC_IRT_USB_INDEX		31
#define	PIC_NUM_IRTS			32

#define	PIC_CLOCK_TIMER			7

#define	PIC_CTRL			0x00
#define	PIC_IPI				0x04
#define	PIC_INT_ACK			0x06

#define	WD_MAX_VAL_0			0x08
#define	WD_MAX_VAL_1			0x09
#define	WD_MASK_0			0x0a
#define	WD_MASK_1			0x0b
#define	WD_HEARBEAT_0			0x0c
#define	WD_HEARBEAT_1			0x0d

#define	PIC_IRT_0_BASE			0x40
#define	PIC_IRT_1_BASE			0x80
#define	PIC_TIMER_MAXVAL_0_BASE		0x100
#define	PIC_TIMER_MAXVAL_1_BASE		0x110
#define	PIC_TIMER_COUNT_0_BASE		0x120
#define	PIC_TIMER_COUNT_1_BASE		0x130

#define	PIC_IRT_0(picintr)	(PIC_IRT_0_BASE + (picintr))
#define	PIC_IRT_1(picintr)	(PIC_IRT_1_BASE + (picintr))

#define	PIC_TIMER_MAXVAL_0(i)	(PIC_TIMER_MAXVAL_0_BASE + (i))
#define	PIC_TIMER_MAXVAL_1(i)	(PIC_TIMER_MAXVAL_1_BASE + (i))
#define	PIC_TIMER_COUNT_0(i)	(PIC_TIMER_COUNT_0_BASE + (i))
#define	PIC_TIMER_COUNT_1(i)	(PIC_TIMER_COUNT_0_BASE + (i))
#define	PIC_TIMER_HZ		66000000U

/*
 * We use a simple mapping form PIC interrupts to CPU IRQs.
 * The PIC interrupts 0-31 are mapped to CPU irq's 8-39.
 * this leaves the lower 0-7 for the cpu interrupts (like 
 * count/compare, msgrng) and 40-63 for IPIs
 */
#define	PIC_IRQ_BASE		8
#define	PIC_INTR_TO_IRQ(i)	(PIC_IRQ_BASE + (i))
#define	PIC_IRQ_TO_INTR(i)	((i) - PIC_IRQ_BASE)

#define	PIC_WD_IRQ		(PIC_IRQ_BASE + PIC_IRT_WD_INDEX)
#define	PIC_TIMER_IRQ(i)	(PIC_IRQ_BASE + PIC_IRT_TIMER_INDEX(i))
#define	PIC_CLOCK_IRQ		PIC_TIMER_IRQ(PIC_CLOCK_TIMER)

#define	PIC_UART_0_IRQ		(PIC_IRQ_BASE + PIC_IRT_UART_0_INDEX)
#define	PIC_UART_1_IRQ		(PIC_IRQ_BASE + PIC_IRT_UART_1_INDEX)
#define	PIC_I2C_0_IRQ		(PIC_IRQ_BASE + PIC_IRT_I2C_0_INDEX)
#define	PIC_I2C_1_IRQ		(PIC_IRQ_BASE + PIC_IRT_I2C_1_INDEX)
#define	PIC_PCMCIA_IRQ		(PIC_IRQ_BASE + PIC_IRT_PCMCIA_INDEX)
#define	PIC_GPIO_IRQ		(PIC_IRQ_BASE + PIC_IRT_GPIO_INDEX)
#define	PIC_HYPER_IRQ		(PIC_IRQ_BASE + PIC_IRT_HYPER_INDEX)
#define	PIC_PCIX_IRQ		(PIC_IRQ_BASE + PIC_IRT_PCIX_INDEX)
#define	PIC_GMAC_0_IRQ		(PIC_IRQ_BASE + PIC_IRT_GMAC0_INDEX)
#define	PIC_GMAC_1_IRQ		(PIC_IRQ_BASE + PIC_IRT_GMAC1_INDEX)
#define	PIC_GMAC_2_IRQ		(PIC_IRQ_BASE + PIC_IRT_GMAC2_INDEX)
#define	PIC_GMAC_3_IRQ		(PIC_IRQ_BASE + PIC_IRT_GMAC3_INDEX)
#define	PIC_XGS_0_IRQ		(PIC_IRQ_BASE + PIC_IRT_XGS0_INDEX)
#define	PIC_XGS_1_IRQ		(PIC_IRQ_BASE + PIC_IRT_XGS1_INDEX)
#define	PIC_HYPER_FATAL_IRQ	(PIC_IRQ_BASE + PIC_IRT_HYPER_FATAL_INDEX)
#define	PIC_PCIX_FATAL_IRQ	(PIC_IRQ_BASE + PIC_IRT_PCIX_FATAL_INDEX)
#define	PIC_BRIDGE_AERR_IRQ	(PIC_IRQ_BASE + PIC_IRT_BRIDGE_AERR_INDEX)
#define	PIC_BRIDGE_BERR_IRQ	(PIC_IRQ_BASE + PIC_IRT_BRIDGE_BERR_INDEX)
#define	PIC_BRIDGE_TB_IRQ	(PIC_IRQ_BASE + PIC_IRT_BRIDGE_TB_INDEX)
#define	PIC_BRIDGE_AERR_NMI_IRQ	(PIC_IRQ_BASE + PIC_IRT_BRIDGE_AERR_NMI_INDEX)
#define	PIC_BRIDGE_ERR_IRQ	(PIC_IRQ_BASE + PIC_IRT_BRIDGE_ERR_INDEX)
#define	PIC_PCIE_LINK0_IRQ	(PIC_IRQ_BASE + PIC_IRT_PCIE_LINK0_INDEX)
#define	PIC_PCIE_LINK1_IRQ	(PIC_IRQ_BASE + PIC_IRT_PCIE_LINK1_INDEX)
#define	PIC_PCIE_LINK2_IRQ	(PIC_IRQ_BASE + PIC_IRT_PCIE_LINK2_INDEX)
#define	PIC_PCIE_LINK3_IRQ	(PIC_IRQ_BASE + PIC_IRT_PCIE_LINK3_INDEX)
#define	PIC_PCIE_B0_LINK2_IRQ	(PIC_IRQ_BASE + PIC_IRT_PCIE_B0_LINK2_INDEX)
#define	PIC_PCIE_B0_LINK3_IRQ	(PIC_IRQ_BASE + PIC_IRT_PCIE_B0_LINK3_INDEX)
#define	PIC_PCIE_INT_IRQ	(PIC_IRQ_BASE + PIC_IRT_PCIE_INT_INDEX)
#define	PIC_PCIE_FATAL_IRQ	(PIC_IRQ_BASE + PIC_IRT_PCIE_FATAL_INDEX)
#define	PIC_GPIO_B_IRQ		(PIC_IRQ_BASE + PIC_IRT_GPIO_B_INDEX)
#define	PIC_USB_IRQ		(PIC_IRQ_BASE + PIC_IRT_USB_INDEX)

#define	PIC_IRQ_IS_PICINTR(irq)	((irq) >= PIC_IRQ_BASE && 		\
				 (irq) < PIC_IRQ_BASE + PIC_NUM_IRTS)
#define	PIC_IS_EDGE_TRIGGERED(i) ((i) >= PIC_IRT_TIMER_INDEX(0) &&	\
				  (i) <= PIC_IRT_TIMER_INDEX(7))

extern struct mtx xlr_pic_lock;

static __inline uint32_t 
pic_read_control(void)
{
	xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);
	uint32_t reg;

	mtx_lock_spin(&xlr_pic_lock);
	reg = xlr_read_reg(mmio, PIC_CTRL);
	mtx_unlock_spin(&xlr_pic_lock);
	return (reg);
}

static __inline void 
pic_write_control(uint32_t control)
{
	xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);

	mtx_lock_spin(&xlr_pic_lock);
	xlr_write_reg(mmio, PIC_CTRL, control);
	mtx_unlock_spin(&xlr_pic_lock);
}

static __inline void 
pic_update_control(uint32_t control)
{
	xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);

	mtx_lock_spin(&xlr_pic_lock);
	xlr_write_reg(mmio, PIC_CTRL, (control | xlr_read_reg(mmio, PIC_CTRL)));
	mtx_unlock_spin(&xlr_pic_lock);
}

static __inline void 
pic_ack(int picintr)
{
	xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);

	xlr_write_reg(mmio, PIC_INT_ACK, 1U << picintr);
}

static __inline
void pic_send_ipi(int cpu, int ipi)
{
	xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);
	int tid, pid;

	tid = cpu & 0x3;
	pid = (cpu >> 2) & 0x7;
	xlr_write_reg(mmio, PIC_IPI, (pid << 20) | (tid << 16) | ipi);
}

static __inline
void pic_setup_intr(int picintr, int irq, uint32_t cpumask, int level)
{
        xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);

	mtx_lock_spin(&xlr_pic_lock);
	xlr_write_reg(mmio, PIC_IRT_0(picintr), cpumask);
	xlr_write_reg(mmio, PIC_IRT_1(picintr), ((1U << 31) | (level << 30) |
	    (1 << 6) | irq));
	mtx_unlock_spin(&xlr_pic_lock);
}

static __inline void 
pic_init_timer(int timer)
{
	xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);
	uint32_t val;
 
	mtx_lock_spin(&xlr_pic_lock);
	val = xlr_read_reg(mmio, PIC_CTRL);
	val |= (1 << (8 + timer));
	xlr_write_reg(mmio, PIC_CTRL, val);
	mtx_unlock_spin(&xlr_pic_lock);
}
 
static __inline void
pic_set_timer(int timer, uint64_t maxval)
{
	xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);

	xlr_write_reg(mmio, PIC_TIMER_MAXVAL_0(timer),
	    (maxval & 0xffffffff)); 
	xlr_write_reg(mmio, PIC_TIMER_MAXVAL_1(timer), 
	    (maxval >> 32) & 0xffffffff);
}

static __inline uint32_t
pic_timer_count32(int timer)
 {
	xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);

	return (xlr_read_reg(mmio, PIC_TIMER_COUNT_0(timer))); 
}

/*
 * The timer can wrap 32 bits between the two reads, so we
 * need additional logic to detect that.
 */
static __inline uint64_t
pic_timer_count(int timer)
{
	xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);
	uint32_t tu1, tu2, tl;

	tu1 = xlr_read_reg(mmio, PIC_TIMER_COUNT_1(timer)); 
	tl = xlr_read_reg(mmio, PIC_TIMER_COUNT_0(timer)); 
	tu2 = xlr_read_reg(mmio, PIC_TIMER_COUNT_1(timer)); 
	if (tu2 != tu1)
		tl = xlr_read_reg(mmio, PIC_TIMER_COUNT_0(timer));
	return (((uint64_t)tu2 << 32) | tl);
}

#endif	/* _RMI_PIC_H_ */