Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
//===-- tsan_rtl.cc -------------------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// Main file (entry points) for the TSan run-time.
//===----------------------------------------------------------------------===//

#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_file.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "sanitizer_common/sanitizer_symbolizer.h"
#include "tsan_defs.h"
#include "tsan_platform.h"
#include "tsan_rtl.h"
#include "tsan_mman.h"
#include "tsan_suppressions.h"
#include "tsan_symbolize.h"
#include "ubsan/ubsan_init.h"

#ifdef __SSE3__
// <emmintrin.h> transitively includes <stdlib.h>,
// and it's prohibited to include std headers into tsan runtime.
// So we do this dirty trick.
#define _MM_MALLOC_H_INCLUDED
#define __MM_MALLOC_H
#include <emmintrin.h>
typedef __m128i m128;
#endif

volatile int __tsan_resumed = 0;

extern "C" void __tsan_resume() {
  __tsan_resumed = 1;
}

namespace __tsan {

#if !SANITIZER_GO && !SANITIZER_MAC
__attribute__((tls_model("initial-exec")))
THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64);
#endif
static char ctx_placeholder[sizeof(Context)] ALIGNED(64);
Context *ctx;

// Can be overriden by a front-end.
#ifdef TSAN_EXTERNAL_HOOKS
bool OnFinalize(bool failed);
void OnInitialize();
#else
SANITIZER_WEAK_CXX_DEFAULT_IMPL
bool OnFinalize(bool failed) {
  return failed;
}
SANITIZER_WEAK_CXX_DEFAULT_IMPL
void OnInitialize() {}
#endif

static char thread_registry_placeholder[sizeof(ThreadRegistry)];

static ThreadContextBase *CreateThreadContext(u32 tid) {
  // Map thread trace when context is created.
  char name[50];
  internal_snprintf(name, sizeof(name), "trace %u", tid);
  MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event), name);
  const uptr hdr = GetThreadTraceHeader(tid);
  internal_snprintf(name, sizeof(name), "trace header %u", tid);
  MapThreadTrace(hdr, sizeof(Trace), name);
  new((void*)hdr) Trace();
  // We are going to use only a small part of the trace with the default
  // value of history_size. However, the constructor writes to the whole trace.
  // Unmap the unused part.
  uptr hdr_end = hdr + sizeof(Trace);
  hdr_end -= sizeof(TraceHeader) * (kTraceParts - TraceParts());
  hdr_end = RoundUp(hdr_end, GetPageSizeCached());
  if (hdr_end < hdr + sizeof(Trace))
    UnmapOrDie((void*)hdr_end, hdr + sizeof(Trace) - hdr_end);
  void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
  return new(mem) ThreadContext(tid);
}

#if !SANITIZER_GO
static const u32 kThreadQuarantineSize = 16;
#else
static const u32 kThreadQuarantineSize = 64;
#endif

Context::Context()
  : initialized()
  , report_mtx(MutexTypeReport, StatMtxReport)
  , nreported()
  , nmissed_expected()
  , thread_registry(new(thread_registry_placeholder) ThreadRegistry(
      CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse))
  , racy_mtx(MutexTypeRacy, StatMtxRacy)
  , racy_stacks()
  , racy_addresses()
  , fired_suppressions_mtx(MutexTypeFired, StatMtxFired)
  , fired_suppressions(8)
  , clock_alloc("clock allocator") {
}

// The objects are allocated in TLS, so one may rely on zero-initialization.
ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
                         unsigned reuse_count,
                         uptr stk_addr, uptr stk_size,
                         uptr tls_addr, uptr tls_size)
  : fast_state(tid, epoch)
  // Do not touch these, rely on zero initialization,
  // they may be accessed before the ctor.
  // , ignore_reads_and_writes()
  // , ignore_interceptors()
  , clock(tid, reuse_count)
#if !SANITIZER_GO
  , jmp_bufs()
#endif
  , tid(tid)
  , unique_id(unique_id)
  , stk_addr(stk_addr)
  , stk_size(stk_size)
  , tls_addr(tls_addr)
  , tls_size(tls_size)
#if !SANITIZER_GO
  , last_sleep_clock(tid)
#endif
{
}

#if !SANITIZER_GO
static void MemoryProfiler(Context *ctx, fd_t fd, int i) {
  uptr n_threads;
  uptr n_running_threads;
  ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads);
  InternalScopedBuffer<char> buf(4096);
  WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads);
  WriteToFile(fd, buf.data(), internal_strlen(buf.data()));
}

static void BackgroundThread(void *arg) {
  // This is a non-initialized non-user thread, nothing to see here.
  // We don't use ScopedIgnoreInterceptors, because we want ignores to be
  // enabled even when the thread function exits (e.g. during pthread thread
  // shutdown code).
  cur_thread()->ignore_interceptors++;
  const u64 kMs2Ns = 1000 * 1000;

  fd_t mprof_fd = kInvalidFd;
  if (flags()->profile_memory && flags()->profile_memory[0]) {
    if (internal_strcmp(flags()->profile_memory, "stdout") == 0) {
      mprof_fd = 1;
    } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) {
      mprof_fd = 2;
    } else {
      InternalScopedString filename(kMaxPathLength);
      filename.append("%s.%d", flags()->profile_memory, (int)internal_getpid());
      fd_t fd = OpenFile(filename.data(), WrOnly);
      if (fd == kInvalidFd) {
        Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
            &filename[0]);
      } else {
        mprof_fd = fd;
      }
    }
  }

  u64 last_flush = NanoTime();
  uptr last_rss = 0;
  for (int i = 0;
      atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0;
      i++) {
    SleepForMillis(100);
    u64 now = NanoTime();

    // Flush memory if requested.
    if (flags()->flush_memory_ms > 0) {
      if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
        VPrintf(1, "ThreadSanitizer: periodic memory flush\n");
        FlushShadowMemory();
        last_flush = NanoTime();
      }
    }
    // GetRSS can be expensive on huge programs, so don't do it every 100ms.
    if (flags()->memory_limit_mb > 0) {
      uptr rss = GetRSS();
      uptr limit = uptr(flags()->memory_limit_mb) << 20;
      VPrintf(1, "ThreadSanitizer: memory flush check"
                 " RSS=%llu LAST=%llu LIMIT=%llu\n",
              (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20);
      if (2 * rss > limit + last_rss) {
        VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n");
        FlushShadowMemory();
        rss = GetRSS();
        VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20);
      }
      last_rss = rss;
    }

    // Write memory profile if requested.
    if (mprof_fd != kInvalidFd)
      MemoryProfiler(ctx, mprof_fd, i);

    // Flush symbolizer cache if requested.
    if (flags()->flush_symbolizer_ms > 0) {
      u64 last = atomic_load(&ctx->last_symbolize_time_ns,
                             memory_order_relaxed);
      if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
        Lock l(&ctx->report_mtx);
        ScopedErrorReportLock l2;
        SymbolizeFlush();
        atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
      }
    }
  }
}

static void StartBackgroundThread() {
  ctx->background_thread = internal_start_thread(&BackgroundThread, 0);
}

#ifndef __mips__
static void StopBackgroundThread() {
  atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed);
  internal_join_thread(ctx->background_thread);
  ctx->background_thread = 0;
}
#endif
#endif

void DontNeedShadowFor(uptr addr, uptr size) {
  ReleaseMemoryPagesToOS(MemToShadow(addr), MemToShadow(addr + size));
}

void MapShadow(uptr addr, uptr size) {
  // Global data is not 64K aligned, but there are no adjacent mappings,
  // so we can get away with unaligned mapping.
  // CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
  const uptr kPageSize = GetPageSizeCached();
  uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize);
  uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize);
  MmapFixedNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow");

  // Meta shadow is 2:1, so tread carefully.
  static bool data_mapped = false;
  static uptr mapped_meta_end = 0;
  uptr meta_begin = (uptr)MemToMeta(addr);
  uptr meta_end = (uptr)MemToMeta(addr + size);
  meta_begin = RoundDownTo(meta_begin, 64 << 10);
  meta_end = RoundUpTo(meta_end, 64 << 10);
  if (!data_mapped) {
    // First call maps data+bss.
    data_mapped = true;
    MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow");
  } else {
    // Mapping continous heap.
    // Windows wants 64K alignment.
    meta_begin = RoundDownTo(meta_begin, 64 << 10);
    meta_end = RoundUpTo(meta_end, 64 << 10);
    if (meta_end <= mapped_meta_end)
      return;
    if (meta_begin < mapped_meta_end)
      meta_begin = mapped_meta_end;
    MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow");
    mapped_meta_end = meta_end;
  }
  VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n",
      addr, addr+size, meta_begin, meta_end);
}

void MapThreadTrace(uptr addr, uptr size, const char *name) {
  DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size);
  CHECK_GE(addr, TraceMemBeg());
  CHECK_LE(addr + size, TraceMemEnd());
  CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
  uptr addr1 = (uptr)MmapFixedNoReserve(addr, size, name);
  if (addr1 != addr) {
    Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p->%p)\n",
        addr, size, addr1);
    Die();
  }
}

static void CheckShadowMapping() {
  uptr beg, end;
  for (int i = 0; GetUserRegion(i, &beg, &end); i++) {
    // Skip cases for empty regions (heap definition for architectures that
    // do not use 64-bit allocator).
    if (beg == end)
      continue;
    VPrintf(3, "checking shadow region %p-%p\n", beg, end);
    uptr prev = 0;
    for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 4) {
      for (int x = -(int)kShadowCell; x <= (int)kShadowCell; x += kShadowCell) {
        const uptr p = RoundDown(p0 + x, kShadowCell);
        if (p < beg || p >= end)
          continue;
        const uptr s = MemToShadow(p);
        const uptr m = (uptr)MemToMeta(p);
        VPrintf(3, "  checking pointer %p: shadow=%p meta=%p\n", p, s, m);
        CHECK(IsAppMem(p));
        CHECK(IsShadowMem(s));
        CHECK_EQ(p, ShadowToMem(s));
        CHECK(IsMetaMem(m));
        if (prev) {
          // Ensure that shadow and meta mappings are linear within a single
          // user range. Lots of code that processes memory ranges assumes it.
          const uptr prev_s = MemToShadow(prev);
          const uptr prev_m = (uptr)MemToMeta(prev);
          CHECK_EQ(s - prev_s, (p - prev) * kShadowMultiplier);
          CHECK_EQ((m - prev_m) / kMetaShadowSize,
                   (p - prev) / kMetaShadowCell);
        }
        prev = p;
      }
    }
  }
}

#if !SANITIZER_GO
static void OnStackUnwind(const SignalContext &sig, const void *,
                          BufferedStackTrace *stack) {
  uptr top = 0;
  uptr bottom = 0;
  bool fast = common_flags()->fast_unwind_on_fatal;
  if (fast) GetThreadStackTopAndBottom(false, &top, &bottom);
  stack->Unwind(kStackTraceMax, sig.pc, sig.bp, sig.context, top, bottom, fast);
}

static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) {
  HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr);
}
#endif

void Initialize(ThreadState *thr) {
  // Thread safe because done before all threads exist.
  static bool is_initialized = false;
  if (is_initialized)
    return;
  is_initialized = true;
  // We are not ready to handle interceptors yet.
  ScopedIgnoreInterceptors ignore;
  SanitizerToolName = "ThreadSanitizer";
  // Install tool-specific callbacks in sanitizer_common.
  SetCheckFailedCallback(TsanCheckFailed);

  ctx = new(ctx_placeholder) Context;
  const char *options = GetEnv(SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS");
  CacheBinaryName();
  InitializeFlags(&ctx->flags, options);
  AvoidCVE_2016_2143();
  InitializePlatformEarly();
#if !SANITIZER_GO
  // Re-exec ourselves if we need to set additional env or command line args.
  MaybeReexec();

  InitializeAllocator();
  ReplaceSystemMalloc();
#endif
  if (common_flags()->detect_deadlocks)
    ctx->dd = DDetector::Create(flags());
  Processor *proc = ProcCreate();
  ProcWire(proc, thr);
  InitializeInterceptors();
  CheckShadowMapping();
  InitializePlatform();
  InitializeMutex();
  InitializeDynamicAnnotations();
#if !SANITIZER_GO
  InitializeShadowMemory();
  InitializeAllocatorLate();
  InstallDeadlySignalHandlers(TsanOnDeadlySignal);
#endif
  // Setup correct file descriptor for error reports.
  __sanitizer_set_report_path(common_flags()->log_path);
  InitializeSuppressions();
#if !SANITIZER_GO
  InitializeLibIgnore();
  Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer);
#endif

  VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n",
          (int)internal_getpid());

  // Initialize thread 0.
  int tid = ThreadCreate(thr, 0, 0, true);
  CHECK_EQ(tid, 0);
  ThreadStart(thr, tid, GetTid(), /*workerthread*/ false);
#if TSAN_CONTAINS_UBSAN
  __ubsan::InitAsPlugin();
#endif
  ctx->initialized = true;

#if !SANITIZER_GO
  Symbolizer::LateInitialize();
#endif

  if (flags()->stop_on_start) {
    Printf("ThreadSanitizer is suspended at startup (pid %d)."
           " Call __tsan_resume().\n",
           (int)internal_getpid());
    while (__tsan_resumed == 0) {}
  }

  OnInitialize();
}

void MaybeSpawnBackgroundThread() {
  // On MIPS, TSan initialization is run before
  // __pthread_initialize_minimal_internal() is finished, so we can not spawn
  // new threads.
#if !SANITIZER_GO && !defined(__mips__)
  static atomic_uint32_t bg_thread = {};
  if (atomic_load(&bg_thread, memory_order_relaxed) == 0 &&
      atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) {
    StartBackgroundThread();
    SetSandboxingCallback(StopBackgroundThread);
  }
#endif
}


int Finalize(ThreadState *thr) {
  bool failed = false;

  if (common_flags()->print_module_map == 1) PrintModuleMap();

  if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
    SleepForMillis(flags()->atexit_sleep_ms);

  // Wait for pending reports.
  ctx->report_mtx.Lock();
  { ScopedErrorReportLock l; }
  ctx->report_mtx.Unlock();

#if !SANITIZER_GO
  if (Verbosity()) AllocatorPrintStats();
#endif

  ThreadFinalize(thr);

  if (ctx->nreported) {
    failed = true;
#if !SANITIZER_GO
    Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
#else
    Printf("Found %d data race(s)\n", ctx->nreported);
#endif
  }

  if (ctx->nmissed_expected) {
    failed = true;
    Printf("ThreadSanitizer: missed %d expected races\n",
        ctx->nmissed_expected);
  }

  if (common_flags()->print_suppressions)
    PrintMatchedSuppressions();
#if !SANITIZER_GO
  if (flags()->print_benign)
    PrintMatchedBenignRaces();
#endif

  failed = OnFinalize(failed);

#if TSAN_COLLECT_STATS
  StatAggregate(ctx->stat, thr->stat);
  StatOutput(ctx->stat);
#endif

  return failed ? common_flags()->exitcode : 0;
}

#if !SANITIZER_GO
void ForkBefore(ThreadState *thr, uptr pc) {
  ctx->thread_registry->Lock();
  ctx->report_mtx.Lock();
}

void ForkParentAfter(ThreadState *thr, uptr pc) {
  ctx->report_mtx.Unlock();
  ctx->thread_registry->Unlock();
}

void ForkChildAfter(ThreadState *thr, uptr pc) {
  ctx->report_mtx.Unlock();
  ctx->thread_registry->Unlock();

  uptr nthread = 0;
  ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */);
  VPrintf(1, "ThreadSanitizer: forked new process with pid %d,"
      " parent had %d threads\n", (int)internal_getpid(), (int)nthread);
  if (nthread == 1) {
    StartBackgroundThread();
  } else {
    // We've just forked a multi-threaded process. We cannot reasonably function
    // after that (some mutexes may be locked before fork). So just enable
    // ignores for everything in the hope that we will exec soon.
    ctx->after_multithreaded_fork = true;
    thr->ignore_interceptors++;
    ThreadIgnoreBegin(thr, pc);
    ThreadIgnoreSyncBegin(thr, pc);
  }
}
#endif

#if SANITIZER_GO
NOINLINE
void GrowShadowStack(ThreadState *thr) {
  const int sz = thr->shadow_stack_end - thr->shadow_stack;
  const int newsz = 2 * sz;
  uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack,
      newsz * sizeof(uptr));
  internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
  internal_free(thr->shadow_stack);
  thr->shadow_stack = newstack;
  thr->shadow_stack_pos = newstack + sz;
  thr->shadow_stack_end = newstack + newsz;
}
#endif

u32 CurrentStackId(ThreadState *thr, uptr pc) {
  if (!thr->is_inited)  // May happen during bootstrap.
    return 0;
  if (pc != 0) {
#if !SANITIZER_GO
    DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
#else
    if (thr->shadow_stack_pos == thr->shadow_stack_end)
      GrowShadowStack(thr);
#endif
    thr->shadow_stack_pos[0] = pc;
    thr->shadow_stack_pos++;
  }
  u32 id = StackDepotPut(
      StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack));
  if (pc != 0)
    thr->shadow_stack_pos--;
  return id;
}

void TraceSwitch(ThreadState *thr) {
  thr->nomalloc++;
  Trace *thr_trace = ThreadTrace(thr->tid);
  Lock l(&thr_trace->mtx);
  unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts();
  TraceHeader *hdr = &thr_trace->headers[trace];
  hdr->epoch0 = thr->fast_state.epoch();
  ObtainCurrentStack(thr, 0, &hdr->stack0);
  hdr->mset0 = thr->mset;
  thr->nomalloc--;
}

Trace *ThreadTrace(int tid) {
  return (Trace*)GetThreadTraceHeader(tid);
}

uptr TraceTopPC(ThreadState *thr) {
  Event *events = (Event*)GetThreadTrace(thr->tid);
  uptr pc = events[thr->fast_state.GetTracePos()];
  return pc;
}

uptr TraceSize() {
  return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1));
}

uptr TraceParts() {
  return TraceSize() / kTracePartSize;
}

#if !SANITIZER_GO
extern "C" void __tsan_trace_switch() {
  TraceSwitch(cur_thread());
}

extern "C" void __tsan_report_race() {
  ReportRace(cur_thread());
}
#endif

ALWAYS_INLINE
Shadow LoadShadow(u64 *p) {
  u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed);
  return Shadow(raw);
}

ALWAYS_INLINE
void StoreShadow(u64 *sp, u64 s) {
  atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed);
}

ALWAYS_INLINE
void StoreIfNotYetStored(u64 *sp, u64 *s) {
  StoreShadow(sp, *s);
  *s = 0;
}

ALWAYS_INLINE
void HandleRace(ThreadState *thr, u64 *shadow_mem,
                              Shadow cur, Shadow old) {
  thr->racy_state[0] = cur.raw();
  thr->racy_state[1] = old.raw();
  thr->racy_shadow_addr = shadow_mem;
#if !SANITIZER_GO
  HACKY_CALL(__tsan_report_race);
#else
  ReportRace(thr);
#endif
}

static inline bool HappensBefore(Shadow old, ThreadState *thr) {
  return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
}

ALWAYS_INLINE
void MemoryAccessImpl1(ThreadState *thr, uptr addr,
    int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
    u64 *shadow_mem, Shadow cur) {
  StatInc(thr, StatMop);
  StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
  StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));

  // This potentially can live in an MMX/SSE scratch register.
  // The required intrinsics are:
  // __m128i _mm_move_epi64(__m128i*);
  // _mm_storel_epi64(u64*, __m128i);
  u64 store_word = cur.raw();

  // scan all the shadow values and dispatch to 4 categories:
  // same, replace, candidate and race (see comments below).
  // we consider only 3 cases regarding access sizes:
  // equal, intersect and not intersect. initially I considered
  // larger and smaller as well, it allowed to replace some
  // 'candidates' with 'same' or 'replace', but I think
  // it's just not worth it (performance- and complexity-wise).

  Shadow old(0);

  // It release mode we manually unroll the loop,
  // because empirically gcc generates better code this way.
  // However, we can't afford unrolling in debug mode, because the function
  // consumes almost 4K of stack. Gtest gives only 4K of stack to death test
  // threads, which is not enough for the unrolled loop.
#if SANITIZER_DEBUG
  for (int idx = 0; idx < 4; idx++) {
#include "tsan_update_shadow_word_inl.h"
  }
#else
  int idx = 0;
#include "tsan_update_shadow_word_inl.h"
  idx = 1;
#include "tsan_update_shadow_word_inl.h"
  idx = 2;
#include "tsan_update_shadow_word_inl.h"
  idx = 3;
#include "tsan_update_shadow_word_inl.h"
#endif

  // we did not find any races and had already stored
  // the current access info, so we are done
  if (LIKELY(store_word == 0))
    return;
  // choose a random candidate slot and replace it
  StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
  StatInc(thr, StatShadowReplace);
  return;
 RACE:
  HandleRace(thr, shadow_mem, cur, old);
  return;
}

void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
    int size, bool kAccessIsWrite, bool kIsAtomic) {
  while (size) {
    int size1 = 1;
    int kAccessSizeLog = kSizeLog1;
    if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) {
      size1 = 8;
      kAccessSizeLog = kSizeLog8;
    } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) {
      size1 = 4;
      kAccessSizeLog = kSizeLog4;
    } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) {
      size1 = 2;
      kAccessSizeLog = kSizeLog2;
    }
    MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
    addr += size1;
    size -= size1;
  }
}

ALWAYS_INLINE
bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
  Shadow cur(a);
  for (uptr i = 0; i < kShadowCnt; i++) {
    Shadow old(LoadShadow(&s[i]));
    if (Shadow::Addr0AndSizeAreEqual(cur, old) &&
        old.TidWithIgnore() == cur.TidWithIgnore() &&
        old.epoch() > sync_epoch &&
        old.IsAtomic() == cur.IsAtomic() &&
        old.IsRead() <= cur.IsRead())
      return true;
  }
  return false;
}

#if defined(__SSE3__)
#define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \
    _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \
    (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
ALWAYS_INLINE
bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
  // This is an optimized version of ContainsSameAccessSlow.
  // load current access into access[0:63]
  const m128 access     = _mm_cvtsi64_si128(a);
  // duplicate high part of access in addr0:
  // addr0[0:31]        = access[32:63]
  // addr0[32:63]       = access[32:63]
  // addr0[64:95]       = access[32:63]
  // addr0[96:127]      = access[32:63]
  const m128 addr0      = SHUF(access, access, 1, 1, 1, 1);
  // load 4 shadow slots
  const m128 shadow0    = _mm_load_si128((__m128i*)s);
  const m128 shadow1    = _mm_load_si128((__m128i*)s + 1);
  // load high parts of 4 shadow slots into addr_vect:
  // addr_vect[0:31]    = shadow0[32:63]
  // addr_vect[32:63]   = shadow0[96:127]
  // addr_vect[64:95]   = shadow1[32:63]
  // addr_vect[96:127]  = shadow1[96:127]
  m128 addr_vect        = SHUF(shadow0, shadow1, 1, 3, 1, 3);
  if (!is_write) {
    // set IsRead bit in addr_vect
    const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15);
    const m128 rw_mask  = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0);
    addr_vect           = _mm_or_si128(addr_vect, rw_mask);
  }
  // addr0 == addr_vect?
  const m128 addr_res   = _mm_cmpeq_epi32(addr0, addr_vect);
  // epoch1[0:63]       = sync_epoch
  const m128 epoch1     = _mm_cvtsi64_si128(sync_epoch);
  // epoch[0:31]        = sync_epoch[0:31]
  // epoch[32:63]       = sync_epoch[0:31]
  // epoch[64:95]       = sync_epoch[0:31]
  // epoch[96:127]      = sync_epoch[0:31]
  const m128 epoch      = SHUF(epoch1, epoch1, 0, 0, 0, 0);
  // load low parts of shadow cell epochs into epoch_vect:
  // epoch_vect[0:31]   = shadow0[0:31]
  // epoch_vect[32:63]  = shadow0[64:95]
  // epoch_vect[64:95]  = shadow1[0:31]
  // epoch_vect[96:127] = shadow1[64:95]
  const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2);
  // epoch_vect >= sync_epoch?
  const m128 epoch_res  = _mm_cmpgt_epi32(epoch_vect, epoch);
  // addr_res & epoch_res
  const m128 res        = _mm_and_si128(addr_res, epoch_res);
  // mask[0] = res[7]
  // mask[1] = res[15]
  // ...
  // mask[15] = res[127]
  const int mask        = _mm_movemask_epi8(res);
  return mask != 0;
}
#endif

ALWAYS_INLINE
bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
#if defined(__SSE3__)
  bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write);
  // NOTE: this check can fail if the shadow is concurrently mutated
  // by other threads. But it still can be useful if you modify
  // ContainsSameAccessFast and want to ensure that it's not completely broken.
  // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
  return res;
#else
  return ContainsSameAccessSlow(s, a, sync_epoch, is_write);
#endif
}

ALWAYS_INLINE USED
void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
    int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) {
  u64 *shadow_mem = (u64*)MemToShadow(addr);
  DPrintf2("#%d: MemoryAccess: @%p %p size=%d"
      " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
      (int)thr->fast_state.tid(), (void*)pc, (void*)addr,
      (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
      (uptr)shadow_mem[0], (uptr)shadow_mem[1],
      (uptr)shadow_mem[2], (uptr)shadow_mem[3]);
#if SANITIZER_DEBUG
  if (!IsAppMem(addr)) {
    Printf("Access to non app mem %zx\n", addr);
    DCHECK(IsAppMem(addr));
  }
  if (!IsShadowMem((uptr)shadow_mem)) {
    Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
    DCHECK(IsShadowMem((uptr)shadow_mem));
  }
#endif

  if (!SANITIZER_GO && *shadow_mem == kShadowRodata) {
    // Access to .rodata section, no races here.
    // Measurements show that it can be 10-20% of all memory accesses.
    StatInc(thr, StatMop);
    StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
    StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
    StatInc(thr, StatMopRodata);
    return;
  }

  FastState fast_state = thr->fast_state;
  if (fast_state.GetIgnoreBit()) {
    StatInc(thr, StatMop);
    StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
    StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
    StatInc(thr, StatMopIgnored);
    return;
  }

  Shadow cur(fast_state);
  cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
  cur.SetWrite(kAccessIsWrite);
  cur.SetAtomic(kIsAtomic);

  if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
      thr->fast_synch_epoch, kAccessIsWrite))) {
    StatInc(thr, StatMop);
    StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
    StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
    StatInc(thr, StatMopSame);
    return;
  }

  if (kCollectHistory) {
    fast_state.IncrementEpoch();
    thr->fast_state = fast_state;
    TraceAddEvent(thr, fast_state, EventTypeMop, pc);
    cur.IncrementEpoch();
  }

  MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
      shadow_mem, cur);
}

// Called by MemoryAccessRange in tsan_rtl_thread.cc
ALWAYS_INLINE USED
void MemoryAccessImpl(ThreadState *thr, uptr addr,
    int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
    u64 *shadow_mem, Shadow cur) {
  if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
      thr->fast_synch_epoch, kAccessIsWrite))) {
    StatInc(thr, StatMop);
    StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
    StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
    StatInc(thr, StatMopSame);
    return;
  }

  MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
      shadow_mem, cur);
}

static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
                           u64 val) {
  (void)thr;
  (void)pc;
  if (size == 0)
    return;
  // FIXME: fix me.
  uptr offset = addr % kShadowCell;
  if (offset) {
    offset = kShadowCell - offset;
    if (size <= offset)
      return;
    addr += offset;
    size -= offset;
  }
  DCHECK_EQ(addr % 8, 0);
  // If a user passes some insane arguments (memset(0)),
  // let it just crash as usual.
  if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
    return;
  // Don't want to touch lots of shadow memory.
  // If a program maps 10MB stack, there is no need reset the whole range.
  size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
  // UnmapOrDie/MmapFixedNoReserve does not work on Windows.
  if (SANITIZER_WINDOWS || size < common_flags()->clear_shadow_mmap_threshold) {
    u64 *p = (u64*)MemToShadow(addr);
    CHECK(IsShadowMem((uptr)p));
    CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1)));
    // FIXME: may overwrite a part outside the region
    for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
      p[i++] = val;
      for (uptr j = 1; j < kShadowCnt; j++)
        p[i++] = 0;
    }
  } else {
    // The region is big, reset only beginning and end.
    const uptr kPageSize = GetPageSizeCached();
    u64 *begin = (u64*)MemToShadow(addr);
    u64 *end = begin + size / kShadowCell * kShadowCnt;
    u64 *p = begin;
    // Set at least first kPageSize/2 to page boundary.
    while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
      *p++ = val;
      for (uptr j = 1; j < kShadowCnt; j++)
        *p++ = 0;
    }
    // Reset middle part.
    u64 *p1 = p;
    p = RoundDown(end, kPageSize);
    UnmapOrDie((void*)p1, (uptr)p - (uptr)p1);
    MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1);
    // Set the ending.
    while (p < end) {
      *p++ = val;
      for (uptr j = 1; j < kShadowCnt; j++)
        *p++ = 0;
    }
  }
}

void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
  MemoryRangeSet(thr, pc, addr, size, 0);
}

void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
  // Processing more than 1k (4k of shadow) is expensive,
  // can cause excessive memory consumption (user does not necessary touch
  // the whole range) and most likely unnecessary.
  if (size > 1024)
    size = 1024;
  CHECK_EQ(thr->is_freeing, false);
  thr->is_freeing = true;
  MemoryAccessRange(thr, pc, addr, size, true);
  thr->is_freeing = false;
  if (kCollectHistory) {
    thr->fast_state.IncrementEpoch();
    TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
  }
  Shadow s(thr->fast_state);
  s.ClearIgnoreBit();
  s.MarkAsFreed();
  s.SetWrite(true);
  s.SetAddr0AndSizeLog(0, 3);
  MemoryRangeSet(thr, pc, addr, size, s.raw());
}

void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
  if (kCollectHistory) {
    thr->fast_state.IncrementEpoch();
    TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
  }
  Shadow s(thr->fast_state);
  s.ClearIgnoreBit();
  s.SetWrite(true);
  s.SetAddr0AndSizeLog(0, 3);
  MemoryRangeSet(thr, pc, addr, size, s.raw());
}

ALWAYS_INLINE USED
void FuncEntry(ThreadState *thr, uptr pc) {
  StatInc(thr, StatFuncEnter);
  DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc);
  if (kCollectHistory) {
    thr->fast_state.IncrementEpoch();
    TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc);
  }

  // Shadow stack maintenance can be replaced with
  // stack unwinding during trace switch (which presumably must be faster).
  DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
#if !SANITIZER_GO
  DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
#else
  if (thr->shadow_stack_pos == thr->shadow_stack_end)
    GrowShadowStack(thr);
#endif
  thr->shadow_stack_pos[0] = pc;
  thr->shadow_stack_pos++;
}

ALWAYS_INLINE USED
void FuncExit(ThreadState *thr) {
  StatInc(thr, StatFuncExit);
  DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid());
  if (kCollectHistory) {
    thr->fast_state.IncrementEpoch();
    TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0);
  }

  DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
#if !SANITIZER_GO
  DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
#endif
  thr->shadow_stack_pos--;
}

void ThreadIgnoreBegin(ThreadState *thr, uptr pc, bool save_stack) {
  DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid);
  thr->ignore_reads_and_writes++;
  CHECK_GT(thr->ignore_reads_and_writes, 0);
  thr->fast_state.SetIgnoreBit();
#if !SANITIZER_GO
  if (save_stack && !ctx->after_multithreaded_fork)
    thr->mop_ignore_set.Add(CurrentStackId(thr, pc));
#endif
}

void ThreadIgnoreEnd(ThreadState *thr, uptr pc) {
  DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid);
  CHECK_GT(thr->ignore_reads_and_writes, 0);
  thr->ignore_reads_and_writes--;
  if (thr->ignore_reads_and_writes == 0) {
    thr->fast_state.ClearIgnoreBit();
#if !SANITIZER_GO
    thr->mop_ignore_set.Reset();
#endif
  }
}

#if !SANITIZER_GO
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
uptr __tsan_testonly_shadow_stack_current_size() {
  ThreadState *thr = cur_thread();
  return thr->shadow_stack_pos - thr->shadow_stack;
}
#endif

void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc, bool save_stack) {
  DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid);
  thr->ignore_sync++;
  CHECK_GT(thr->ignore_sync, 0);
#if !SANITIZER_GO
  if (save_stack && !ctx->after_multithreaded_fork)
    thr->sync_ignore_set.Add(CurrentStackId(thr, pc));
#endif
}

void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) {
  DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid);
  CHECK_GT(thr->ignore_sync, 0);
  thr->ignore_sync--;
#if !SANITIZER_GO
  if (thr->ignore_sync == 0)
    thr->sync_ignore_set.Reset();
#endif
}

bool MD5Hash::operator==(const MD5Hash &other) const {
  return hash[0] == other.hash[0] && hash[1] == other.hash[1];
}

#if SANITIZER_DEBUG
void build_consistency_debug() {}
#else
void build_consistency_release() {}
#endif

#if TSAN_COLLECT_STATS
void build_consistency_stats() {}
#else
void build_consistency_nostats() {}
#endif

}  // namespace __tsan

#if !SANITIZER_GO
// Must be included in this file to make sure everything is inlined.
#include "tsan_interface_inl.h"
#endif