Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
/* Transformations based on profile information for values.
   Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "expr.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "value-prof.h"
#include "output.h"
#include "flags.h"
#include "insn-config.h"
#include "recog.h"
#include "optabs.h"
#include "regs.h"
#include "ggc.h"
#include "tree-flow.h"
#include "tree-flow-inline.h"
#include "diagnostic.h"
#include "coverage.h"
#include "tree.h"
#include "gcov-io.h"
#include "timevar.h"
#include "tree-pass.h"
#include "toplev.h"

static struct value_prof_hooks *value_prof_hooks;

/* In this file value profile based optimizations are placed.  Currently the
   following optimizations are implemented (for more detailed descriptions
   see comments at value_profile_transformations):

   1) Division/modulo specialization.  Provided that we can determine that the
      operands of the division have some special properties, we may use it to
      produce more effective code.
   2) Speculative prefetching.  If we are able to determine that the difference
      between addresses accessed by a memory reference is usually constant, we
      may add the prefetch instructions.
      FIXME: This transformation was removed together with RTL based value
      profiling.

   Every such optimization should add its requirements for profiled values to
   insn_values_to_profile function.  This function is called from branch_prob
   in profile.c and the requested values are instrumented by it in the first
   compilation with -fprofile-arcs.  The optimization may then read the
   gathered data in the second compilation with -fbranch-probabilities.

   The measured data is pointed to from the histograms
   field of the statement annotation of the instrumented insns.  It is
   kept as a linked list of struct histogram_value_t's, which contain the
   same information as above.  */


static tree tree_divmod_fixed_value (tree, tree, tree, tree, 
				    tree, int, gcov_type, gcov_type);
static tree tree_mod_pow2 (tree, tree, tree, tree, int, gcov_type, gcov_type);
static tree tree_mod_subtract (tree, tree, tree, tree, int, int, int,
				gcov_type, gcov_type, gcov_type);
static bool tree_divmod_fixed_value_transform (tree);
static bool tree_mod_pow2_value_transform (tree);
static bool tree_mod_subtract_transform (tree);

/* The overall number of invocations of the counter should match execution count
   of basic block.  Report it as error rather than internal error as it might
   mean that user has misused the profile somehow.  */
static bool
check_counter (tree stmt, const char * name, gcov_type all, gcov_type bb_count)
{
  if (all != bb_count)
    {
      location_t * locus;
      locus = (stmt != NULL && EXPR_HAS_LOCATION (stmt)
	       ? EXPR_LOCUS (stmt)
	       : &DECL_SOURCE_LOCATION (current_function_decl));
      error ("%HCorrupted value profile: %s profiler overall count (%d) does not match BB count (%d)",
	     locus, name, (int)all, (int)bb_count);
      return true;
    }
  return false;
}

/* Tree based transformations. */
static bool
tree_value_profile_transformations (void)
{
  basic_block bb;
  block_stmt_iterator bsi;
  bool changed = false;

  FOR_EACH_BB (bb)
    {
      /* Ignore cold areas -- we are enlarging the code.  */
      if (!maybe_hot_bb_p (bb))
	continue;

      for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
	{
	  tree stmt = bsi_stmt (bsi);
	  stmt_ann_t ann = get_stmt_ann (stmt);
	  histogram_value th = ann->histograms;
	  if (!th)
	    continue;

	  if (dump_file)
	    {
	      fprintf (dump_file, "Trying transformations on insn ");
	      print_generic_stmt (dump_file, stmt, TDF_SLIM);
	    }

	  /* Transformations:  */
	  /* The order of things in this conditional controls which
	     transformation is used when more than one is applicable.  */
	  /* It is expected that any code added by the transformations
	     will be added before the current statement, and that the
	     current statement remain valid (although possibly
	     modified) upon return.  */
	  if (flag_value_profile_transformations
	      && (tree_mod_subtract_transform (stmt)
		  || tree_divmod_fixed_value_transform (stmt)
		  || tree_mod_pow2_value_transform (stmt)))
	    {
	      changed = true;
	      /* Original statement may no longer be in the same block. */
	      if (bb != bb_for_stmt (stmt))
		{
	          bb = bb_for_stmt (stmt);
		  bsi = bsi_for_stmt (stmt);
		}
	    }

	  /* Free extra storage from compute_value_histograms.  */
	  while (th)
	    {
	      free (th->hvalue.counters);
	      th = th->hvalue.next;
	    }
	  ann->histograms = 0;
        }
    }

  if (changed)
    {
      counts_to_freqs ();
    }

  return changed;
}

/* Generate code for transformation 1 (with OPERATION, operands OP1
   and OP2, whose value is expected to be VALUE, parent modify-expr STMT and
   probability of taking the optimal path PROB, which is equivalent to COUNT/ALL
   within roundoff error).  This generates the result into a temp and returns 
   the temp; it does not replace or alter the original STMT.  */
static tree
tree_divmod_fixed_value (tree stmt, tree operation, 
			 tree op1, tree op2, tree value, int prob, gcov_type count,
			 gcov_type all)
{
  tree stmt1, stmt2, stmt3;
  tree tmp1, tmp2, tmpv;
  tree label_decl1 = create_artificial_label ();
  tree label_decl2 = create_artificial_label ();
  tree label_decl3 = create_artificial_label ();
  tree label1, label2, label3;
  tree bb1end, bb2end, bb3end;
  basic_block bb, bb2, bb3, bb4;
  tree optype = TREE_TYPE (operation);
  edge e12, e13, e23, e24, e34;
  block_stmt_iterator bsi;

  bb = bb_for_stmt (stmt);
  bsi = bsi_for_stmt (stmt);

  tmpv = create_tmp_var (optype, "PROF");
  tmp1 = create_tmp_var (optype, "PROF");
  stmt1 = build2 (MODIFY_EXPR, optype, tmpv, fold_convert (optype, value));
  stmt2 = build2 (MODIFY_EXPR, optype, tmp1, op2);
  stmt3 = build3 (COND_EXPR, void_type_node,
	    build2 (NE_EXPR, boolean_type_node, tmp1, tmpv),
	    build1 (GOTO_EXPR, void_type_node, label_decl2),
	    build1 (GOTO_EXPR, void_type_node, label_decl1));
  bsi_insert_before (&bsi, stmt1, BSI_SAME_STMT);
  bsi_insert_before (&bsi, stmt2, BSI_SAME_STMT);
  bsi_insert_before (&bsi, stmt3, BSI_SAME_STMT);
  bb1end = stmt3;

  tmp2 = create_tmp_var (optype, "PROF");
  label1 = build1 (LABEL_EXPR, void_type_node, label_decl1);
  stmt1 = build2 (MODIFY_EXPR, optype, tmp2,
		  build2 (TREE_CODE (operation), optype, op1, tmpv));
  bsi_insert_before (&bsi, label1, BSI_SAME_STMT);
  bsi_insert_before (&bsi, stmt1, BSI_SAME_STMT);
  bb2end = stmt1;

  label2 = build1 (LABEL_EXPR, void_type_node, label_decl2);
  stmt1 = build2 (MODIFY_EXPR, optype, tmp2,
		  build2 (TREE_CODE (operation), optype, op1, op2));
  bsi_insert_before (&bsi, label2, BSI_SAME_STMT);
  bsi_insert_before (&bsi, stmt1, BSI_SAME_STMT);
  bb3end = stmt1;

  label3 = build1 (LABEL_EXPR, void_type_node, label_decl3);
  bsi_insert_before (&bsi, label3, BSI_SAME_STMT);

  /* Fix CFG. */
  /* Edge e23 connects bb2 to bb3, etc. */
  e12 = split_block (bb, bb1end);
  bb2 = e12->dest;
  bb2->count = count;
  e23 = split_block (bb2, bb2end);
  bb3 = e23->dest;
  bb3->count = all - count;
  e34 = split_block (bb3, bb3end);
  bb4 = e34->dest;
  bb4->count = all;

  e12->flags &= ~EDGE_FALLTHRU;
  e12->flags |= EDGE_FALSE_VALUE;
  e12->probability = prob;
  e12->count = count;

  e13 = make_edge (bb, bb3, EDGE_TRUE_VALUE);
  e13->probability = REG_BR_PROB_BASE - prob;
  e13->count = all - count;

  remove_edge (e23);
  
  e24 = make_edge (bb2, bb4, EDGE_FALLTHRU);
  e24->probability = REG_BR_PROB_BASE;
  e24->count = count;

  e34->probability = REG_BR_PROB_BASE;
  e34->count = all - count;

  return tmp2;
}

/* Do transform 1) on INSN if applicable.  */
static bool
tree_divmod_fixed_value_transform (tree stmt)
{
  stmt_ann_t ann = get_stmt_ann (stmt);
  histogram_value histogram;
  enum tree_code code;
  gcov_type val, count, all;
  tree modify, op, op1, op2, result, value, tree_val;
  int prob;

  modify = stmt;
  if (TREE_CODE (stmt) == RETURN_EXPR
      && TREE_OPERAND (stmt, 0)
      && TREE_CODE (TREE_OPERAND (stmt, 0)) == MODIFY_EXPR)
    modify = TREE_OPERAND (stmt, 0);
  if (TREE_CODE (modify) != MODIFY_EXPR)
    return false;
  op = TREE_OPERAND (modify, 1);
  if (!INTEGRAL_TYPE_P (TREE_TYPE (op)))
    return false;
  code = TREE_CODE (op);
  
  if (code != TRUNC_DIV_EXPR && code != TRUNC_MOD_EXPR)
    return false;

  op1 = TREE_OPERAND (op, 0);
  op2 = TREE_OPERAND (op, 1);
  if (!ann->histograms)
    return false;

  for (histogram = ann->histograms; histogram; histogram = histogram->hvalue.next)
    if (histogram->type == HIST_TYPE_SINGLE_VALUE)
      break;

  if (!histogram)
    return false;

  value = histogram->hvalue.value;
  val = histogram->hvalue.counters[0];
  count = histogram->hvalue.counters[1];
  all = histogram->hvalue.counters[2];

  /* We require that count is at least half of all; this means
     that for the transformation to fire the value must be constant
     at least 50% of time (and 75% gives the guarantee of usage).  */
  if (simple_cst_equal (op2, value) != 1 || 2 * count < all)
    return false;

  if (check_counter (stmt, "value", all, bb_for_stmt (stmt)->count))
    return false;

  /* Compute probability of taking the optimal path.  */
  prob = (count * REG_BR_PROB_BASE + all / 2) / all;

  tree_val = build_int_cst_wide (get_gcov_type (),
				 (unsigned HOST_WIDE_INT) val,
				 val >> (HOST_BITS_PER_WIDE_INT - 1) >> 1);
  result = tree_divmod_fixed_value (stmt, op, op1, op2, tree_val, prob, count, all);

  if (dump_file)
    {
      fprintf (dump_file, "Div/mod by constant ");
      print_generic_expr (dump_file, value, TDF_SLIM);
      fprintf (dump_file, "=");
      print_generic_expr (dump_file, tree_val, TDF_SLIM);
      fprintf (dump_file, " transformation on insn ");
      print_generic_stmt (dump_file, stmt, TDF_SLIM);
    }

  TREE_OPERAND (modify, 1) = result;

  return true;
}

/* Generate code for transformation 2 (with OPERATION, operands OP1
   and OP2, parent modify-expr STMT and probability of taking the optimal 
   path PROB, which is equivalent to COUNT/ALL within roundoff error).  
   This generates the result into a temp and returns 
   the temp; it does not replace or alter the original STMT.  */
static tree
tree_mod_pow2 (tree stmt, tree operation, tree op1, tree op2, int prob, 
	       gcov_type count, gcov_type all)
{
  tree stmt1, stmt2, stmt3, stmt4;
  tree tmp2, tmp3;
  tree label_decl1 = create_artificial_label ();
  tree label_decl2 = create_artificial_label ();
  tree label_decl3 = create_artificial_label ();
  tree label1, label2, label3;
  tree bb1end, bb2end, bb3end;
  basic_block bb, bb2, bb3, bb4;
  tree optype = TREE_TYPE (operation);
  edge e12, e13, e23, e24, e34;
  block_stmt_iterator bsi;
  tree result = create_tmp_var (optype, "PROF");

  bb = bb_for_stmt (stmt);
  bsi = bsi_for_stmt (stmt);

  tmp2 = create_tmp_var (optype, "PROF");
  tmp3 = create_tmp_var (optype, "PROF");
  stmt2 = build2 (MODIFY_EXPR, optype, tmp2, 
		  build2 (PLUS_EXPR, optype, op2, build_int_cst (optype, -1)));
  stmt3 = build2 (MODIFY_EXPR, optype, tmp3,
		  build2 (BIT_AND_EXPR, optype, tmp2, op2));
  stmt4 = build3 (COND_EXPR, void_type_node,
		  build2 (NE_EXPR, boolean_type_node,
			  tmp3, build_int_cst (optype, 0)),
		  build1 (GOTO_EXPR, void_type_node, label_decl2),
	 	  build1 (GOTO_EXPR, void_type_node, label_decl1));
  bsi_insert_before (&bsi, stmt2, BSI_SAME_STMT);
  bsi_insert_before (&bsi, stmt3, BSI_SAME_STMT);
  bsi_insert_before (&bsi, stmt4, BSI_SAME_STMT);
  bb1end = stmt4;

  /* tmp2 == op2-1 inherited from previous block */
  label1 = build1 (LABEL_EXPR, void_type_node, label_decl1);
  stmt1 = build2 (MODIFY_EXPR, optype, result,
		  build2 (BIT_AND_EXPR, optype, op1, tmp2));
  bsi_insert_before (&bsi, label1, BSI_SAME_STMT);
  bsi_insert_before (&bsi, stmt1, BSI_SAME_STMT);
  bb2end = stmt1;

  label2 = build1 (LABEL_EXPR, void_type_node, label_decl2);
  stmt1 = build2 (MODIFY_EXPR, optype, result,
		  build2 (TREE_CODE (operation), optype, op1, op2));
  bsi_insert_before (&bsi, label2, BSI_SAME_STMT);
  bsi_insert_before (&bsi, stmt1, BSI_SAME_STMT);
  bb3end = stmt1;

  label3 = build1 (LABEL_EXPR, void_type_node, label_decl3);
  bsi_insert_before (&bsi, label3, BSI_SAME_STMT);

  /* Fix CFG. */
  /* Edge e23 connects bb2 to bb3, etc. */
  e12 = split_block (bb, bb1end);
  bb2 = e12->dest;
  bb2->count = count;
  e23 = split_block (bb2, bb2end);
  bb3 = e23->dest;
  bb3->count = all - count;
  e34 = split_block (bb3, bb3end);
  bb4 = e34->dest;
  bb4->count = all;

  e12->flags &= ~EDGE_FALLTHRU;
  e12->flags |= EDGE_FALSE_VALUE;
  e12->probability = prob;
  e12->count = count;

  e13 = make_edge (bb, bb3, EDGE_TRUE_VALUE);
  e13->probability = REG_BR_PROB_BASE - prob;
  e13->count = all - count;

  remove_edge (e23);
  
  e24 = make_edge (bb2, bb4, EDGE_FALLTHRU);
  e24->probability = REG_BR_PROB_BASE;
  e24->count = count;

  e34->probability = REG_BR_PROB_BASE;
  e34->count = all - count;

  return result;
}

/* Do transform 2) on INSN if applicable.  */
static bool
tree_mod_pow2_value_transform (tree stmt)
{
  stmt_ann_t ann = get_stmt_ann (stmt);
  histogram_value histogram;
  enum tree_code code;
  gcov_type count, wrong_values, all;
  tree modify, op, op1, op2, result, value;
  int prob;

  modify = stmt;
  if (TREE_CODE (stmt) == RETURN_EXPR
      && TREE_OPERAND (stmt, 0)
      && TREE_CODE (TREE_OPERAND (stmt, 0)) == MODIFY_EXPR)
    modify = TREE_OPERAND (stmt, 0);
  if (TREE_CODE (modify) != MODIFY_EXPR)
    return false;
  op = TREE_OPERAND (modify, 1);
  if (!INTEGRAL_TYPE_P (TREE_TYPE (op)))
    return false;
  code = TREE_CODE (op);
  
  if (code != TRUNC_MOD_EXPR || !TYPE_UNSIGNED (TREE_TYPE (op)))
    return false;

  op1 = TREE_OPERAND (op, 0);
  op2 = TREE_OPERAND (op, 1);
  if (!ann->histograms)
    return false;

  for (histogram = ann->histograms; histogram; histogram = histogram->hvalue.next)
    if (histogram->type == HIST_TYPE_POW2)
      break;

  if (!histogram)
    return false;

  value = histogram->hvalue.value;
  wrong_values = histogram->hvalue.counters[0];
  count = histogram->hvalue.counters[1];

  /* We require that we hit a power of 2 at least half of all evaluations.  */
  if (simple_cst_equal (op2, value) != 1 || count < wrong_values)
    return false;

  if (dump_file)
    {
      fprintf (dump_file, "Mod power of 2 transformation on insn ");
      print_generic_stmt (dump_file, stmt, TDF_SLIM);
    }

  /* Compute probability of taking the optimal path.  */
  all = count + wrong_values;
  if (check_counter (stmt, "pow2", all, bb_for_stmt (stmt)->count))
    return false;

  prob = (count * REG_BR_PROB_BASE + all / 2) / all;

  result = tree_mod_pow2 (stmt, op, op1, op2, prob, count, all);

  TREE_OPERAND (modify, 1) = result;

  return true;
}

/* Generate code for transformations 3 and 4 (with OPERATION, operands OP1
   and OP2, parent modify-expr STMT, and NCOUNTS the number of cases to
   support.  Currently only NCOUNTS==0 or 1 is supported and this is
   built into this interface.  The probabilities of taking the optimal 
   paths are PROB1 and PROB2, which are equivalent to COUNT1/ALL and
   COUNT2/ALL respectively within roundoff error).  This generates the 
   result into a temp and returns the temp; it does not replace or alter 
   the original STMT.  */
/* FIXME: Generalize the interface to handle NCOUNTS > 1.  */

static tree
tree_mod_subtract (tree stmt, tree operation, tree op1, tree op2, 
		    int prob1, int prob2, int ncounts,
		    gcov_type count1, gcov_type count2, gcov_type all)
{
  tree stmt1, stmt2, stmt3;
  tree tmp1;
  tree label_decl1 = create_artificial_label ();
  tree label_decl2 = create_artificial_label ();
  tree label_decl3 = create_artificial_label ();
  tree label1, label2, label3;
  tree bb1end, bb2end = NULL_TREE, bb3end;
  basic_block bb, bb2, bb3, bb4;
  tree optype = TREE_TYPE (operation);
  edge e12, e23 = 0, e24, e34, e14;
  block_stmt_iterator bsi;
  tree result = create_tmp_var (optype, "PROF");

  bb = bb_for_stmt (stmt);
  bsi = bsi_for_stmt (stmt);

  tmp1 = create_tmp_var (optype, "PROF");
  stmt1 = build2 (MODIFY_EXPR, optype, result, op1);
  stmt2 = build2 (MODIFY_EXPR, optype, tmp1, op2);
  stmt3 = build3 (COND_EXPR, void_type_node,
	    build2 (LT_EXPR, boolean_type_node, result, tmp1),
	    build1 (GOTO_EXPR, void_type_node, label_decl3),
	    build1 (GOTO_EXPR, void_type_node, 
		    ncounts ? label_decl1 : label_decl2));
  bsi_insert_before (&bsi, stmt1, BSI_SAME_STMT);
  bsi_insert_before (&bsi, stmt2, BSI_SAME_STMT);
  bsi_insert_before (&bsi, stmt3, BSI_SAME_STMT);
  bb1end = stmt3;

  if (ncounts)	/* Assumed to be 0 or 1 */
    {
      label1 = build1 (LABEL_EXPR, void_type_node, label_decl1);
      stmt1 = build2 (MODIFY_EXPR, optype, result,
		      build2 (MINUS_EXPR, optype, result, tmp1));
      stmt2 = build3 (COND_EXPR, void_type_node,
		build2 (LT_EXPR, boolean_type_node, result, tmp1),
		build1 (GOTO_EXPR, void_type_node, label_decl3),
		build1 (GOTO_EXPR, void_type_node, label_decl2));
      bsi_insert_before (&bsi, label1, BSI_SAME_STMT);
      bsi_insert_before (&bsi, stmt1, BSI_SAME_STMT);
      bsi_insert_before (&bsi, stmt2, BSI_SAME_STMT);
      bb2end = stmt2;
    }

  /* Fallback case. */
  label2 = build1 (LABEL_EXPR, void_type_node, label_decl2);
  stmt1 = build2 (MODIFY_EXPR, optype, result,
		    build2 (TREE_CODE (operation), optype, result, tmp1));
  bsi_insert_before (&bsi, label2, BSI_SAME_STMT);
  bsi_insert_before (&bsi, stmt1, BSI_SAME_STMT);
  bb3end = stmt1;

  label3 = build1 (LABEL_EXPR, void_type_node, label_decl3);
  bsi_insert_before (&bsi, label3, BSI_SAME_STMT);

  /* Fix CFG. */
  /* Edge e23 connects bb2 to bb3, etc. */
  /* However block 3 is optional; if it is not there, references
     to 3 really refer to block 2. */
  e12 = split_block (bb, bb1end);
  bb2 = e12->dest;
  bb2->count = all - count1;
    
  if (ncounts)	/* Assumed to be 0 or 1.  */
    {
      e23 = split_block (bb2, bb2end);
      bb3 = e23->dest;
      bb3->count = all - count1 - count2;
    }

  e34 = split_block (ncounts ? bb3 : bb2, bb3end);
  bb4 = e34->dest;
  bb4->count = all;

  e12->flags &= ~EDGE_FALLTHRU;
  e12->flags |= EDGE_FALSE_VALUE;
  e12->probability = REG_BR_PROB_BASE - prob1;
  e12->count = all - count1;

  e14 = make_edge (bb, bb4, EDGE_TRUE_VALUE);
  e14->probability = prob1;
  e14->count = count1;

  if (ncounts)  /* Assumed to be 0 or 1.  */
    {
      e23->flags &= ~EDGE_FALLTHRU;
      e23->flags |= EDGE_FALSE_VALUE;
      e23->count = all - count1 - count2;
      e23->probability = REG_BR_PROB_BASE - prob2;

      e24 = make_edge (bb2, bb4, EDGE_TRUE_VALUE);
      e24->probability = prob2;
      e24->count = count2;
    }

  e34->probability = REG_BR_PROB_BASE;
  e34->count = all - count1 - count2;

  return result;
}

/* Do transforms 3) and 4) on INSN if applicable.  */
static bool
tree_mod_subtract_transform (tree stmt)
{
  stmt_ann_t ann = get_stmt_ann (stmt);
  histogram_value histogram;
  enum tree_code code;
  gcov_type count, wrong_values, all;
  tree modify, op, op1, op2, result, value;
  int prob1, prob2;
  unsigned int i;

  modify = stmt;
  if (TREE_CODE (stmt) == RETURN_EXPR
      && TREE_OPERAND (stmt, 0)
      && TREE_CODE (TREE_OPERAND (stmt, 0)) == MODIFY_EXPR)
    modify = TREE_OPERAND (stmt, 0);
  if (TREE_CODE (modify) != MODIFY_EXPR)
    return false;
  op = TREE_OPERAND (modify, 1);
  if (!INTEGRAL_TYPE_P (TREE_TYPE (op)))
    return false;
  code = TREE_CODE (op);
  
  if (code != TRUNC_MOD_EXPR || !TYPE_UNSIGNED (TREE_TYPE (op)))
    return false;

  op1 = TREE_OPERAND (op, 0);
  op2 = TREE_OPERAND (op, 1);
  if (!ann->histograms)
    return false;

  for (histogram = ann->histograms; histogram; histogram = histogram->hvalue.next)
    if (histogram->type == HIST_TYPE_INTERVAL)
      break;

  if (!histogram)
    return false;

  value = histogram->hvalue.value;
  all = 0;
  wrong_values = 0;
  for (i = 0; i < histogram->hdata.intvl.steps; i++)
    all += histogram->hvalue.counters[i];

  wrong_values += histogram->hvalue.counters[i];
  wrong_values += histogram->hvalue.counters[i+1];
  all += wrong_values;

  /* Compute probability of taking the optimal path.  */
  if (check_counter (stmt, "interval", all, bb_for_stmt (stmt)->count))
    return false;

  /* We require that we use just subtractions in at least 50% of all
     evaluations.  */
  count = 0;
  for (i = 0; i < histogram->hdata.intvl.steps; i++)
    {
      count += histogram->hvalue.counters[i];
      if (count * 2 >= all)
	break;
    }
  if (i == histogram->hdata.intvl.steps)
    return false;

  if (dump_file)
    {
      fprintf (dump_file, "Mod subtract transformation on insn ");
      print_generic_stmt (dump_file, stmt, TDF_SLIM);
    }

  /* Compute probability of taking the optimal path(s).  */
  prob1 = (histogram->hvalue.counters[0] * REG_BR_PROB_BASE + all / 2) / all;
  prob2 = (histogram->hvalue.counters[1] * REG_BR_PROB_BASE + all / 2) / all;

  /* In practice, "steps" is always 2.  This interface reflects this,
     and will need to be changed if "steps" can change.  */
  result = tree_mod_subtract (stmt, op, op1, op2, prob1, prob2, i,
			    histogram->hvalue.counters[0], 
			    histogram->hvalue.counters[1], all);

  TREE_OPERAND (modify, 1) = result;

  return true;
}

struct value_prof_hooks {
  /* Find list of values for which we want to measure histograms.  */
  void (*find_values_to_profile) (histogram_values *);

  /* Identify and exploit properties of values that are hard to analyze
     statically.  See value-prof.c for more detail.  */
  bool (*value_profile_transformations) (void);  
};

/* Find values inside STMT for that we want to measure histograms for
   division/modulo optimization.  */
static void
tree_divmod_values_to_profile (tree stmt, histogram_values *values)
{
  tree assign, lhs, rhs, divisor, op0, type;
  histogram_value hist;

  if (TREE_CODE (stmt) == RETURN_EXPR)
    assign = TREE_OPERAND (stmt, 0);
  else
    assign = stmt;

  if (!assign
      || TREE_CODE (assign) != MODIFY_EXPR)
    return;
  lhs = TREE_OPERAND (assign, 0);
  type = TREE_TYPE (lhs);
  if (!INTEGRAL_TYPE_P (type))
    return;

  rhs = TREE_OPERAND (assign, 1);
  switch (TREE_CODE (rhs))
    {
    case TRUNC_DIV_EXPR:
    case TRUNC_MOD_EXPR:
      divisor = TREE_OPERAND (rhs, 1);
      op0 = TREE_OPERAND (rhs, 0);

      VEC_reserve (histogram_value, heap, *values, 3);

      if (is_gimple_reg (divisor))
	{
	  /* Check for the case where the divisor is the same value most
	     of the time.  */
	  hist = ggc_alloc (sizeof (*hist));
	  hist->hvalue.value = divisor;
	  hist->hvalue.stmt = stmt;
	  hist->type = HIST_TYPE_SINGLE_VALUE;
	  VEC_quick_push (histogram_value, *values, hist);
	}

      /* For mod, check whether it is not often a noop (or replaceable by
	 a few subtractions).  */
      if (TREE_CODE (rhs) == TRUNC_MOD_EXPR
	  && TYPE_UNSIGNED (type))
	{
          /* Check for a special case where the divisor is power of 2.  */
	  hist = ggc_alloc (sizeof (*hist));
	  hist->hvalue.value = divisor;
	  hist->hvalue.stmt = stmt;
	  hist->type = HIST_TYPE_POW2;
	  VEC_quick_push (histogram_value, *values, hist);

	  hist = ggc_alloc (sizeof (*hist));
	  hist->hvalue.stmt = stmt;
	  hist->hvalue.value
		  = build2 (TRUNC_DIV_EXPR, type, op0, divisor);
	  hist->type = HIST_TYPE_INTERVAL;
	  hist->hdata.intvl.int_start = 0;
	  hist->hdata.intvl.steps = 2;
	  VEC_quick_push (histogram_value, *values, hist);
	}
      return;

    default:
      return;
    }
}

/* Find values inside STMT for that we want to measure histograms and adds
   them to list VALUES.  */

static void
tree_values_to_profile (tree stmt, histogram_values *values)
{
  if (flag_value_profile_transformations)
    tree_divmod_values_to_profile (stmt, values);
}

static void
tree_find_values_to_profile (histogram_values *values)
{
  basic_block bb;
  block_stmt_iterator bsi;
  unsigned i;
  histogram_value hist;

  *values = NULL;
  FOR_EACH_BB (bb)
    for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
      tree_values_to_profile (bsi_stmt (bsi), values);
  
  for (i = 0; VEC_iterate (histogram_value, *values, i, hist); i++)
    {
      switch (hist->type)
        {
	case HIST_TYPE_INTERVAL:
	  if (dump_file)
	    {
	      fprintf (dump_file, "Interval counter for tree ");
	      print_generic_expr (dump_file, hist->hvalue.stmt, 
				  TDF_SLIM);
	      fprintf (dump_file, ", range %d -- %d.\n",
		     hist->hdata.intvl.int_start,
		     (hist->hdata.intvl.int_start
		      + hist->hdata.intvl.steps - 1));
	    }
	  hist->n_counters = hist->hdata.intvl.steps + 2;
	  break;

	case HIST_TYPE_POW2:
	  if (dump_file)
	    {
	      fprintf (dump_file, "Pow2 counter for tree ");
	      print_generic_expr (dump_file, hist->hvalue.stmt, TDF_SLIM);
	      fprintf (dump_file, ".\n");
	    }
	  hist->n_counters = 2;
	  break;

	case HIST_TYPE_SINGLE_VALUE:
	  if (dump_file)
	    {
	      fprintf (dump_file, "Single value counter for tree ");
	      print_generic_expr (dump_file, hist->hvalue.stmt, TDF_SLIM);
	      fprintf (dump_file, ".\n");
	    }
	  hist->n_counters = 3;
	  break;

	case HIST_TYPE_CONST_DELTA:
	  if (dump_file)
	    {
	      fprintf (dump_file, "Constant delta counter for tree ");
	      print_generic_expr (dump_file, hist->hvalue.stmt, TDF_SLIM);
	      fprintf (dump_file, ".\n");
	    }
	  hist->n_counters = 4;
	  break;

	default:
	  gcc_unreachable ();
	}
    }
}

static struct value_prof_hooks tree_value_prof_hooks = {
  tree_find_values_to_profile,
  tree_value_profile_transformations
};

void
tree_register_value_prof_hooks (void)
{
  value_prof_hooks = &tree_value_prof_hooks;
  gcc_assert (ir_type ());
}

/* IR-independent entry points.  */
void
find_values_to_profile (histogram_values *values)
{
  (value_prof_hooks->find_values_to_profile) (values);
}

bool
value_profile_transformations (void)
{
  return (value_prof_hooks->value_profile_transformations) ();
}