Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
// Methods for type_info for -*- C++ -*- Run Time Type Identification.
// Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
// 2003, 2004, 2005, 2006, 2007
// Free Software Foundation
//
// This file is part of GCC.
//
// GCC is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.

// GCC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING.  If not, write to
// the Free Software Foundation, 51 Franklin Street, Fifth Floor,
// Boston, MA 02110-1301, USA. 

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

#include <bits/c++config.h>
#include <cstddef>
#include "tinfo.h"
#include "new"			// for placement new

// This file contains the minimal working set necessary to link with code
// that uses virtual functions and -frtti but does not actually use RTTI
// functionality.

std::type_info::
~type_info ()
{ }

std::bad_cast::~bad_cast() throw() { }
std::bad_typeid::~bad_typeid() throw() { }

const char* 
std::bad_cast::what() const throw()
{
  return "std::bad_cast";
}

const char* 
std::bad_typeid::what() const throw()
{
  return "std::bad_typeid";
}

#if !__GXX_MERGED_TYPEINFO_NAMES

// We can't rely on common symbols being shared between shared objects.
bool std::type_info::
operator== (const std::type_info& arg) const
{
  return (&arg == this) || (__builtin_strcmp (name (), arg.name ()) == 0);
}

#endif

namespace std {

// return true if this is a type_info for a pointer type
bool type_info::
__is_pointer_p () const
{
  return false;
}

// return true if this is a type_info for a function type
bool type_info::
__is_function_p () const
{
  return false;
}

// try and catch a thrown object.
bool type_info::
__do_catch (const type_info *thr_type, void **, unsigned) const
{
  return *this == *thr_type;
}

// upcast from this type to the target. __class_type_info will override
bool type_info::
__do_upcast (const abi::__class_type_info *, void **) const
{
  return false;
}

}

namespace {

using namespace std;
using namespace abi;

// Initial part of a vtable, this structure is used with offsetof, so we don't
// have to keep alignments consistent manually.
struct vtable_prefix 
{
  // Offset to most derived object.
  ptrdiff_t whole_object;

  // Additional padding if necessary.
#ifdef _GLIBCXX_VTABLE_PADDING
  ptrdiff_t padding1;               
#endif

  // Pointer to most derived type_info.
  const __class_type_info *whole_type;  

  // Additional padding if necessary.
#ifdef _GLIBCXX_VTABLE_PADDING
  ptrdiff_t padding2;               
#endif

  // What a class's vptr points to.
  const void *origin;               
};

template <typename T>
inline const T *
adjust_pointer (const void *base, ptrdiff_t offset)
{
  return reinterpret_cast <const T *>
    (reinterpret_cast <const char *> (base) + offset);
}

// ADDR is a pointer to an object.  Convert it to a pointer to a base,
// using OFFSET. IS_VIRTUAL is true, if we are getting a virtual base.
inline void const *
convert_to_base (void const *addr, bool is_virtual, ptrdiff_t offset)
{
  if (is_virtual)
    {
      const void *vtable = *static_cast <const void *const *> (addr);
      
      offset = *adjust_pointer<ptrdiff_t> (vtable, offset);
    }

  return adjust_pointer<void> (addr, offset);
}

// some predicate functions for __class_type_info::__sub_kind
inline bool contained_p (__class_type_info::__sub_kind access_path)
{
  return access_path >= __class_type_info::__contained_mask;
}
inline bool public_p (__class_type_info::__sub_kind access_path)
{
  return access_path & __class_type_info::__contained_public_mask;
}
inline bool virtual_p (__class_type_info::__sub_kind access_path)
{
  return (access_path & __class_type_info::__contained_virtual_mask);
}
inline bool contained_public_p (__class_type_info::__sub_kind access_path)
{
  return ((access_path & __class_type_info::__contained_public)
          == __class_type_info::__contained_public);
}
inline bool contained_nonpublic_p (__class_type_info::__sub_kind access_path)
{
  return ((access_path & __class_type_info::__contained_public)
          == __class_type_info::__contained_mask);
}
inline bool contained_nonvirtual_p (__class_type_info::__sub_kind access_path)
{
  return ((access_path & (__class_type_info::__contained_mask
                          | __class_type_info::__contained_virtual_mask))
          == __class_type_info::__contained_mask);
}

static const __class_type_info *const nonvirtual_base_type =
    static_cast <const __class_type_info *> (0) + 1;

} // namespace

namespace __cxxabiv1
{

__class_type_info::
~__class_type_info ()
{}

__si_class_type_info::
~__si_class_type_info ()
{}

__vmi_class_type_info::
~__vmi_class_type_info ()
{}

// __upcast_result is used to hold information during traversal of a class
// hierarchy when catch matching.
struct __class_type_info::__upcast_result
{
  const void *dst_ptr;        // pointer to caught object
  __sub_kind part2dst;        // path from current base to target
  int src_details;            // hints about the source type hierarchy
  const __class_type_info *base_type; // where we found the target,
                              // if in vbase the __class_type_info of vbase
                              // if a non-virtual base then 1
                              // else NULL
  __upcast_result (int d)
    :dst_ptr (NULL), part2dst (__unknown), src_details (d), base_type (NULL)
    {}
};

// __dyncast_result is used to hold information during traversal of a class
// hierarchy when dynamic casting.
struct __class_type_info::__dyncast_result
{
  const void *dst_ptr;        // pointer to target object or NULL
  __sub_kind whole2dst;       // path from most derived object to target
  __sub_kind whole2src;       // path from most derived object to sub object
  __sub_kind dst2src;         // path from target to sub object
  int whole_details;          // details of the whole class hierarchy
  
  __dyncast_result (int details_ = __vmi_class_type_info::__flags_unknown_mask)
    :dst_ptr (NULL), whole2dst (__unknown),
     whole2src (__unknown), dst2src (__unknown),
     whole_details (details_)
    {}

protected:
  __dyncast_result(const __dyncast_result&);
  
  __dyncast_result&
  operator=(const __dyncast_result&);
};

bool __class_type_info::
__do_catch (const type_info *thr_type,
            void **thr_obj,
            unsigned outer) const
{
  if (*this == *thr_type)
    return true;
  if (outer >= 4)
    // Neither `A' nor `A *'.
    return false;
  return thr_type->__do_upcast (this, thr_obj);
}

bool __class_type_info::
__do_upcast (const __class_type_info *dst_type,
             void **obj_ptr) const
{
  __upcast_result result (__vmi_class_type_info::__flags_unknown_mask);
  
  __do_upcast (dst_type, *obj_ptr, result);
  if (!contained_public_p (result.part2dst))
    return false;
  *obj_ptr = const_cast <void *> (result.dst_ptr);
  return true;
}

inline __class_type_info::__sub_kind __class_type_info::
__find_public_src (ptrdiff_t src2dst,
                   const void *obj_ptr,
                   const __class_type_info *src_type,
                   const void *src_ptr) const
{
  if (src2dst >= 0)
    return adjust_pointer <void> (obj_ptr, src2dst) == src_ptr
            ? __contained_public : __not_contained;
  if (src2dst == -2)
    return __not_contained;
  return __do_find_public_src (src2dst, obj_ptr, src_type, src_ptr);
}

__class_type_info::__sub_kind __class_type_info::
__do_find_public_src (ptrdiff_t,
                      const void *obj_ptr,
                      const __class_type_info *,
                      const void *src_ptr) const
{
  if (src_ptr == obj_ptr)
    // Must be our type, as the pointers match.
    return __contained_public;
  return __not_contained;
}

__class_type_info::__sub_kind __si_class_type_info::
__do_find_public_src (ptrdiff_t src2dst,
                      const void *obj_ptr,
                      const __class_type_info *src_type,
                      const void *src_ptr) const
{
  if (src_ptr == obj_ptr && *this == *src_type)
    return __contained_public;
  return __base_type->__do_find_public_src (src2dst, obj_ptr, src_type, src_ptr);
}

__class_type_info::__sub_kind __vmi_class_type_info::
__do_find_public_src (ptrdiff_t src2dst,
                      const void *obj_ptr,
                      const __class_type_info *src_type,
                      const void *src_ptr) const
{
  if (obj_ptr == src_ptr && *this == *src_type)
    return __contained_public;
  
  for (std::size_t i = __base_count; i--;)
    {
      if (!__base_info[i].__is_public_p ())
        continue; // Not public, can't be here.
      
      const void *base = obj_ptr;
      ptrdiff_t offset = __base_info[i].__offset ();
      bool is_virtual = __base_info[i].__is_virtual_p ();
      
      if (is_virtual)
        {
          if (src2dst == -3)
            continue; // Not a virtual base, so can't be here.
        }
      base = convert_to_base (base, is_virtual, offset);
      
      __sub_kind base_kind = __base_info[i].__base_type->__do_find_public_src
                              (src2dst, base, src_type, src_ptr);
      if (contained_p (base_kind))
        {
          if (is_virtual)
            base_kind = __sub_kind (base_kind | __contained_virtual_mask);
          return base_kind;
        }
    }
  
  return __not_contained;
}

bool __class_type_info::
__do_dyncast (ptrdiff_t,
              __sub_kind access_path,
              const __class_type_info *dst_type,
              const void *obj_ptr,
              const __class_type_info *src_type,
              const void *src_ptr,
              __dyncast_result &__restrict result) const
{
  if (obj_ptr == src_ptr && *this == *src_type)
    {
      // The src object we started from. Indicate how we are accessible from
      // the most derived object.
      result.whole2src = access_path;
      return false;
    }
  if (*this == *dst_type)
    {
      result.dst_ptr = obj_ptr;
      result.whole2dst = access_path;
      result.dst2src = __not_contained;
      return false;
    }
  return false;
}

bool __si_class_type_info::
__do_dyncast (ptrdiff_t src2dst,
              __sub_kind access_path,
              const __class_type_info *dst_type,
              const void *obj_ptr,
              const __class_type_info *src_type,
              const void *src_ptr,
              __dyncast_result &__restrict result) const
{
  if (*this == *dst_type)
    {
      result.dst_ptr = obj_ptr;
      result.whole2dst = access_path;
      if (src2dst >= 0)
        result.dst2src = adjust_pointer <void> (obj_ptr, src2dst) == src_ptr
              ? __contained_public : __not_contained;
      else if (src2dst == -2)
        result.dst2src = __not_contained;
      return false;
    }
  if (obj_ptr == src_ptr && *this == *src_type)
    {
      // The src object we started from. Indicate how we are accessible from
      // the most derived object.
      result.whole2src = access_path;
      return false;
    }
  return __base_type->__do_dyncast (src2dst, access_path, dst_type, obj_ptr,
                             src_type, src_ptr, result);
}

// This is a big hairy function. Although the run-time behaviour of
// dynamic_cast is simple to describe, it gives rise to some non-obvious
// behaviour. We also desire to determine as early as possible any definite
// answer we can get. Because it is unknown what the run-time ratio of
// succeeding to failing dynamic casts is, we do not know in which direction
// to bias any optimizations. To that end we make no particular effort towards
// early fail answers or early success answers. Instead we try to minimize
// work by filling in things lazily (when we know we need the information),
// and opportunisticly take early success or failure results.
bool __vmi_class_type_info::
__do_dyncast (ptrdiff_t src2dst,
              __sub_kind access_path,
              const __class_type_info *dst_type,
              const void *obj_ptr,
              const __class_type_info *src_type,
              const void *src_ptr,
              __dyncast_result &__restrict result) const
{
  if (result.whole_details & __flags_unknown_mask)
    result.whole_details = __flags;
  
  if (obj_ptr == src_ptr && *this == *src_type)
    {
      // The src object we started from. Indicate how we are accessible from
      // the most derived object.
      result.whole2src = access_path;
      return false;
    }
  if (*this == *dst_type)
    {
      result.dst_ptr = obj_ptr;
      result.whole2dst = access_path;
      if (src2dst >= 0)
        result.dst2src = adjust_pointer <void> (obj_ptr, src2dst) == src_ptr
              ? __contained_public : __not_contained;
      else if (src2dst == -2)
        result.dst2src = __not_contained;
      return false;
    }

  bool result_ambig = false;
  for (std::size_t i = __base_count; i--;)
    {
      __dyncast_result result2 (result.whole_details);
      void const *base = obj_ptr;
      __sub_kind base_access = access_path;
      ptrdiff_t offset = __base_info[i].__offset ();
      bool is_virtual = __base_info[i].__is_virtual_p ();
      
      if (is_virtual)
        base_access = __sub_kind (base_access | __contained_virtual_mask);
      base = convert_to_base (base, is_virtual, offset);

      if (!__base_info[i].__is_public_p ())
        {
          if (src2dst == -2 &&
              !(result.whole_details
                & (__non_diamond_repeat_mask | __diamond_shaped_mask)))
            // The hierarchy has no duplicate bases (which might ambiguate
            // things) and where we started is not a public base of what we
            // want (so it cannot be a downcast). There is nothing of interest
            // hiding in a non-public base.
            continue;
          base_access = __sub_kind (base_access & ~__contained_public_mask);
        }
      
      bool result2_ambig
          = __base_info[i].__base_type->__do_dyncast (src2dst, base_access,
                                             dst_type, base,
                                             src_type, src_ptr, result2);
      result.whole2src = __sub_kind (result.whole2src | result2.whole2src);
      if (result2.dst2src == __contained_public
          || result2.dst2src == __contained_ambig)
        {
          result.dst_ptr = result2.dst_ptr;
          result.whole2dst = result2.whole2dst;
          result.dst2src = result2.dst2src;
          // Found a downcast which can't be bettered or an ambiguous downcast
          // which can't be disambiguated
          return result2_ambig;
        }
      
      if (!result_ambig && !result.dst_ptr)
        {
          // Not found anything yet.
          result.dst_ptr = result2.dst_ptr;
          result.whole2dst = result2.whole2dst;
          result_ambig = result2_ambig;
          if (result.dst_ptr && result.whole2src != __unknown
              && !(__flags & __non_diamond_repeat_mask))
            // Found dst and src and we don't have repeated bases.
            return result_ambig;
        }
      else if (result.dst_ptr && result.dst_ptr == result2.dst_ptr)
        {
          // Found at same address, must be via virtual.  Pick the most
          // accessible path.
          result.whole2dst =
              __sub_kind (result.whole2dst | result2.whole2dst);
        }
      else if ((result.dst_ptr != 0 && result2.dst_ptr != 0)
	       || (result.dst_ptr != 0 && result2_ambig)
	       || (result2.dst_ptr != 0 && result_ambig))
        {
          // Found two different DST_TYPE bases, or a valid one and a set of
          // ambiguous ones, must disambiguate. See whether SRC_PTR is
          // contained publicly within one of the non-ambiguous choices. If it
          // is in only one, then that's the choice. If it is in both, then
          // we're ambiguous and fail. If it is in neither, we're ambiguous,
          // but don't yet fail as we might later find a third base which does
          // contain SRC_PTR.
        
          __sub_kind new_sub_kind = result2.dst2src;
          __sub_kind old_sub_kind = result.dst2src;
          
          if (contained_p (result.whole2src)
              && (!virtual_p (result.whole2src)
                  || !(result.whole_details & __diamond_shaped_mask)))
            {
              // We already found SRC_PTR as a base of most derived, and
              // either it was non-virtual, or the whole hierarchy is
              // not-diamond shaped. Therefore if it is in either choice, it
              // can only be in one of them, and we will already know.
              if (old_sub_kind == __unknown)
                old_sub_kind = __not_contained;
              if (new_sub_kind == __unknown)
                new_sub_kind = __not_contained;
            }
          else
            {
              if (old_sub_kind >= __not_contained)
                ;// already calculated
              else if (contained_p (new_sub_kind)
                       && (!virtual_p (new_sub_kind)
                           || !(__flags & __diamond_shaped_mask)))
                // Already found inside the other choice, and it was
                // non-virtual or we are not diamond shaped.
                old_sub_kind = __not_contained;
              else
                old_sub_kind = dst_type->__find_public_src
                                (src2dst, result.dst_ptr, src_type, src_ptr);
          
              if (new_sub_kind >= __not_contained)
                ;// already calculated
              else if (contained_p (old_sub_kind)
                       && (!virtual_p (old_sub_kind)
                           || !(__flags & __diamond_shaped_mask)))
                // Already found inside the other choice, and it was
                // non-virtual or we are not diamond shaped.
                new_sub_kind = __not_contained;
              else
                new_sub_kind = dst_type->__find_public_src
                                (src2dst, result2.dst_ptr, src_type, src_ptr);
            }
          
          // Neither sub_kind can be contained_ambig -- we bail out early
          // when we find those.
          if (contained_p (__sub_kind (new_sub_kind ^ old_sub_kind)))
            {
              // Only on one choice, not ambiguous.
              if (contained_p (new_sub_kind))
                {
                  // Only in new.
                  result.dst_ptr = result2.dst_ptr;
                  result.whole2dst = result2.whole2dst;
                  result_ambig = false;
                  old_sub_kind = new_sub_kind;
                }
              result.dst2src = old_sub_kind;
              if (public_p (result.dst2src))
                return false; // Can't be an ambiguating downcast for later discovery.
              if (!virtual_p (result.dst2src))
                return false; // Found non-virtually can't be bettered
            }
          else if (contained_p (__sub_kind (new_sub_kind & old_sub_kind)))
            {
              // In both.
              result.dst_ptr = NULL;
              result.dst2src = __contained_ambig;
              return true;  // Fail.
            }
          else
            {
              // In neither publicly, ambiguous for the moment, but keep
              // looking. It is possible that it was private in one or
              // both and therefore we should fail, but that's just tough.
              result.dst_ptr = NULL;
              result.dst2src = __not_contained;
              result_ambig = true;
            }
        }
      
      if (result.whole2src == __contained_private)
        // We found SRC_PTR as a private non-virtual base, therefore all
        // cross casts will fail. We have already found a down cast, if
        // there is one.
        return result_ambig;
    }

  return result_ambig;
}

bool __class_type_info::
__do_upcast (const __class_type_info *dst, const void *obj,
             __upcast_result &__restrict result) const
{
  if (*this == *dst)
    {
      result.dst_ptr = obj;
      result.base_type = nonvirtual_base_type;
      result.part2dst = __contained_public;
      return true;
    }
  return false;
}

bool __si_class_type_info::
__do_upcast (const __class_type_info *dst, const void *obj_ptr,
             __upcast_result &__restrict result) const
{
  if (__class_type_info::__do_upcast (dst, obj_ptr, result))
    return true;
  
  return __base_type->__do_upcast (dst, obj_ptr, result);
}

bool __vmi_class_type_info::
__do_upcast (const __class_type_info *dst, const void *obj_ptr,
             __upcast_result &__restrict result) const
{
  if (__class_type_info::__do_upcast (dst, obj_ptr, result))
    return true;
  
  int src_details = result.src_details;
  if (src_details & __flags_unknown_mask)
    src_details = __flags;
  
  for (std::size_t i = __base_count; i--;)
    {
      __upcast_result result2 (src_details);
      const void *base = obj_ptr;
      ptrdiff_t offset = __base_info[i].__offset ();
      bool is_virtual = __base_info[i].__is_virtual_p ();
      bool is_public = __base_info[i].__is_public_p ();
      
      if (!is_public && !(src_details & __non_diamond_repeat_mask))
        // original cannot have an ambiguous base, so skip private bases
        continue;

      if (base)
        base = convert_to_base (base, is_virtual, offset);
      
      if (__base_info[i].__base_type->__do_upcast (dst, base, result2))
        {
          if (result2.base_type == nonvirtual_base_type && is_virtual)
            result2.base_type = __base_info[i].__base_type;
          if (contained_p (result2.part2dst) && !is_public)
            result2.part2dst = __sub_kind (result2.part2dst & ~__contained_public_mask);
          
          if (!result.base_type)
            {
              result = result2;
              if (!contained_p (result.part2dst))
                return true; // found ambiguously
              
              if (result.part2dst & __contained_public_mask)
                {
                  if (!(__flags & __non_diamond_repeat_mask))
                    return true;  // cannot have an ambiguous other base
                }
              else
                {
                  if (!virtual_p (result.part2dst))
                    return true; // cannot have another path
                  if (!(__flags & __diamond_shaped_mask))
                    return true; // cannot have a more accessible path
                }
            }
          else if (result.dst_ptr != result2.dst_ptr)
            {
              // Found an ambiguity.
	      result.dst_ptr = NULL;
	      result.part2dst = __contained_ambig;
	      return true;
            }
          else if (result.dst_ptr)
            {
              // Ok, found real object via a virtual path.
              result.part2dst
                  = __sub_kind (result.part2dst | result2.part2dst);
            }
          else
            {
              // Dealing with a null pointer, need to check vbase
              // containing each of the two choices.
              if (result2.base_type == nonvirtual_base_type
                  || result.base_type == nonvirtual_base_type
                  || !(*result2.base_type == *result.base_type))
                {
                  // Already ambiguous, not virtual or via different virtuals.
                  // Cannot match.
                  result.part2dst = __contained_ambig;
                  return true;
                }
              result.part2dst
                  = __sub_kind (result.part2dst | result2.part2dst);
            }
        }
    }
  return result.part2dst != __unknown;
}

// this is the external interface to the dynamic cast machinery
extern "C" void *
__dynamic_cast (const void *src_ptr,    // object started from
                const __class_type_info *src_type, // type of the starting object
                const __class_type_info *dst_type, // desired target type
                ptrdiff_t src2dst) // how src and dst are related
{
  const void *vtable = *static_cast <const void *const *> (src_ptr);
  const vtable_prefix *prefix =
      adjust_pointer <vtable_prefix> (vtable, 
				      -offsetof (vtable_prefix, origin));
  const void *whole_ptr =
      adjust_pointer <void> (src_ptr, prefix->whole_object);
  const __class_type_info *whole_type = prefix->whole_type;
  __class_type_info::__dyncast_result result;
  
  whole_type->__do_dyncast (src2dst, __class_type_info::__contained_public,
                            dst_type, whole_ptr, src_type, src_ptr, result);
  if (!result.dst_ptr)
    return NULL;
  if (contained_public_p (result.dst2src))
    // Src is known to be a public base of dst.
    return const_cast <void *> (result.dst_ptr);
  if (contained_public_p (__class_type_info::__sub_kind (result.whole2src & result.whole2dst)))
    // Both src and dst are known to be public bases of whole. Found a valid
    // cross cast.
    return const_cast <void *> (result.dst_ptr);
  if (contained_nonvirtual_p (result.whole2src))
    // Src is known to be a non-public nonvirtual base of whole, and not a
    // base of dst. Found an invalid cross cast, which cannot also be a down
    // cast
    return NULL;
  if (result.dst2src == __class_type_info::__unknown)
    result.dst2src = dst_type->__find_public_src (src2dst, result.dst_ptr,
                                                  src_type, src_ptr);
  if (contained_public_p (result.dst2src))
    // Found a valid down cast
    return const_cast <void *> (result.dst_ptr);
  // Must be an invalid down cast, or the cross cast wasn't bettered
  return NULL;
}

} // namespace __cxxabiv1