Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
// Allocator details.

// Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
// USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

//
// ISO C++ 14882:
//

#include <bits/c++config.h>
#include <ext/concurrence.h>
#include <ext/mt_allocator.h>
#include <cstring>

namespace
{
#ifdef __GTHREADS
  struct __freelist
  {
    typedef __gnu_cxx::__pool<true>::_Thread_record _Thread_record;
    _Thread_record* 	_M_thread_freelist;
    _Thread_record* 	_M_thread_freelist_array;
    size_t 		_M_max_threads;
    __gthread_key_t 	_M_key;

    ~__freelist()
    {
      if (_M_thread_freelist_array)
	{
	  __gthread_key_delete(_M_key);
	  ::operator delete(static_cast<void*>(_M_thread_freelist_array));
	}
    }
  };

  // Ensure freelist is constructed first.
  static __freelist freelist;
  __gnu_cxx::__mutex freelist_mutex;

  static void 
  _M_destroy_thread_key(void* __id)
  {
    // Return this thread id record to the front of thread_freelist.
    __gnu_cxx::__scoped_lock sentry(freelist_mutex);
    size_t _M_id = reinterpret_cast<size_t>(__id);

    typedef __gnu_cxx::__pool<true>::_Thread_record _Thread_record;
    _Thread_record* __tr = &freelist._M_thread_freelist_array[_M_id - 1];
    __tr->_M_next = freelist._M_thread_freelist;
    freelist._M_thread_freelist = __tr;
  }
#endif
} // anonymous namespace

_GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)

  void
  __pool<false>::_M_destroy() throw()
  {
    if (_M_init && !_M_options._M_force_new)
      {
	for (size_t __n = 0; __n < _M_bin_size; ++__n)
	  {
	    _Bin_record& __bin = _M_bin[__n];
	    while (__bin._M_address)
	      {
		_Block_address* __tmp = __bin._M_address->_M_next;
		::operator delete(__bin._M_address->_M_initial);
		__bin._M_address = __tmp;
	      }
	    ::operator delete(__bin._M_first);
	  }
	::operator delete(_M_bin);
	::operator delete(_M_binmap);
      }
  }

  void
  __pool<false>::_M_reclaim_block(char* __p, size_t __bytes)
  {
    // Round up to power of 2 and figure out which bin to use.
    const size_t __which = _M_binmap[__bytes];
    _Bin_record& __bin = _M_bin[__which];

    char* __c = __p - _M_get_align();
    _Block_record* __block_record = reinterpret_cast<_Block_record*>(__c);
      
    // Single threaded application - return to global pool.
    __block_record->_M_next = __bin._M_first[0];
    __bin._M_first[0] = __block_record;
  }

  char* 
  __pool<false>::_M_reserve_block(size_t __bytes, const size_t __thread_id)
  {
    // Round up to power of 2 and figure out which bin to use.
    const size_t __which = _M_binmap[__bytes];
    _Bin_record& __bin = _M_bin[__which];
    const _Tune& __options = _M_get_options();
    const size_t __bin_size = (__options._M_min_bin << __which) 
			       + __options._M_align;
    size_t __block_count = __options._M_chunk_size - sizeof(_Block_address);
    __block_count /= __bin_size;	  

    // Get a new block dynamically, set it up for use.
    void* __v = ::operator new(__options._M_chunk_size);
    _Block_address* __address = static_cast<_Block_address*>(__v);
    __address->_M_initial = __v;
    __address->_M_next = __bin._M_address;
    __bin._M_address = __address;

    char* __c = static_cast<char*>(__v) + sizeof(_Block_address);
    _Block_record* __block_record = reinterpret_cast<_Block_record*>(__c);
    __bin._M_first[__thread_id] = __block_record;
    while (--__block_count > 0)
      {
	__c += __bin_size;
	__block_record->_M_next = reinterpret_cast<_Block_record*>(__c);
	__block_record = __block_record->_M_next;
      }
    __block_record->_M_next = NULL;

    __block_record = __bin._M_first[__thread_id];
    __bin._M_first[__thread_id] = __block_record->_M_next;

    // NB: For alignment reasons, we can't use the first _M_align
    // bytes, even when sizeof(_Block_record) < _M_align.
    return reinterpret_cast<char*>(__block_record) + __options._M_align;
  }

  void
  __pool<false>::_M_initialize()
  {
    // _M_force_new must not change after the first allocate(), which
    // in turn calls this method, so if it's false, it's false forever
    // and we don't need to return here ever again.
    if (_M_options._M_force_new) 
      {
	_M_init = true;
	return;
      }
      
    // Create the bins.
    // Calculate the number of bins required based on _M_max_bytes.
    // _M_bin_size is statically-initialized to one.
    size_t __bin_size = _M_options._M_min_bin;
    while (_M_options._M_max_bytes > __bin_size)
      {
	__bin_size <<= 1;
	++_M_bin_size;
      }
      
    // Setup the bin map for quick lookup of the relevant bin.
    const size_t __j = (_M_options._M_max_bytes + 1) * sizeof(_Binmap_type);
    _M_binmap = static_cast<_Binmap_type*>(::operator new(__j));
    _Binmap_type* __bp = _M_binmap;
    _Binmap_type __bin_max = _M_options._M_min_bin;
    _Binmap_type __bint = 0;
    for (_Binmap_type __ct = 0; __ct <= _M_options._M_max_bytes; ++__ct)
      {
	if (__ct > __bin_max)
	  {
	    __bin_max <<= 1;
	    ++__bint;
	  }
	*__bp++ = __bint;
      }
      
    // Initialize _M_bin and its members.
    void* __v = ::operator new(sizeof(_Bin_record) * _M_bin_size);
    _M_bin = static_cast<_Bin_record*>(__v);
    for (size_t __n = 0; __n < _M_bin_size; ++__n)
      {
	_Bin_record& __bin = _M_bin[__n];
	__v = ::operator new(sizeof(_Block_record*));
	__bin._M_first = static_cast<_Block_record**>(__v);
	__bin._M_first[0] = NULL;
	__bin._M_address = NULL;
      }
    _M_init = true;
  }

  
#ifdef __GTHREADS
  void
  __pool<true>::_M_destroy() throw()
  {
    if (_M_init && !_M_options._M_force_new)
      {
	if (__gthread_active_p())
	  {
	    for (size_t __n = 0; __n < _M_bin_size; ++__n)
	      {
		_Bin_record& __bin = _M_bin[__n];
		while (__bin._M_address)
		  {
		    _Block_address* __tmp = __bin._M_address->_M_next;
		    ::operator delete(__bin._M_address->_M_initial);
		    __bin._M_address = __tmp;
		  }
		::operator delete(__bin._M_first);
		::operator delete(__bin._M_free);
		::operator delete(__bin._M_used);
		::operator delete(__bin._M_mutex);
	      }
	  }
	else
	  {
	    for (size_t __n = 0; __n < _M_bin_size; ++__n)
	      {
		_Bin_record& __bin = _M_bin[__n];
		while (__bin._M_address)
		  {
		    _Block_address* __tmp = __bin._M_address->_M_next;
		    ::operator delete(__bin._M_address->_M_initial);
		    __bin._M_address = __tmp;
		  }
		::operator delete(__bin._M_first);
	      }
	  }
	::operator delete(_M_bin);
	::operator delete(_M_binmap);
      }
  }

  void
  __pool<true>::_M_reclaim_block(char* __p, size_t __bytes)
  {
    // Round up to power of 2 and figure out which bin to use.
    const size_t __which = _M_binmap[__bytes];
    const _Bin_record& __bin = _M_bin[__which];

    // Know __p not null, assume valid block.
    char* __c = __p - _M_get_align();
    _Block_record* __block_record = reinterpret_cast<_Block_record*>(__c);
    if (__gthread_active_p())
      {
	// Calculate the number of records to remove from our freelist:
	// in order to avoid too much contention we wait until the
	// number of records is "high enough".
	const size_t __thread_id = _M_get_thread_id();
	const _Tune& __options = _M_get_options();	
	const size_t __limit = (100 * (_M_bin_size - __which)
				* __options._M_freelist_headroom);

	size_t __remove = __bin._M_free[__thread_id];
	__remove *= __options._M_freelist_headroom;

	// NB: We assume that reads of _Atomic_words are atomic.
	const size_t __max_threads = __options._M_max_threads + 1;
	_Atomic_word* const __reclaimed_base =
	  reinterpret_cast<_Atomic_word*>(__bin._M_used + __max_threads);
	const _Atomic_word __reclaimed = __reclaimed_base[__thread_id];
	const size_t __net_used = __bin._M_used[__thread_id] - __reclaimed;

	// NB: For performance sake we don't resync every time, in order
	// to spare atomic ops.  Note that if __reclaimed increased by,
	// say, 1024, since the last sync, it means that the other
	// threads executed the atomic in the else below at least the
	// same number of times (at least, because _M_reserve_block may
	// have decreased the counter), therefore one more cannot hurt.
	if (__reclaimed > 1024)
	  {
	    __bin._M_used[__thread_id] -= __reclaimed;
	    __atomic_add(&__reclaimed_base[__thread_id], -__reclaimed);
	  }

	if (__remove >= __net_used)
	  __remove -= __net_used;
	else
	  __remove = 0;
	if (__remove > __limit && __remove > __bin._M_free[__thread_id])
	  {
	    _Block_record* __first = __bin._M_first[__thread_id];
	    _Block_record* __tmp = __first;
	    __remove /= __options._M_freelist_headroom;
	    const size_t __removed = __remove;
	    while (--__remove > 0)
	      __tmp = __tmp->_M_next;
	    __bin._M_first[__thread_id] = __tmp->_M_next;
	    __bin._M_free[__thread_id] -= __removed;
	    
	    __gthread_mutex_lock(__bin._M_mutex);
	    __tmp->_M_next = __bin._M_first[0];
	    __bin._M_first[0] = __first;
	    __bin._M_free[0] += __removed;
	    __gthread_mutex_unlock(__bin._M_mutex);
	  }

	// Return this block to our list and update counters and
	// owner id as needed.
	if (__block_record->_M_thread_id == __thread_id)
	  --__bin._M_used[__thread_id];
	else
	  __atomic_add(&__reclaimed_base[__block_record->_M_thread_id], 1);

	__block_record->_M_next = __bin._M_first[__thread_id];
	__bin._M_first[__thread_id] = __block_record;
	
	++__bin._M_free[__thread_id];
      }
    else
      {
	// Not using threads, so single threaded application - return
	// to global pool.
	__block_record->_M_next = __bin._M_first[0];
	__bin._M_first[0] = __block_record;
      }
  }

  char* 
  __pool<true>::_M_reserve_block(size_t __bytes, const size_t __thread_id)
  {
    // Round up to power of 2 and figure out which bin to use.
    const size_t __which = _M_binmap[__bytes];
    const _Tune& __options = _M_get_options();
    const size_t __bin_size = ((__options._M_min_bin << __which)
			       + __options._M_align);
    size_t __block_count = __options._M_chunk_size - sizeof(_Block_address);
    __block_count /= __bin_size;	  
    
    // Are we using threads?
    // - Yes, check if there are free blocks on the global
    //   list. If so, grab up to __block_count blocks in one
    //   lock and change ownership. If the global list is 
    //   empty, we allocate a new chunk and add those blocks 
    //   directly to our own freelist (with us as owner).
    // - No, all operations are made directly to global pool 0
    //   no need to lock or change ownership but check for free
    //   blocks on global list (and if not add new ones) and
    //   get the first one.
    _Bin_record& __bin = _M_bin[__which];
    _Block_record* __block_record = NULL;
    if (__gthread_active_p())
      {
	// Resync the _M_used counters.
	const size_t __max_threads = __options._M_max_threads + 1;
	_Atomic_word* const __reclaimed_base =
	  reinterpret_cast<_Atomic_word*>(__bin._M_used + __max_threads);
	const _Atomic_word __reclaimed = __reclaimed_base[__thread_id];
	__bin._M_used[__thread_id] -= __reclaimed;
	__atomic_add(&__reclaimed_base[__thread_id], -__reclaimed);

	__gthread_mutex_lock(__bin._M_mutex);
	if (__bin._M_first[0] == NULL)
	  {
	    void* __v = ::operator new(__options._M_chunk_size);
	    _Block_address* __address = static_cast<_Block_address*>(__v);
	    __address->_M_initial = __v;
	    __address->_M_next = __bin._M_address;
	    __bin._M_address = __address;
	    __gthread_mutex_unlock(__bin._M_mutex);

	    // No need to hold the lock when we are adding a whole
	    // chunk to our own list.
	    char* __c = static_cast<char*>(__v) + sizeof(_Block_address);
	    __block_record = reinterpret_cast<_Block_record*>(__c);
	    __bin._M_free[__thread_id] = __block_count;
	    __bin._M_first[__thread_id] = __block_record;
	    while (--__block_count > 0)
	      {
		__c += __bin_size;
		__block_record->_M_next = reinterpret_cast<_Block_record*>(__c);
		__block_record = __block_record->_M_next;
	      }
	    __block_record->_M_next = NULL;
	  }
	else
	  {
	    // Is the number of required blocks greater than or equal
	    // to the number that can be provided by the global free
	    // list?
	    __bin._M_first[__thread_id] = __bin._M_first[0];
	    if (__block_count >= __bin._M_free[0])
	      {
		__bin._M_free[__thread_id] = __bin._M_free[0];
		__bin._M_free[0] = 0;
		__bin._M_first[0] = NULL;
	      }
	    else
	      {
		__bin._M_free[__thread_id] = __block_count;
		__bin._M_free[0] -= __block_count;
		__block_record = __bin._M_first[0];
		while (--__block_count > 0)
		  __block_record = __block_record->_M_next;
		__bin._M_first[0] = __block_record->_M_next;
		__block_record->_M_next = NULL;
	      }
	    __gthread_mutex_unlock(__bin._M_mutex);
	  }
      }
    else
      {
	void* __v = ::operator new(__options._M_chunk_size);
	_Block_address* __address = static_cast<_Block_address*>(__v);
	__address->_M_initial = __v;
	__address->_M_next = __bin._M_address;
	__bin._M_address = __address;

	char* __c = static_cast<char*>(__v) + sizeof(_Block_address);
	__block_record = reinterpret_cast<_Block_record*>(__c);
 	__bin._M_first[0] = __block_record;
	while (--__block_count > 0)
	  {
	    __c += __bin_size;
	    __block_record->_M_next = reinterpret_cast<_Block_record*>(__c);
	    __block_record = __block_record->_M_next;
	  }
	__block_record->_M_next = NULL;
      }
      
    __block_record = __bin._M_first[__thread_id];
    __bin._M_first[__thread_id] = __block_record->_M_next;

    if (__gthread_active_p())
      {
	__block_record->_M_thread_id = __thread_id;
	--__bin._M_free[__thread_id];
	++__bin._M_used[__thread_id];
      }

    // NB: For alignment reasons, we can't use the first _M_align
    // bytes, even when sizeof(_Block_record) < _M_align.
    return reinterpret_cast<char*>(__block_record) + __options._M_align;
  }

  void
  __pool<true>::_M_initialize()
  {
    // _M_force_new must not change after the first allocate(),
    // which in turn calls this method, so if it's false, it's false
    // forever and we don't need to return here ever again.
    if (_M_options._M_force_new) 
      {
	_M_init = true;
	return;
      }

    // Create the bins.
    // Calculate the number of bins required based on _M_max_bytes.
    // _M_bin_size is statically-initialized to one.
    size_t __bin_size = _M_options._M_min_bin;
    while (_M_options._M_max_bytes > __bin_size)
      {
	__bin_size <<= 1;
	++_M_bin_size;
      }
      
    // Setup the bin map for quick lookup of the relevant bin.
    const size_t __j = (_M_options._M_max_bytes + 1) * sizeof(_Binmap_type);
    _M_binmap = static_cast<_Binmap_type*>(::operator new(__j));
    _Binmap_type* __bp = _M_binmap;
    _Binmap_type __bin_max = _M_options._M_min_bin;
    _Binmap_type __bint = 0;
    for (_Binmap_type __ct = 0; __ct <= _M_options._M_max_bytes; ++__ct)
      {
	if (__ct > __bin_max)
	  {
	    __bin_max <<= 1;
	    ++__bint;
	  }
	*__bp++ = __bint;
      }
      
    // Initialize _M_bin and its members.
    void* __v = ::operator new(sizeof(_Bin_record) * _M_bin_size);
    _M_bin = static_cast<_Bin_record*>(__v);
      
    // If __gthread_active_p() create and initialize the list of
    // free thread ids. Single threaded applications use thread id 0
    // directly and have no need for this.
    if (__gthread_active_p())
      {
	{
	  __gnu_cxx::__scoped_lock sentry(freelist_mutex);

	  if (!freelist._M_thread_freelist_array
	      || freelist._M_max_threads < _M_options._M_max_threads)
	    {
	      const size_t __k = sizeof(_Thread_record)
				 * _M_options._M_max_threads;
	      __v = ::operator new(__k);
	      _M_thread_freelist = static_cast<_Thread_record*>(__v);

	      // NOTE! The first assignable thread id is 1 since the
	      // global pool uses id 0
	      size_t __i;
	      for (__i = 1; __i < _M_options._M_max_threads; ++__i)
		{
		  _Thread_record& __tr = _M_thread_freelist[__i - 1];
		  __tr._M_next = &_M_thread_freelist[__i];
		  __tr._M_id = __i;
		}

	      // Set last record.
	      _M_thread_freelist[__i - 1]._M_next = NULL;
	      _M_thread_freelist[__i - 1]._M_id = __i;

	      if (!freelist._M_thread_freelist_array)
		{
		  // Initialize per thread key to hold pointer to
		  // _M_thread_freelist.
		  __gthread_key_create(&freelist._M_key,
				       ::_M_destroy_thread_key);
		  freelist._M_thread_freelist = _M_thread_freelist;
		}
	      else
		{
		  _Thread_record* _M_old_freelist
		    = freelist._M_thread_freelist;
		  _Thread_record* _M_old_array
		    = freelist._M_thread_freelist_array;
		  freelist._M_thread_freelist
		    = &_M_thread_freelist[_M_old_freelist - _M_old_array];
		  while (_M_old_freelist)
		    {
		      size_t next_id;
		      if (_M_old_freelist->_M_next)
			next_id = _M_old_freelist->_M_next - _M_old_array;
		      else
			next_id = freelist._M_max_threads;
		      _M_thread_freelist[_M_old_freelist->_M_id - 1]._M_next
			= &_M_thread_freelist[next_id];
		      _M_old_freelist = _M_old_freelist->_M_next;
		    }
		  ::operator delete(static_cast<void*>(_M_old_array));
		}
	      freelist._M_thread_freelist_array = _M_thread_freelist;
	      freelist._M_max_threads = _M_options._M_max_threads;
	    }
	}

	const size_t __max_threads = _M_options._M_max_threads + 1;
	for (size_t __n = 0; __n < _M_bin_size; ++__n)
	  {
	    _Bin_record& __bin = _M_bin[__n];
	    __v = ::operator new(sizeof(_Block_record*) * __max_threads);
	    std::memset(__v, 0, sizeof(_Block_record*) * __max_threads);    
	    __bin._M_first = static_cast<_Block_record**>(__v);

	    __bin._M_address = NULL;

	    __v = ::operator new(sizeof(size_t) * __max_threads);
	    std::memset(__v, 0, sizeof(size_t) * __max_threads);

	    __bin._M_free = static_cast<size_t*>(__v);

	    __v = ::operator new(sizeof(size_t) * __max_threads
				 + sizeof(_Atomic_word) * __max_threads);
	    std::memset(__v, 0, (sizeof(size_t) * __max_threads
				 + sizeof(_Atomic_word) * __max_threads));
	    __bin._M_used = static_cast<size_t*>(__v);
	      
	    __v = ::operator new(sizeof(__gthread_mutex_t));
	    __bin._M_mutex = static_cast<__gthread_mutex_t*>(__v);
	      
#ifdef __GTHREAD_MUTEX_INIT
	    {
	      // Do not copy a POSIX/gthr mutex once in use.
	      __gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT;
	      *__bin._M_mutex = __tmp;
	    }
#else
	    { __GTHREAD_MUTEX_INIT_FUNCTION(__bin._M_mutex); }
#endif
	  }
      }
    else
      {
	for (size_t __n = 0; __n < _M_bin_size; ++__n)
	  {
	    _Bin_record& __bin = _M_bin[__n];
	    __v = ::operator new(sizeof(_Block_record*));
	    __bin._M_first = static_cast<_Block_record**>(__v);
	    __bin._M_first[0] = NULL;
	    __bin._M_address = NULL;
	  }
      }
    _M_init = true;
  }

  size_t
  __pool<true>::_M_get_thread_id()
  {
    // If we have thread support and it's active we check the thread
    // key value and return its id or if it's not set we take the
    // first record from _M_thread_freelist and sets the key and
    // returns it's id.
    if (__gthread_active_p())
      {
	void* v = __gthread_getspecific(freelist._M_key);
	size_t _M_id = (size_t)v;
	if (_M_id == 0)
	  {
	    {
	      __gnu_cxx::__scoped_lock sentry(freelist_mutex);
	      if (freelist._M_thread_freelist)
		{
		  _M_id = freelist._M_thread_freelist->_M_id;
		  freelist._M_thread_freelist
		    = freelist._M_thread_freelist->_M_next;
		}
	    }

	    __gthread_setspecific(freelist._M_key, (void*)_M_id);
	  }
	return _M_id >= _M_options._M_max_threads ? 0 : _M_id;
      }

    // Otherwise (no thread support or inactive) all requests are
    // served from the global pool 0.
    return 0;
  }

  // XXX GLIBCXX_ABI Deprecated
  void 
  __pool<true>::_M_destroy_thread_key(void*) { }

  // XXX GLIBCXX_ABI Deprecated
  void
  __pool<true>::_M_initialize(__destroy_handler)
  {
    // _M_force_new must not change after the first allocate(),
    // which in turn calls this method, so if it's false, it's false
    // forever and we don't need to return here ever again.
    if (_M_options._M_force_new) 
      {
	_M_init = true;
	return;
      }

    // Create the bins.
    // Calculate the number of bins required based on _M_max_bytes.
    // _M_bin_size is statically-initialized to one.
    size_t __bin_size = _M_options._M_min_bin;
    while (_M_options._M_max_bytes > __bin_size)
      {
	__bin_size <<= 1;
	++_M_bin_size;
      }
      
    // Setup the bin map for quick lookup of the relevant bin.
    const size_t __j = (_M_options._M_max_bytes + 1) * sizeof(_Binmap_type);
    _M_binmap = static_cast<_Binmap_type*>(::operator new(__j));
    _Binmap_type* __bp = _M_binmap;
    _Binmap_type __bin_max = _M_options._M_min_bin;
    _Binmap_type __bint = 0;
    for (_Binmap_type __ct = 0; __ct <= _M_options._M_max_bytes; ++__ct)
      {
	if (__ct > __bin_max)
	  {
	    __bin_max <<= 1;
	    ++__bint;
	  }
	*__bp++ = __bint;
      }
      
    // Initialize _M_bin and its members.
    void* __v = ::operator new(sizeof(_Bin_record) * _M_bin_size);
    _M_bin = static_cast<_Bin_record*>(__v);
      
    // If __gthread_active_p() create and initialize the list of
    // free thread ids. Single threaded applications use thread id 0
    // directly and have no need for this.
    if (__gthread_active_p())
      {
	{
	  __gnu_cxx::__scoped_lock sentry(freelist_mutex);

	  if (!freelist._M_thread_freelist_array
	      || freelist._M_max_threads < _M_options._M_max_threads)
	    {
	      const size_t __k = sizeof(_Thread_record)
				 * _M_options._M_max_threads;
	      __v = ::operator new(__k);
	      _M_thread_freelist = static_cast<_Thread_record*>(__v);

	      // NOTE! The first assignable thread id is 1 since the
	      // global pool uses id 0
	      size_t __i;
	      for (__i = 1; __i < _M_options._M_max_threads; ++__i)
		{
		  _Thread_record& __tr = _M_thread_freelist[__i - 1];
		  __tr._M_next = &_M_thread_freelist[__i];
		  __tr._M_id = __i;
		}

	      // Set last record.
	      _M_thread_freelist[__i - 1]._M_next = NULL;
	      _M_thread_freelist[__i - 1]._M_id = __i;

	      if (!freelist._M_thread_freelist_array)
		{
		  // Initialize per thread key to hold pointer to
		  // _M_thread_freelist.
		  __gthread_key_create(&freelist._M_key, 
				       ::_M_destroy_thread_key);
		  freelist._M_thread_freelist = _M_thread_freelist;
		}
	      else
		{
		  _Thread_record* _M_old_freelist
		    = freelist._M_thread_freelist;
		  _Thread_record* _M_old_array
		    = freelist._M_thread_freelist_array;
		  freelist._M_thread_freelist
		    = &_M_thread_freelist[_M_old_freelist - _M_old_array];
		  while (_M_old_freelist)
		    {
		      size_t next_id;
		      if (_M_old_freelist->_M_next)
			next_id = _M_old_freelist->_M_next - _M_old_array;
		      else
			next_id = freelist._M_max_threads;
		      _M_thread_freelist[_M_old_freelist->_M_id - 1]._M_next
			= &_M_thread_freelist[next_id];
		      _M_old_freelist = _M_old_freelist->_M_next;
		    }
		  ::operator delete(static_cast<void*>(_M_old_array));
		}
	      freelist._M_thread_freelist_array = _M_thread_freelist;
	      freelist._M_max_threads = _M_options._M_max_threads;
	    }
	}

	const size_t __max_threads = _M_options._M_max_threads + 1;
	for (size_t __n = 0; __n < _M_bin_size; ++__n)
	  {
	    _Bin_record& __bin = _M_bin[__n];
	    __v = ::operator new(sizeof(_Block_record*) * __max_threads);
	    std::memset(__v, 0, sizeof(_Block_record*) * __max_threads);
	    __bin._M_first = static_cast<_Block_record**>(__v);

	    __bin._M_address = NULL;

	    __v = ::operator new(sizeof(size_t) * __max_threads);
	    std::memset(__v, 0, sizeof(size_t) * __max_threads);
	    __bin._M_free = static_cast<size_t*>(__v);
	      
	    __v = ::operator new(sizeof(size_t) * __max_threads + 
				 sizeof(_Atomic_word) * __max_threads);
	    std::memset(__v, 0, (sizeof(size_t) * __max_threads
				 + sizeof(_Atomic_word) * __max_threads));
	    __bin._M_used = static_cast<size_t*>(__v);

	    __v = ::operator new(sizeof(__gthread_mutex_t));
	    __bin._M_mutex = static_cast<__gthread_mutex_t*>(__v);
	      
#ifdef __GTHREAD_MUTEX_INIT
	    {
	      // Do not copy a POSIX/gthr mutex once in use.
	      __gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT;
	      *__bin._M_mutex = __tmp;
	    }
#else
	    { __GTHREAD_MUTEX_INIT_FUNCTION(__bin._M_mutex); }
#endif
	  }
      }
    else
      {
	for (size_t __n = 0; __n < _M_bin_size; ++__n)
	  {
	    _Bin_record& __bin = _M_bin[__n];
	    __v = ::operator new(sizeof(_Block_record*));
	    __bin._M_first = static_cast<_Block_record**>(__v);
	    __bin._M_first[0] = NULL;
	    __bin._M_address = NULL;
	  }
      }
    _M_init = true;
  }
#endif

  // Instantiations.
  template class __mt_alloc<char>;
  template class __mt_alloc<wchar_t>;

_GLIBCXX_END_NAMESPACE