Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
//===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveDebugVariables analysis.
//
// Remove all DBG_VALUE instructions referencing virtual registers and replace
// them with a data structure tracking where live user variables are kept - in a
// virtual register or in a stack slot.
//
// Allow the data structure to be updated during register allocation when values
// are moved between registers and stack slots. Finally emit new DBG_VALUE
// instructions after register allocation is complete.
//
//===----------------------------------------------------------------------===//

#include "LiveDebugVariables.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Metadata.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <memory>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "livedebugvars"

static cl::opt<bool>
EnableLDV("live-debug-variables", cl::init(true),
          cl::desc("Enable the live debug variables pass"), cl::Hidden);

STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");

char LiveDebugVariables::ID = 0;

INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
                "Debug Variable Analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
                "Debug Variable Analysis", false, false)

void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<MachineDominatorTree>();
  AU.addRequiredTransitive<LiveIntervals>();
  AU.setPreservesAll();
  MachineFunctionPass::getAnalysisUsage(AU);
}

LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
}

enum : unsigned { UndefLocNo = ~0U };

/// Describes a location by number along with some flags about the original
/// usage of the location.
class DbgValueLocation {
public:
  DbgValueLocation(unsigned LocNo, bool WasIndirect)
      : LocNo(LocNo), WasIndirect(WasIndirect) {
    static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing");
    assert(locNo() == LocNo && "location truncation");
  }

  DbgValueLocation() : LocNo(0), WasIndirect(0) {}

  unsigned locNo() const {
    // Fix up the undef location number, which gets truncated.
    return LocNo == INT_MAX ? UndefLocNo : LocNo;
  }
  bool wasIndirect() const { return WasIndirect; }
  bool isUndef() const { return locNo() == UndefLocNo; }

  DbgValueLocation changeLocNo(unsigned NewLocNo) const {
    return DbgValueLocation(NewLocNo, WasIndirect);
  }

  friend inline bool operator==(const DbgValueLocation &LHS,
                                const DbgValueLocation &RHS) {
    return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect;
  }

  friend inline bool operator!=(const DbgValueLocation &LHS,
                                const DbgValueLocation &RHS) {
    return !(LHS == RHS);
  }

private:
  unsigned LocNo : 31;
  unsigned WasIndirect : 1;
};

/// LocMap - Map of where a user value is live, and its location.
using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>;

namespace {

class LDVImpl;

/// UserValue - A user value is a part of a debug info user variable.
///
/// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
/// holds part of a user variable. The part is identified by a byte offset.
///
/// UserValues are grouped into equivalence classes for easier searching. Two
/// user values are related if they refer to the same variable, or if they are
/// held by the same virtual register. The equivalence class is the transitive
/// closure of that relation.
class UserValue {
  const DILocalVariable *Variable; ///< The debug info variable we are part of.
  const DIExpression *Expression; ///< Any complex address expression.
  DebugLoc dl;            ///< The debug location for the variable. This is
                          ///< used by dwarf writer to find lexical scope.
  UserValue *leader;      ///< Equivalence class leader.
  UserValue *next = nullptr; ///< Next value in equivalence class, or null.

  /// Numbered locations referenced by locmap.
  SmallVector<MachineOperand, 4> locations;

  /// Map of slot indices where this value is live.
  LocMap locInts;

  /// Set of interval start indexes that have been trimmed to the
  /// lexical scope.
  SmallSet<SlotIndex, 2> trimmedDefs;

  /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo.
  void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
                        SlotIndex StopIdx,
                        DbgValueLocation Loc, bool Spilled, LiveIntervals &LIS,
                        const TargetInstrInfo &TII,
                        const TargetRegisterInfo &TRI);

  /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs
  /// is live. Returns true if any changes were made.
  bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
                     LiveIntervals &LIS);

public:
  /// UserValue - Create a new UserValue.
  UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L,
            LocMap::Allocator &alloc)
      : Variable(var), Expression(expr), dl(std::move(L)), leader(this),
        locInts(alloc) {}

  /// getLeader - Get the leader of this value's equivalence class.
  UserValue *getLeader() {
    UserValue *l = leader;
    while (l != l->leader)
      l = l->leader;
    return leader = l;
  }

  /// getNext - Return the next UserValue in the equivalence class.
  UserValue *getNext() const { return next; }

  /// match - Does this UserValue match the parameters?
  bool match(const DILocalVariable *Var, const DIExpression *Expr,
             const DILocation *IA) const {
    // FIXME: The fragment should be part of the equivalence class, but not
    // other things in the expression like stack values.
    return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA;
  }

  /// merge - Merge equivalence classes.
  static UserValue *merge(UserValue *L1, UserValue *L2) {
    L2 = L2->getLeader();
    if (!L1)
      return L2;
    L1 = L1->getLeader();
    if (L1 == L2)
      return L1;
    // Splice L2 before L1's members.
    UserValue *End = L2;
    while (End->next) {
      End->leader = L1;
      End = End->next;
    }
    End->leader = L1;
    End->next = L1->next;
    L1->next = L2;
    return L1;
  }

  /// getLocationNo - Return the location number that matches Loc.
  unsigned getLocationNo(const MachineOperand &LocMO) {
    if (LocMO.isReg()) {
      if (LocMO.getReg() == 0)
        return UndefLocNo;
      // For register locations we dont care about use/def and other flags.
      for (unsigned i = 0, e = locations.size(); i != e; ++i)
        if (locations[i].isReg() &&
            locations[i].getReg() == LocMO.getReg() &&
            locations[i].getSubReg() == LocMO.getSubReg())
          return i;
    } else
      for (unsigned i = 0, e = locations.size(); i != e; ++i)
        if (LocMO.isIdenticalTo(locations[i]))
          return i;
    locations.push_back(LocMO);
    // We are storing a MachineOperand outside a MachineInstr.
    locations.back().clearParent();
    // Don't store def operands.
    if (locations.back().isReg()) {
      if (locations.back().isDef())
        locations.back().setIsDead(false);
      locations.back().setIsUse();
    }
    return locations.size() - 1;
  }

  /// mapVirtRegs - Ensure that all virtual register locations are mapped.
  void mapVirtRegs(LDVImpl *LDV);

  /// addDef - Add a definition point to this value.
  void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) {
    DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect);
    // Add a singular (Idx,Idx) -> Loc mapping.
    LocMap::iterator I = locInts.find(Idx);
    if (!I.valid() || I.start() != Idx)
      I.insert(Idx, Idx.getNextSlot(), Loc);
    else
      // A later DBG_VALUE at the same SlotIndex overrides the old location.
      I.setValue(Loc);
  }

  /// extendDef - Extend the current definition as far as possible down.
  /// Stop when meeting an existing def or when leaving the live
  /// range of VNI.
  /// End points where VNI is no longer live are added to Kills.
  /// @param Idx   Starting point for the definition.
  /// @param Loc   Location number to propagate.
  /// @param LR    Restrict liveness to where LR has the value VNI. May be null.
  /// @param VNI   When LR is not null, this is the value to restrict to.
  /// @param Kills Append end points of VNI's live range to Kills.
  /// @param LIS   Live intervals analysis.
  void extendDef(SlotIndex Idx, DbgValueLocation Loc,
                 LiveRange *LR, const VNInfo *VNI,
                 SmallVectorImpl<SlotIndex> *Kills,
                 LiveIntervals &LIS);

  /// addDefsFromCopies - The value in LI/LocNo may be copies to other
  /// registers. Determine if any of the copies are available at the kill
  /// points, and add defs if possible.
  /// @param LI      Scan for copies of the value in LI->reg.
  /// @param LocNo   Location number of LI->reg.
  /// @param WasIndirect Indicates if the original use of LI->reg was indirect
  /// @param Kills   Points where the range of LocNo could be extended.
  /// @param NewDefs Append (Idx, LocNo) of inserted defs here.
  void addDefsFromCopies(
      LiveInterval *LI, unsigned LocNo, bool WasIndirect,
      const SmallVectorImpl<SlotIndex> &Kills,
      SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
      MachineRegisterInfo &MRI, LiveIntervals &LIS);

  /// computeIntervals - Compute the live intervals of all locations after
  /// collecting all their def points.
  void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
                        LiveIntervals &LIS, LexicalScopes &LS);

  /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is
  /// live. Returns true if any changes were made.
  bool splitRegister(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
                     LiveIntervals &LIS);

  /// rewriteLocations - Rewrite virtual register locations according to the
  /// provided virtual register map. Record which locations were spilled.
  void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI,
                        BitVector &SpilledLocations);

  /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
  void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
                       const TargetInstrInfo &TII,
                       const TargetRegisterInfo &TRI,
                       const BitVector &SpilledLocations);

  /// getDebugLoc - Return DebugLoc of this UserValue.
  DebugLoc getDebugLoc() { return dl;}

  void print(raw_ostream &, const TargetRegisterInfo *);
};

/// LDVImpl - Implementation of the LiveDebugVariables pass.
class LDVImpl {
  LiveDebugVariables &pass;
  LocMap::Allocator allocator;
  MachineFunction *MF = nullptr;
  LiveIntervals *LIS;
  const TargetRegisterInfo *TRI;

  /// Whether emitDebugValues is called.
  bool EmitDone = false;

  /// Whether the machine function is modified during the pass.
  bool ModifiedMF = false;

  /// userValues - All allocated UserValue instances.
  SmallVector<std::unique_ptr<UserValue>, 8> userValues;

  /// Map virtual register to eq class leader.
  using VRMap = DenseMap<unsigned, UserValue *>;
  VRMap virtRegToEqClass;

  /// Map user variable to eq class leader.
  using UVMap = DenseMap<const DILocalVariable *, UserValue *>;
  UVMap userVarMap;

  /// getUserValue - Find or create a UserValue.
  UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr,
                          const DebugLoc &DL);

  /// lookupVirtReg - Find the EC leader for VirtReg or null.
  UserValue *lookupVirtReg(unsigned VirtReg);

  /// handleDebugValue - Add DBG_VALUE instruction to our maps.
  /// @param MI  DBG_VALUE instruction
  /// @param Idx Last valid SLotIndex before instruction.
  /// @return    True if the DBG_VALUE instruction should be deleted.
  bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);

  /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding
  /// a UserValue def for each instruction.
  /// @param mf MachineFunction to be scanned.
  /// @return True if any debug values were found.
  bool collectDebugValues(MachineFunction &mf);

  /// computeIntervals - Compute the live intervals of all user values after
  /// collecting all their def points.
  void computeIntervals();

public:
  LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}

  bool runOnMachineFunction(MachineFunction &mf);

  /// clear - Release all memory.
  void clear() {
    MF = nullptr;
    userValues.clear();
    virtRegToEqClass.clear();
    userVarMap.clear();
    // Make sure we call emitDebugValues if the machine function was modified.
    assert((!ModifiedMF || EmitDone) &&
           "Dbg values are not emitted in LDV");
    EmitDone = false;
    ModifiedMF = false;
  }

  /// mapVirtReg - Map virtual register to an equivalence class.
  void mapVirtReg(unsigned VirtReg, UserValue *EC);

  /// splitRegister -  Replace all references to OldReg with NewRegs.
  void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs);

  /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
  void emitDebugValues(VirtRegMap *VRM);

  void print(raw_ostream&);
};

} // end anonymous namespace

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
                          const LLVMContext &Ctx) {
  if (!DL)
    return;

  auto *Scope = cast<DIScope>(DL.getScope());
  // Omit the directory, because it's likely to be long and uninteresting.
  CommentOS << Scope->getFilename();
  CommentOS << ':' << DL.getLine();
  if (DL.getCol() != 0)
    CommentOS << ':' << DL.getCol();

  DebugLoc InlinedAtDL = DL.getInlinedAt();
  if (!InlinedAtDL)
    return;

  CommentOS << " @[ ";
  printDebugLoc(InlinedAtDL, CommentOS, Ctx);
  CommentOS << " ]";
}

static void printExtendedName(raw_ostream &OS, const DILocalVariable *V,
                              const DILocation *DL) {
  const LLVMContext &Ctx = V->getContext();
  StringRef Res = V->getName();
  if (!Res.empty())
    OS << Res << "," << V->getLine();
  if (auto *InlinedAt = DL->getInlinedAt()) {
    if (DebugLoc InlinedAtDL = InlinedAt) {
      OS << " @[";
      printDebugLoc(InlinedAtDL, OS, Ctx);
      OS << "]";
    }
  }
}

void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
  auto *DV = cast<DILocalVariable>(Variable);
  OS << "!\"";
  printExtendedName(OS, DV, dl);

  OS << "\"\t";
  for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
    OS << " [" << I.start() << ';' << I.stop() << "):";
    if (I.value().isUndef())
      OS << "undef";
    else {
      OS << I.value().locNo();
      if (I.value().wasIndirect())
        OS << " ind";
    }
  }
  for (unsigned i = 0, e = locations.size(); i != e; ++i) {
    OS << " Loc" << i << '=';
    locations[i].print(OS, TRI);
  }
  OS << '\n';
}

void LDVImpl::print(raw_ostream &OS) {
  OS << "********** DEBUG VARIABLES **********\n";
  for (unsigned i = 0, e = userValues.size(); i != e; ++i)
    userValues[i]->print(OS, TRI);
}
#endif

void UserValue::mapVirtRegs(LDVImpl *LDV) {
  for (unsigned i = 0, e = locations.size(); i != e; ++i)
    if (locations[i].isReg() &&
        TargetRegisterInfo::isVirtualRegister(locations[i].getReg()))
      LDV->mapVirtReg(locations[i].getReg(), this);
}

UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
                                 const DIExpression *Expr, const DebugLoc &DL) {
  UserValue *&Leader = userVarMap[Var];
  if (Leader) {
    UserValue *UV = Leader->getLeader();
    Leader = UV;
    for (; UV; UV = UV->getNext())
      if (UV->match(Var, Expr, DL->getInlinedAt()))
        return UV;
  }

  userValues.push_back(
      llvm::make_unique<UserValue>(Var, Expr, DL, allocator));
  UserValue *UV = userValues.back().get();
  Leader = UserValue::merge(Leader, UV);
  return UV;
}

void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) {
  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs");
  UserValue *&Leader = virtRegToEqClass[VirtReg];
  Leader = UserValue::merge(Leader, EC);
}

UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) {
  if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
    return UV->getLeader();
  return nullptr;
}

bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
  // DBG_VALUE loc, offset, variable
  if (MI.getNumOperands() != 4 ||
      !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) ||
      !MI.getOperand(2).isMetadata()) {
    DEBUG(dbgs() << "Can't handle " << MI);
    return false;
  }

  // Get or create the UserValue for (variable,offset) here.
  bool IsIndirect = MI.getOperand(1).isImm();
  if (IsIndirect)
    assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
  const DILocalVariable *Var = MI.getDebugVariable();
  const DIExpression *Expr = MI.getDebugExpression();
  UserValue *UV =
      getUserValue(Var, Expr, MI.getDebugLoc());
  UV->addDef(Idx, MI.getOperand(0), IsIndirect);
  return true;
}

bool LDVImpl::collectDebugValues(MachineFunction &mf) {
  bool Changed = false;
  for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
       ++MFI) {
    MachineBasicBlock *MBB = &*MFI;
    for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
         MBBI != MBBE;) {
      if (!MBBI->isDebugValue()) {
        ++MBBI;
        continue;
      }
      // DBG_VALUE has no slot index, use the previous instruction instead.
      SlotIndex Idx =
          MBBI == MBB->begin()
              ? LIS->getMBBStartIdx(MBB)
              : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
      // Handle consecutive DBG_VALUE instructions with the same slot index.
      do {
        if (handleDebugValue(*MBBI, Idx)) {
          MBBI = MBB->erase(MBBI);
          Changed = true;
        } else
          ++MBBI;
      } while (MBBI != MBBE && MBBI->isDebugValue());
    }
  }
  return Changed;
}

/// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
/// data-flow analysis to propagate them beyond basic block boundaries.
void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR,
                          const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
                          LiveIntervals &LIS) {
  SlotIndex Start = Idx;
  MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
  SlotIndex Stop = LIS.getMBBEndIdx(MBB);
  LocMap::iterator I = locInts.find(Start);

  // Limit to VNI's live range.
  bool ToEnd = true;
  if (LR && VNI) {
    LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
    if (!Segment || Segment->valno != VNI) {
      if (Kills)
        Kills->push_back(Start);
      return;
    }
    if (Segment->end < Stop) {
      Stop = Segment->end;
      ToEnd = false;
    }
  }

  // There could already be a short def at Start.
  if (I.valid() && I.start() <= Start) {
    // Stop when meeting a different location or an already extended interval.
    Start = Start.getNextSlot();
    if (I.value() != Loc || I.stop() != Start)
      return;
    // This is a one-slot placeholder. Just skip it.
    ++I;
  }

  // Limited by the next def.
  if (I.valid() && I.start() < Stop) {
    Stop = I.start();
    ToEnd = false;
  }
  // Limited by VNI's live range.
  else if (!ToEnd && Kills)
    Kills->push_back(Stop);

  if (Start < Stop)
    I.insert(Start, Stop, Loc);
}

void UserValue::addDefsFromCopies(
    LiveInterval *LI, unsigned LocNo, bool WasIndirect,
    const SmallVectorImpl<SlotIndex> &Kills,
    SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
    MachineRegisterInfo &MRI, LiveIntervals &LIS) {
  if (Kills.empty())
    return;
  // Don't track copies from physregs, there are too many uses.
  if (!TargetRegisterInfo::isVirtualRegister(LI->reg))
    return;

  // Collect all the (vreg, valno) pairs that are copies of LI.
  SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues;
  for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) {
    MachineInstr *MI = MO.getParent();
    // Copies of the full value.
    if (MO.getSubReg() || !MI->isCopy())
      continue;
    unsigned DstReg = MI->getOperand(0).getReg();

    // Don't follow copies to physregs. These are usually setting up call
    // arguments, and the argument registers are always call clobbered. We are
    // better off in the source register which could be a callee-saved register,
    // or it could be spilled.
    if (!TargetRegisterInfo::isVirtualRegister(DstReg))
      continue;

    // Is LocNo extended to reach this copy? If not, another def may be blocking
    // it, or we are looking at a wrong value of LI.
    SlotIndex Idx = LIS.getInstructionIndex(*MI);
    LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
    if (!I.valid() || I.value().locNo() != LocNo)
      continue;

    if (!LIS.hasInterval(DstReg))
      continue;
    LiveInterval *DstLI = &LIS.getInterval(DstReg);
    const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
    assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
    CopyValues.push_back(std::make_pair(DstLI, DstVNI));
  }

  if (CopyValues.empty())
    return;

  DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI << '\n');

  // Try to add defs of the copied values for each kill point.
  for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
    SlotIndex Idx = Kills[i];
    for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) {
      LiveInterval *DstLI = CopyValues[j].first;
      const VNInfo *DstVNI = CopyValues[j].second;
      if (DstLI->getVNInfoAt(Idx) != DstVNI)
        continue;
      // Check that there isn't already a def at Idx
      LocMap::iterator I = locInts.find(Idx);
      if (I.valid() && I.start() <= Idx)
        continue;
      DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #"
                   << DstVNI->id << " in " << *DstLI << '\n');
      MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
      assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
      unsigned LocNo = getLocationNo(CopyMI->getOperand(0));
      DbgValueLocation NewLoc(LocNo, WasIndirect);
      I.insert(Idx, Idx.getNextSlot(), NewLoc);
      NewDefs.push_back(std::make_pair(Idx, NewLoc));
      break;
    }
  }
}

void UserValue::computeIntervals(MachineRegisterInfo &MRI,
                                 const TargetRegisterInfo &TRI,
                                 LiveIntervals &LIS, LexicalScopes &LS) {
  SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs;

  // Collect all defs to be extended (Skipping undefs).
  for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
    if (!I.value().isUndef())
      Defs.push_back(std::make_pair(I.start(), I.value()));

  // Extend all defs, and possibly add new ones along the way.
  for (unsigned i = 0; i != Defs.size(); ++i) {
    SlotIndex Idx = Defs[i].first;
    DbgValueLocation Loc = Defs[i].second;
    const MachineOperand &LocMO = locations[Loc.locNo()];

    if (!LocMO.isReg()) {
      extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS);
      continue;
    }

    // Register locations are constrained to where the register value is live.
    if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) {
      LiveInterval *LI = nullptr;
      const VNInfo *VNI = nullptr;
      if (LIS.hasInterval(LocMO.getReg())) {
        LI = &LIS.getInterval(LocMO.getReg());
        VNI = LI->getVNInfoAt(Idx);
      }
      SmallVector<SlotIndex, 16> Kills;
      extendDef(Idx, Loc, LI, VNI, &Kills, LIS);
      if (LI)
        addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI,
                          LIS);
      continue;
    }

    // For physregs, we only mark the start slot idx. DwarfDebug will see it
    // as if the DBG_VALUE is valid up until the end of the basic block, or
    // the next def of the physical register. So we do not need to extend the
    // range. It might actually happen that the DBG_VALUE is the last use of
    // the physical register (e.g. if this is an unused input argument to a
    // function).
  }

  // Erase all the undefs.
  for (LocMap::iterator I = locInts.begin(); I.valid();)
    if (I.value().isUndef())
      I.erase();
    else
      ++I;

  // The computed intervals may extend beyond the range of the debug
  // location's lexical scope. In this case, splitting of an interval
  // can result in an interval outside of the scope being created,
  // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
  // this, trim the intervals to the lexical scope.

  LexicalScope *Scope = LS.findLexicalScope(dl);
  if (!Scope)
    return;

  SlotIndex PrevEnd;
  LocMap::iterator I = locInts.begin();

  // Iterate over the lexical scope ranges. Each time round the loop
  // we check the intervals for overlap with the end of the previous
  // range and the start of the next. The first range is handled as
  // a special case where there is no PrevEnd.
  for (const InsnRange &Range : Scope->getRanges()) {
    SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
    SlotIndex REnd = LIS.getInstructionIndex(*Range.second);

    // At the start of each iteration I has been advanced so that
    // I.stop() >= PrevEnd. Check for overlap.
    if (PrevEnd && I.start() < PrevEnd) {
      SlotIndex IStop = I.stop();
      DbgValueLocation Loc = I.value();

      // Stop overlaps previous end - trim the end of the interval to
      // the scope range.
      I.setStopUnchecked(PrevEnd);
      ++I;

      // If the interval also overlaps the start of the "next" (i.e.
      // current) range create a new interval for the remainder (which
      // may be further trimmed).
      if (RStart < IStop)
        I.insert(RStart, IStop, Loc);
    }

    // Advance I so that I.stop() >= RStart, and check for overlap.
    I.advanceTo(RStart);
    if (!I.valid())
      return;

    if (I.start() < RStart) {
      // Interval start overlaps range - trim to the scope range.
      I.setStartUnchecked(RStart);
      // Remember that this interval was trimmed.
      trimmedDefs.insert(RStart);
    }

    // The end of a lexical scope range is the last instruction in the
    // range. To convert to an interval we need the index of the
    // instruction after it.
    REnd = REnd.getNextIndex();

    // Advance I to first interval outside current range.
    I.advanceTo(REnd);
    if (!I.valid())
      return;

    PrevEnd = REnd;
  }

  // Check for overlap with end of final range.
  if (PrevEnd && I.start() < PrevEnd)
    I.setStopUnchecked(PrevEnd);
}

void LDVImpl::computeIntervals() {
  LexicalScopes LS;
  LS.initialize(*MF);

  for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
    userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
    userValues[i]->mapVirtRegs(this);
  }
}

bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
  clear();
  MF = &mf;
  LIS = &pass.getAnalysis<LiveIntervals>();
  TRI = mf.getSubtarget().getRegisterInfo();
  DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
               << mf.getName() << " **********\n");

  bool Changed = collectDebugValues(mf);
  computeIntervals();
  DEBUG(print(dbgs()));
  ModifiedMF = Changed;
  return Changed;
}

static void removeDebugValues(MachineFunction &mf) {
  for (MachineBasicBlock &MBB : mf) {
    for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
      if (!MBBI->isDebugValue()) {
        ++MBBI;
        continue;
      }
      MBBI = MBB.erase(MBBI);
    }
  }
}

bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
  if (!EnableLDV)
    return false;
  if (!mf.getFunction().getSubprogram()) {
    removeDebugValues(mf);
    return false;
  }
  if (!pImpl)
    pImpl = new LDVImpl(this);
  return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
}

void LiveDebugVariables::releaseMemory() {
  if (pImpl)
    static_cast<LDVImpl*>(pImpl)->clear();
}

LiveDebugVariables::~LiveDebugVariables() {
  if (pImpl)
    delete static_cast<LDVImpl*>(pImpl);
}

//===----------------------------------------------------------------------===//
//                           Live Range Splitting
//===----------------------------------------------------------------------===//

bool
UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
                         LiveIntervals& LIS) {
  DEBUG({
    dbgs() << "Splitting Loc" << OldLocNo << '\t';
    print(dbgs(), nullptr);
  });
  bool DidChange = false;
  LocMap::iterator LocMapI;
  LocMapI.setMap(locInts);
  for (unsigned i = 0; i != NewRegs.size(); ++i) {
    LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
    if (LI->empty())
      continue;

    // Don't allocate the new LocNo until it is needed.
    unsigned NewLocNo = UndefLocNo;

    // Iterate over the overlaps between locInts and LI.
    LocMapI.find(LI->beginIndex());
    if (!LocMapI.valid())
      continue;
    LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
    LiveInterval::iterator LIE = LI->end();
    while (LocMapI.valid() && LII != LIE) {
      // At this point, we know that LocMapI.stop() > LII->start.
      LII = LI->advanceTo(LII, LocMapI.start());
      if (LII == LIE)
        break;

      // Now LII->end > LocMapI.start(). Do we have an overlap?
      if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) {
        // Overlapping correct location. Allocate NewLocNo now.
        if (NewLocNo == UndefLocNo) {
          MachineOperand MO = MachineOperand::CreateReg(LI->reg, false);
          MO.setSubReg(locations[OldLocNo].getSubReg());
          NewLocNo = getLocationNo(MO);
          DidChange = true;
        }

        SlotIndex LStart = LocMapI.start();
        SlotIndex LStop  = LocMapI.stop();
        DbgValueLocation OldLoc = LocMapI.value();

        // Trim LocMapI down to the LII overlap.
        if (LStart < LII->start)
          LocMapI.setStartUnchecked(LII->start);
        if (LStop > LII->end)
          LocMapI.setStopUnchecked(LII->end);

        // Change the value in the overlap. This may trigger coalescing.
        LocMapI.setValue(OldLoc.changeLocNo(NewLocNo));

        // Re-insert any removed OldLocNo ranges.
        if (LStart < LocMapI.start()) {
          LocMapI.insert(LStart, LocMapI.start(), OldLoc);
          ++LocMapI;
          assert(LocMapI.valid() && "Unexpected coalescing");
        }
        if (LStop > LocMapI.stop()) {
          ++LocMapI;
          LocMapI.insert(LII->end, LStop, OldLoc);
          --LocMapI;
        }
      }

      // Advance to the next overlap.
      if (LII->end < LocMapI.stop()) {
        if (++LII == LIE)
          break;
        LocMapI.advanceTo(LII->start);
      } else {
        ++LocMapI;
        if (!LocMapI.valid())
          break;
        LII = LI->advanceTo(LII, LocMapI.start());
      }
    }
  }

  // Finally, remove any remaining OldLocNo intervals and OldLocNo itself.
  locations.erase(locations.begin() + OldLocNo);
  LocMapI.goToBegin();
  while (LocMapI.valid()) {
    DbgValueLocation v = LocMapI.value();
    if (v.locNo() == OldLocNo) {
      DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';'
                   << LocMapI.stop() << ")\n");
      LocMapI.erase();
    } else {
      if (v.locNo() > OldLocNo)
        LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1));
      ++LocMapI;
    }
  }

  DEBUG({dbgs() << "Split result: \t"; print(dbgs(), nullptr);});
  return DidChange;
}

bool
UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
                         LiveIntervals &LIS) {
  bool DidChange = false;
  // Split locations referring to OldReg. Iterate backwards so splitLocation can
  // safely erase unused locations.
  for (unsigned i = locations.size(); i ; --i) {
    unsigned LocNo = i-1;
    const MachineOperand *Loc = &locations[LocNo];
    if (!Loc->isReg() || Loc->getReg() != OldReg)
      continue;
    DidChange |= splitLocation(LocNo, NewRegs, LIS);
  }
  return DidChange;
}

void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) {
  bool DidChange = false;
  for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
    DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);

  if (!DidChange)
    return;

  // Map all of the new virtual registers.
  UserValue *UV = lookupVirtReg(OldReg);
  for (unsigned i = 0; i != NewRegs.size(); ++i)
    mapVirtReg(NewRegs[i], UV);
}

void LiveDebugVariables::
splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) {
  if (pImpl)
    static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
}

void UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI,
                                 BitVector &SpilledLocations) {
  // Build a set of new locations with new numbers so we can coalesce our
  // IntervalMap if two vreg intervals collapse to the same physical location.
  // Use MapVector instead of SetVector because MapVector::insert returns the
  // position of the previously or newly inserted element. The boolean value
  // tracks if the location was produced by a spill.
  // FIXME: This will be problematic if we ever support direct and indirect
  // frame index locations, i.e. expressing both variables in memory and
  // 'int x, *px = &x'. The "spilled" bit must become part of the location.
  MapVector<MachineOperand, bool> NewLocations;
  SmallVector<unsigned, 4> LocNoMap(locations.size());
  for (unsigned I = 0, E = locations.size(); I != E; ++I) {
    bool Spilled = false;
    MachineOperand Loc = locations[I];
    // Only virtual registers are rewritten.
    if (Loc.isReg() && Loc.getReg() &&
        TargetRegisterInfo::isVirtualRegister(Loc.getReg())) {
      unsigned VirtReg = Loc.getReg();
      if (VRM.isAssignedReg(VirtReg) &&
          TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) {
        // This can create a %noreg operand in rare cases when the sub-register
        // index is no longer available. That means the user value is in a
        // non-existent sub-register, and %noreg is exactly what we want.
        Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
      } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
        // FIXME: Translate SubIdx to a stackslot offset.
        Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
        Spilled = true;
      } else {
        Loc.setReg(0);
        Loc.setSubReg(0);
      }
    }

    // Insert this location if it doesn't already exist and record a mapping
    // from the old number to the new number.
    auto InsertResult = NewLocations.insert({Loc, Spilled});
    unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
    LocNoMap[I] = NewLocNo;
  }

  // Rewrite the locations and record which ones were spill slots.
  locations.clear();
  SpilledLocations.clear();
  SpilledLocations.resize(NewLocations.size());
  for (auto &Pair : NewLocations) {
    locations.push_back(Pair.first);
    if (Pair.second) {
      unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
      SpilledLocations.set(NewLocNo);
    }
  }

  // Update the interval map, but only coalesce left, since intervals to the
  // right use the old location numbers. This should merge two contiguous
  // DBG_VALUE intervals with different vregs that were allocated to the same
  // physical register.
  for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
    DbgValueLocation Loc = I.value();
    unsigned NewLocNo = LocNoMap[Loc.locNo()];
    I.setValueUnchecked(Loc.changeLocNo(NewLocNo));
    I.setStart(I.start());
  }
}

/// Find an iterator for inserting a DBG_VALUE instruction.
static MachineBasicBlock::iterator
findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx,
                   LiveIntervals &LIS) {
  SlotIndex Start = LIS.getMBBStartIdx(MBB);
  Idx = Idx.getBaseIndex();

  // Try to find an insert location by going backwards from Idx.
  MachineInstr *MI;
  while (!(MI = LIS.getInstructionFromIndex(Idx))) {
    // We've reached the beginning of MBB.
    if (Idx == Start) {
      MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
      return I;
    }
    Idx = Idx.getPrevIndex();
  }

  // Don't insert anything after the first terminator, though.
  return MI->isTerminator() ? MBB->getFirstTerminator() :
                              std::next(MachineBasicBlock::iterator(MI));
}

/// Find an iterator for inserting the next DBG_VALUE instruction
/// (or end if no more insert locations found).
static MachineBasicBlock::iterator
findNextInsertLocation(MachineBasicBlock *MBB,
                       MachineBasicBlock::iterator I,
                       SlotIndex StopIdx, MachineOperand &LocMO,
                       LiveIntervals &LIS,
                       const TargetRegisterInfo &TRI) {
  if (!LocMO.isReg())
    return MBB->instr_end();
  unsigned Reg = LocMO.getReg();

  // Find the next instruction in the MBB that define the register Reg.
  while (I != MBB->end()) {
    if (!LIS.isNotInMIMap(*I) &&
        SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I)))
      break;
    if (I->definesRegister(Reg, &TRI))
      // The insert location is directly after the instruction/bundle.
      return std::next(I);
    ++I;
  }
  return MBB->end();
}

void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
                                 SlotIndex StopIdx,
                                 DbgValueLocation Loc, bool Spilled,
                                 LiveIntervals &LIS,
                                 const TargetInstrInfo &TII,
                                 const TargetRegisterInfo &TRI) {
  SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB);
  // Only search within the current MBB.
  StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx;
  MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS);
  MachineOperand &MO = locations[Loc.locNo()];
  ++NumInsertedDebugValues;

  assert(cast<DILocalVariable>(Variable)
             ->isValidLocationForIntrinsic(getDebugLoc()) &&
         "Expected inlined-at fields to agree");

  // If the location was spilled, the new DBG_VALUE will be indirect. If the
  // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
  // that the original virtual register was a pointer.
  const DIExpression *Expr = Expression;
  bool IsIndirect = Loc.wasIndirect();
  if (Spilled) {
    if (IsIndirect)
      Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
    IsIndirect = true;
  }

  assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index");

  do {
    MachineInstrBuilder MIB =
      BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE))
          .add(MO);
    if (IsIndirect)
      MIB.addImm(0U);
    else
      MIB.addReg(0U, RegState::Debug);
    MIB.addMetadata(Variable).addMetadata(Expr);

    // Continue and insert DBG_VALUES after every redefinition of register
    // associated with the debug value within the range
    I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI);
  } while (I != MBB->end());
}

void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
                                const TargetInstrInfo &TII,
                                const TargetRegisterInfo &TRI,
                                const BitVector &SpilledLocations) {
  MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();

  for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
    SlotIndex Start = I.start();
    SlotIndex Stop = I.stop();
    DbgValueLocation Loc = I.value();
    bool Spilled = !Loc.isUndef() ? SpilledLocations.test(Loc.locNo()) : false;

    // If the interval start was trimmed to the lexical scope insert the
    // DBG_VALUE at the previous index (otherwise it appears after the
    // first instruction in the range).
    if (trimmedDefs.count(Start))
      Start = Start.getPrevIndex();

    DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo());
    MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
    SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);

    DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
    insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, LIS, TII, TRI);
    // This interval may span multiple basic blocks.
    // Insert a DBG_VALUE into each one.
    while (Stop > MBBEnd) {
      // Move to the next block.
      Start = MBBEnd;
      if (++MBB == MFEnd)
        break;
      MBBEnd = LIS.getMBBEndIdx(&*MBB);
      DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
      insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, LIS, TII, TRI);
    }
    DEBUG(dbgs() << '\n');
    if (MBB == MFEnd)
      break;

    ++I;
  }
}

void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
  DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
  if (!MF)
    return;
  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
  BitVector SpilledLocations;
  for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
    DEBUG(userValues[i]->print(dbgs(), TRI));
    userValues[i]->rewriteLocations(*VRM, *TRI, SpilledLocations);
    userValues[i]->emitDebugValues(VRM, *LIS, *TII, *TRI, SpilledLocations);
  }
  EmitDone = true;
}

void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
  if (pImpl)
    static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
}

bool LiveDebugVariables::doInitialization(Module &M) {
  return Pass::doInitialization(M);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
  if (pImpl)
    static_cast<LDVImpl*>(pImpl)->print(dbgs());
}
#endif