Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
//===-- WinEHPrepare - Prepare exception handling for code generation ---===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass lowers LLVM IR exception handling into something closer to what the
// backend wants for functions using a personality function from a runtime
// provided by MSVC. Functions with other personality functions are left alone
// and may be prepared by other passes. In particular, all supported MSVC
// personality functions require cleanup code to be outlined, and the C++
// personality requires catch handler code to be outlined.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/Verifier.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"

using namespace llvm;

#define DEBUG_TYPE "winehprepare"

static cl::opt<bool> DisableDemotion(
    "disable-demotion", cl::Hidden,
    cl::desc(
        "Clone multicolor basic blocks but do not demote cross funclet values"),
    cl::init(false));

static cl::opt<bool> DisableCleanups(
    "disable-cleanups", cl::Hidden,
    cl::desc("Do not remove implausible terminators or other similar cleanups"),
    cl::init(false));

namespace {
  
class WinEHPrepare : public FunctionPass {
public:
  static char ID; // Pass identification, replacement for typeid.
  WinEHPrepare() : FunctionPass(ID) {}

  bool runOnFunction(Function &Fn) override;

  bool doFinalization(Module &M) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override;

  StringRef getPassName() const override {
    return "Windows exception handling preparation";
  }

private:
  void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
  void
  insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
                 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
  AllocaInst *insertPHILoads(PHINode *PN, Function &F);
  void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
                          DenseMap<BasicBlock *, Value *> &Loads, Function &F);
  bool prepareExplicitEH(Function &F);
  void colorFunclets(Function &F);

  void demotePHIsOnFunclets(Function &F);
  void cloneCommonBlocks(Function &F);
  void removeImplausibleInstructions(Function &F);
  void cleanupPreparedFunclets(Function &F);
  void verifyPreparedFunclets(Function &F);

  // All fields are reset by runOnFunction.
  EHPersonality Personality = EHPersonality::Unknown;

  const DataLayout *DL = nullptr;
  DenseMap<BasicBlock *, ColorVector> BlockColors;
  MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks;
};

} // end anonymous namespace

char WinEHPrepare::ID = 0;
INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions",
                false, false)

FunctionPass *llvm::createWinEHPass() { return new WinEHPrepare(); }

bool WinEHPrepare::runOnFunction(Function &Fn) {
  if (!Fn.hasPersonalityFn())
    return false;

  // Classify the personality to see what kind of preparation we need.
  Personality = classifyEHPersonality(Fn.getPersonalityFn());

  // Do nothing if this is not a funclet-based personality.
  if (!isFuncletEHPersonality(Personality))
    return false;

  DL = &Fn.getParent()->getDataLayout();
  return prepareExplicitEH(Fn);
}

bool WinEHPrepare::doFinalization(Module &M) { return false; }

void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {}

static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
                             const BasicBlock *BB) {
  CxxUnwindMapEntry UME;
  UME.ToState = ToState;
  UME.Cleanup = BB;
  FuncInfo.CxxUnwindMap.push_back(UME);
  return FuncInfo.getLastStateNumber();
}

static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
                                int TryHigh, int CatchHigh,
                                ArrayRef<const CatchPadInst *> Handlers) {
  WinEHTryBlockMapEntry TBME;
  TBME.TryLow = TryLow;
  TBME.TryHigh = TryHigh;
  TBME.CatchHigh = CatchHigh;
  assert(TBME.TryLow <= TBME.TryHigh);
  for (const CatchPadInst *CPI : Handlers) {
    WinEHHandlerType HT;
    Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
    if (TypeInfo->isNullValue())
      HT.TypeDescriptor = nullptr;
    else
      HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
    HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
    HT.Handler = CPI->getParent();
    if (auto *AI =
            dyn_cast<AllocaInst>(CPI->getArgOperand(2)->stripPointerCasts()))
      HT.CatchObj.Alloca = AI;
    else
      HT.CatchObj.Alloca = nullptr;
    TBME.HandlerArray.push_back(HT);
  }
  FuncInfo.TryBlockMap.push_back(TBME);
}

static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) {
  for (const User *U : CleanupPad->users())
    if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
      return CRI->getUnwindDest();
  return nullptr;
}

static void calculateStateNumbersForInvokes(const Function *Fn,
                                            WinEHFuncInfo &FuncInfo) {
  auto *F = const_cast<Function *>(Fn);
  DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*F);
  for (BasicBlock &BB : *F) {
    auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
    if (!II)
      continue;

    auto &BBColors = BlockColors[&BB];
    assert(BBColors.size() == 1 && "multi-color BB not removed by preparation");
    BasicBlock *FuncletEntryBB = BBColors.front();

    BasicBlock *FuncletUnwindDest;
    auto *FuncletPad =
        dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHI());
    assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock());
    if (!FuncletPad)
      FuncletUnwindDest = nullptr;
    else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
      FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest();
    else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad))
      FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad);
    else
      llvm_unreachable("unexpected funclet pad!");

    BasicBlock *InvokeUnwindDest = II->getUnwindDest();
    int BaseState = -1;
    if (FuncletUnwindDest == InvokeUnwindDest) {
      auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad);
      if (BaseStateI != FuncInfo.FuncletBaseStateMap.end())
        BaseState = BaseStateI->second;
    }

    if (BaseState != -1) {
      FuncInfo.InvokeStateMap[II] = BaseState;
    } else {
      Instruction *PadInst = InvokeUnwindDest->getFirstNonPHI();
      assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!");
      FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst];
    }
  }
}

// Given BB which ends in an unwind edge, return the EHPad that this BB belongs
// to. If the unwind edge came from an invoke, return null.
static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB,
                                                 Value *ParentPad) {
  const TerminatorInst *TI = BB->getTerminator();
  if (isa<InvokeInst>(TI))
    return nullptr;
  if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
    if (CatchSwitch->getParentPad() != ParentPad)
      return nullptr;
    return BB;
  }
  assert(!TI->isEHPad() && "unexpected EHPad!");
  auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad();
  if (CleanupPad->getParentPad() != ParentPad)
    return nullptr;
  return CleanupPad->getParent();
}

static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo,
                                     const Instruction *FirstNonPHI,
                                     int ParentState) {
  const BasicBlock *BB = FirstNonPHI->getParent();
  assert(BB->isEHPad() && "not a funclet!");

  if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
    assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
           "shouldn't revist catch funclets!");

    SmallVector<const CatchPadInst *, 2> Handlers;
    for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
      auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHI());
      Handlers.push_back(CatchPad);
    }
    int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
    FuncInfo.EHPadStateMap[CatchSwitch] = TryLow;
    for (const BasicBlock *PredBlock : predecessors(BB))
      if ((PredBlock = getEHPadFromPredecessor(PredBlock,
                                               CatchSwitch->getParentPad())))
        calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
                                 TryLow);
    int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);

    // catchpads are separate funclets in C++ EH due to the way rethrow works.
    int TryHigh = CatchLow - 1;
    for (const auto *CatchPad : Handlers) {
      FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow;
      for (const User *U : CatchPad->users()) {
        const auto *UserI = cast<Instruction>(U);
        if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
          BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
          if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
            calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
        }
        if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
          BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
          // If a nested cleanup pad reports a null unwind destination and the
          // enclosing catch pad doesn't it must be post-dominated by an
          // unreachable instruction.
          if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
            calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
        }
      }
    }
    int CatchHigh = FuncInfo.getLastStateNumber();
    addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
    DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n');
    DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh << '\n');
    DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh
                 << '\n');
  } else {
    auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);

    // It's possible for a cleanup to be visited twice: it might have multiple
    // cleanupret instructions.
    if (FuncInfo.EHPadStateMap.count(CleanupPad))
      return;

    int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB);
    FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
    DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
                 << BB->getName() << '\n');
    for (const BasicBlock *PredBlock : predecessors(BB)) {
      if ((PredBlock = getEHPadFromPredecessor(PredBlock,
                                               CleanupPad->getParentPad()))) {
        calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
                                 CleanupState);
      }
    }
    for (const User *U : CleanupPad->users()) {
      const auto *UserI = cast<Instruction>(U);
      if (UserI->isEHPad())
        report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
                           "contain exceptional actions");
    }
  }
}

static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
                        const Function *Filter, const BasicBlock *Handler) {
  SEHUnwindMapEntry Entry;
  Entry.ToState = ParentState;
  Entry.IsFinally = false;
  Entry.Filter = Filter;
  Entry.Handler = Handler;
  FuncInfo.SEHUnwindMap.push_back(Entry);
  return FuncInfo.SEHUnwindMap.size() - 1;
}

static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
                         const BasicBlock *Handler) {
  SEHUnwindMapEntry Entry;
  Entry.ToState = ParentState;
  Entry.IsFinally = true;
  Entry.Filter = nullptr;
  Entry.Handler = Handler;
  FuncInfo.SEHUnwindMap.push_back(Entry);
  return FuncInfo.SEHUnwindMap.size() - 1;
}

static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo,
                                     const Instruction *FirstNonPHI,
                                     int ParentState) {
  const BasicBlock *BB = FirstNonPHI->getParent();
  assert(BB->isEHPad() && "no a funclet!");

  if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
    assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
           "shouldn't revist catch funclets!");

    // Extract the filter function and the __except basic block and create a
    // state for them.
    assert(CatchSwitch->getNumHandlers() == 1 &&
           "SEH doesn't have multiple handlers per __try");
    const auto *CatchPad =
        cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHI());
    const BasicBlock *CatchPadBB = CatchPad->getParent();
    const Constant *FilterOrNull =
        cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts());
    const Function *Filter = dyn_cast<Function>(FilterOrNull);
    assert((Filter || FilterOrNull->isNullValue()) &&
           "unexpected filter value");
    int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);

    // Everything in the __try block uses TryState as its parent state.
    FuncInfo.EHPadStateMap[CatchSwitch] = TryState;
    DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "
                 << CatchPadBB->getName() << '\n');
    for (const BasicBlock *PredBlock : predecessors(BB))
      if ((PredBlock = getEHPadFromPredecessor(PredBlock,
                                               CatchSwitch->getParentPad())))
        calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
                                 TryState);

    // Everything in the __except block unwinds to ParentState, just like code
    // outside the __try.
    for (const User *U : CatchPad->users()) {
      const auto *UserI = cast<Instruction>(U);
      if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
        BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
        if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
          calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
      }
      if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
        BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
        // If a nested cleanup pad reports a null unwind destination and the
        // enclosing catch pad doesn't it must be post-dominated by an
        // unreachable instruction.
        if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
          calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
      }
    }
  } else {
    auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);

    // It's possible for a cleanup to be visited twice: it might have multiple
    // cleanupret instructions.
    if (FuncInfo.EHPadStateMap.count(CleanupPad))
      return;

    int CleanupState = addSEHFinally(FuncInfo, ParentState, BB);
    FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
    DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
                 << BB->getName() << '\n');
    for (const BasicBlock *PredBlock : predecessors(BB))
      if ((PredBlock =
               getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad())))
        calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
                                 CleanupState);
    for (const User *U : CleanupPad->users()) {
      const auto *UserI = cast<Instruction>(U);
      if (UserI->isEHPad())
        report_fatal_error("Cleanup funclets for the SEH personality cannot "
                           "contain exceptional actions");
    }
  }
}

static bool isTopLevelPadForMSVC(const Instruction *EHPad) {
  if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad))
    return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) &&
           CatchSwitch->unwindsToCaller();
  if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad))
    return isa<ConstantTokenNone>(CleanupPad->getParentPad()) &&
           getCleanupRetUnwindDest(CleanupPad) == nullptr;
  if (isa<CatchPadInst>(EHPad))
    return false;
  llvm_unreachable("unexpected EHPad!");
}

void llvm::calculateSEHStateNumbers(const Function *Fn,
                                    WinEHFuncInfo &FuncInfo) {
  // Don't compute state numbers twice.
  if (!FuncInfo.SEHUnwindMap.empty())
    return;

  for (const BasicBlock &BB : *Fn) {
    if (!BB.isEHPad())
      continue;
    const Instruction *FirstNonPHI = BB.getFirstNonPHI();
    if (!isTopLevelPadForMSVC(FirstNonPHI))
      continue;
    ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1);
  }

  calculateStateNumbersForInvokes(Fn, FuncInfo);
}

void llvm::calculateWinCXXEHStateNumbers(const Function *Fn,
                                         WinEHFuncInfo &FuncInfo) {
  // Return if it's already been done.
  if (!FuncInfo.EHPadStateMap.empty())
    return;

  for (const BasicBlock &BB : *Fn) {
    if (!BB.isEHPad())
      continue;
    const Instruction *FirstNonPHI = BB.getFirstNonPHI();
    if (!isTopLevelPadForMSVC(FirstNonPHI))
      continue;
    calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1);
  }

  calculateStateNumbersForInvokes(Fn, FuncInfo);
}

static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState,
                           int TryParentState, ClrHandlerType HandlerType,
                           uint32_t TypeToken, const BasicBlock *Handler) {
  ClrEHUnwindMapEntry Entry;
  Entry.HandlerParentState = HandlerParentState;
  Entry.TryParentState = TryParentState;
  Entry.Handler = Handler;
  Entry.HandlerType = HandlerType;
  Entry.TypeToken = TypeToken;
  FuncInfo.ClrEHUnwindMap.push_back(Entry);
  return FuncInfo.ClrEHUnwindMap.size() - 1;
}

void llvm::calculateClrEHStateNumbers(const Function *Fn,
                                      WinEHFuncInfo &FuncInfo) {
  // Return if it's already been done.
  if (!FuncInfo.EHPadStateMap.empty())
    return;

  // This numbering assigns one state number to each catchpad and cleanuppad.
  // It also computes two tree-like relations over states:
  // 1) Each state has a "HandlerParentState", which is the state of the next
  //    outer handler enclosing this state's handler (same as nearest ancestor
  //    per the ParentPad linkage on EH pads, but skipping over catchswitches).
  // 2) Each state has a "TryParentState", which:
  //    a) for a catchpad that's not the last handler on its catchswitch, is
  //       the state of the next catchpad on that catchswitch
  //    b) for all other pads, is the state of the pad whose try region is the
  //       next outer try region enclosing this state's try region.  The "try
  //       regions are not present as such in the IR, but will be inferred
  //       based on the placement of invokes and pads which reach each other
  //       by exceptional exits
  // Catchswitches do not get their own states, but each gets mapped to the
  // state of its first catchpad.

  // Step one: walk down from outermost to innermost funclets, assigning each
  // catchpad and cleanuppad a state number.  Add an entry to the
  // ClrEHUnwindMap for each state, recording its HandlerParentState and
  // handler attributes.  Record the TryParentState as well for each catchpad
  // that's not the last on its catchswitch, but initialize all other entries'
  // TryParentStates to a sentinel -1 value that the next pass will update.

  // Seed a worklist with pads that have no parent.
  SmallVector<std::pair<const Instruction *, int>, 8> Worklist;
  for (const BasicBlock &BB : *Fn) {
    const Instruction *FirstNonPHI = BB.getFirstNonPHI();
    const Value *ParentPad;
    if (const auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI))
      ParentPad = CPI->getParentPad();
    else if (const auto *CSI = dyn_cast<CatchSwitchInst>(FirstNonPHI))
      ParentPad = CSI->getParentPad();
    else
      continue;
    if (isa<ConstantTokenNone>(ParentPad))
      Worklist.emplace_back(FirstNonPHI, -1);
  }

  // Use the worklist to visit all pads, from outer to inner.  Record
  // HandlerParentState for all pads.  Record TryParentState only for catchpads
  // that aren't the last on their catchswitch (setting all other entries'
  // TryParentStates to an initial value of -1).  This loop is also responsible
  // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
  // catchswitches.
  while (!Worklist.empty()) {
    const Instruction *Pad;
    int HandlerParentState;
    std::tie(Pad, HandlerParentState) = Worklist.pop_back_val();

    if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
      // Create the entry for this cleanup with the appropriate handler
      // properties.  Finally and fault handlers are distinguished by arity.
      ClrHandlerType HandlerType =
          (Cleanup->getNumArgOperands() ? ClrHandlerType::Fault
                                        : ClrHandlerType::Finally);
      int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, -1,
                                         HandlerType, 0, Pad->getParent());
      // Queue any child EH pads on the worklist.
      for (const User *U : Cleanup->users())
        if (const auto *I = dyn_cast<Instruction>(U))
          if (I->isEHPad())
            Worklist.emplace_back(I, CleanupState);
      // Remember this pad's state.
      FuncInfo.EHPadStateMap[Cleanup] = CleanupState;
    } else {
      // Walk the handlers of this catchswitch in reverse order since all but
      // the last need to set the following one as its TryParentState.
      const auto *CatchSwitch = cast<CatchSwitchInst>(Pad);
      int CatchState = -1, FollowerState = -1;
      SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers());
      for (auto CBI = CatchBlocks.rbegin(), CBE = CatchBlocks.rend();
           CBI != CBE; ++CBI, FollowerState = CatchState) {
        const BasicBlock *CatchBlock = *CBI;
        // Create the entry for this catch with the appropriate handler
        // properties.
        const auto *Catch = cast<CatchPadInst>(CatchBlock->getFirstNonPHI());
        uint32_t TypeToken = static_cast<uint32_t>(
            cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
        CatchState =
            addClrEHHandler(FuncInfo, HandlerParentState, FollowerState,
                            ClrHandlerType::Catch, TypeToken, CatchBlock);
        // Queue any child EH pads on the worklist.
        for (const User *U : Catch->users())
          if (const auto *I = dyn_cast<Instruction>(U))
            if (I->isEHPad())
              Worklist.emplace_back(I, CatchState);
        // Remember this catch's state.
        FuncInfo.EHPadStateMap[Catch] = CatchState;
      }
      // Associate the catchswitch with the state of its first catch.
      assert(CatchSwitch->getNumHandlers());
      FuncInfo.EHPadStateMap[CatchSwitch] = CatchState;
    }
  }

  // Step two: record the TryParentState of each state.  For cleanuppads that
  // don't have cleanuprets, we may need to infer this from their child pads,
  // so visit pads in descendant-most to ancestor-most order.
  for (auto Entry = FuncInfo.ClrEHUnwindMap.rbegin(),
            End = FuncInfo.ClrEHUnwindMap.rend();
       Entry != End; ++Entry) {
    const Instruction *Pad =
        Entry->Handler.get<const BasicBlock *>()->getFirstNonPHI();
    // For most pads, the TryParentState is the state associated with the
    // unwind dest of exceptional exits from it.
    const BasicBlock *UnwindDest;
    if (const auto *Catch = dyn_cast<CatchPadInst>(Pad)) {
      // If a catch is not the last in its catchswitch, its TryParentState is
      // the state associated with the next catch in the switch, even though
      // that's not the unwind dest of exceptions escaping the catch.  Those
      // cases were already assigned a TryParentState in the first pass, so
      // skip them.
      if (Entry->TryParentState != -1)
        continue;
      // Otherwise, get the unwind dest from the catchswitch.
      UnwindDest = Catch->getCatchSwitch()->getUnwindDest();
    } else {
      const auto *Cleanup = cast<CleanupPadInst>(Pad);
      UnwindDest = nullptr;
      for (const User *U : Cleanup->users()) {
        if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
          // Common and unambiguous case -- cleanupret indicates cleanup's
          // unwind dest.
          UnwindDest = CleanupRet->getUnwindDest();
          break;
        }

        // Get an unwind dest for the user
        const BasicBlock *UserUnwindDest = nullptr;
        if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
          UserUnwindDest = Invoke->getUnwindDest();
        } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(U)) {
          UserUnwindDest = CatchSwitch->getUnwindDest();
        } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(U)) {
          int UserState = FuncInfo.EHPadStateMap[ChildCleanup];
          int UserUnwindState =
              FuncInfo.ClrEHUnwindMap[UserState].TryParentState;
          if (UserUnwindState != -1)
            UserUnwindDest = FuncInfo.ClrEHUnwindMap[UserUnwindState]
                                 .Handler.get<const BasicBlock *>();
        }

        // Not having an unwind dest for this user might indicate that it
        // doesn't unwind, so can't be taken as proof that the cleanup itself
        // may unwind to caller (see e.g. SimplifyUnreachable and
        // RemoveUnwindEdge).
        if (!UserUnwindDest)
          continue;

        // Now we have an unwind dest for the user, but we need to see if it
        // unwinds all the way out of the cleanup or if it stays within it.
        const Instruction *UserUnwindPad = UserUnwindDest->getFirstNonPHI();
        const Value *UserUnwindParent;
        if (auto *CSI = dyn_cast<CatchSwitchInst>(UserUnwindPad))
          UserUnwindParent = CSI->getParentPad();
        else
          UserUnwindParent =
              cast<CleanupPadInst>(UserUnwindPad)->getParentPad();

        // The unwind stays within the cleanup iff it targets a child of the
        // cleanup.
        if (UserUnwindParent == Cleanup)
          continue;

        // This unwind exits the cleanup, so its dest is the cleanup's dest.
        UnwindDest = UserUnwindDest;
        break;
      }
    }

    // Record the state of the unwind dest as the TryParentState.
    int UnwindDestState;

    // If UnwindDest is null at this point, either the pad in question can
    // be exited by unwind to caller, or it cannot be exited by unwind.  In
    // either case, reporting such cases as unwinding to caller is correct.
    // This can lead to EH tables that "look strange" -- if this pad's is in
    // a parent funclet which has other children that do unwind to an enclosing
    // pad, the try region for this pad will be missing the "duplicate" EH
    // clause entries that you'd expect to see covering the whole parent.  That
    // should be benign, since the unwind never actually happens.  If it were
    // an issue, we could add a subsequent pass that pushes unwind dests down
    // from parents that have them to children that appear to unwind to caller.
    if (!UnwindDest) {
      UnwindDestState = -1;
    } else {
      UnwindDestState = FuncInfo.EHPadStateMap[UnwindDest->getFirstNonPHI()];
    }

    Entry->TryParentState = UnwindDestState;
  }

  // Step three: transfer information from pads to invokes.
  calculateStateNumbersForInvokes(Fn, FuncInfo);
}

void WinEHPrepare::colorFunclets(Function &F) {
  BlockColors = colorEHFunclets(F);

  // Invert the map from BB to colors to color to BBs.
  for (BasicBlock &BB : F) {
    ColorVector &Colors = BlockColors[&BB];
    for (BasicBlock *Color : Colors)
      FuncletBlocks[Color].push_back(&BB);
  }
}

void WinEHPrepare::demotePHIsOnFunclets(Function &F) {
  // Strip PHI nodes off of EH pads.
  SmallVector<PHINode *, 16> PHINodes;
  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
    BasicBlock *BB = &*FI++;
    if (!BB->isEHPad())
      continue;
    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
      Instruction *I = &*BI++;
      auto *PN = dyn_cast<PHINode>(I);
      // Stop at the first non-PHI.
      if (!PN)
        break;

      AllocaInst *SpillSlot = insertPHILoads(PN, F);
      if (SpillSlot)
        insertPHIStores(PN, SpillSlot);

      PHINodes.push_back(PN);
    }
  }

  for (auto *PN : PHINodes) {
    // There may be lingering uses on other EH PHIs being removed
    PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
    PN->eraseFromParent();
  }
}

void WinEHPrepare::cloneCommonBlocks(Function &F) {
  // We need to clone all blocks which belong to multiple funclets.  Values are
  // remapped throughout the funclet to propagate both the new instructions
  // *and* the new basic blocks themselves.
  for (auto &Funclets : FuncletBlocks) {
    BasicBlock *FuncletPadBB = Funclets.first;
    std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second;
    Value *FuncletToken;
    if (FuncletPadBB == &F.getEntryBlock())
      FuncletToken = ConstantTokenNone::get(F.getContext());
    else
      FuncletToken = FuncletPadBB->getFirstNonPHI();

    std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone;
    ValueToValueMapTy VMap;
    for (BasicBlock *BB : BlocksInFunclet) {
      ColorVector &ColorsForBB = BlockColors[BB];
      // We don't need to do anything if the block is monochromatic.
      size_t NumColorsForBB = ColorsForBB.size();
      if (NumColorsForBB == 1)
        continue;

      DEBUG_WITH_TYPE("winehprepare-coloring",
                      dbgs() << "  Cloning block \'" << BB->getName()
                              << "\' for funclet \'" << FuncletPadBB->getName()
                              << "\'.\n");

      // Create a new basic block and copy instructions into it!
      BasicBlock *CBB =
          CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
      // Insert the clone immediately after the original to ensure determinism
      // and to keep the same relative ordering of any funclet's blocks.
      CBB->insertInto(&F, BB->getNextNode());

      // Add basic block mapping.
      VMap[BB] = CBB;

      // Record delta operations that we need to perform to our color mappings.
      Orig2Clone.emplace_back(BB, CBB);
    }

    // If nothing was cloned, we're done cloning in this funclet.
    if (Orig2Clone.empty())
      continue;

    // Update our color mappings to reflect that one block has lost a color and
    // another has gained a color.
    for (auto &BBMapping : Orig2Clone) {
      BasicBlock *OldBlock = BBMapping.first;
      BasicBlock *NewBlock = BBMapping.second;

      BlocksInFunclet.push_back(NewBlock);
      ColorVector &NewColors = BlockColors[NewBlock];
      assert(NewColors.empty() && "A new block should only have one color!");
      NewColors.push_back(FuncletPadBB);

      DEBUG_WITH_TYPE("winehprepare-coloring",
                      dbgs() << "  Assigned color \'" << FuncletPadBB->getName()
                              << "\' to block \'" << NewBlock->getName()
                              << "\'.\n");

      BlocksInFunclet.erase(
          std::remove(BlocksInFunclet.begin(), BlocksInFunclet.end(), OldBlock),
          BlocksInFunclet.end());
      ColorVector &OldColors = BlockColors[OldBlock];
      OldColors.erase(
          std::remove(OldColors.begin(), OldColors.end(), FuncletPadBB),
          OldColors.end());

      DEBUG_WITH_TYPE("winehprepare-coloring",
                      dbgs() << "  Removed color \'" << FuncletPadBB->getName()
                              << "\' from block \'" << OldBlock->getName()
                              << "\'.\n");
    }

    // Loop over all of the instructions in this funclet, fixing up operand
    // references as we go.  This uses VMap to do all the hard work.
    for (BasicBlock *BB : BlocksInFunclet)
      // Loop over all instructions, fixing each one as we find it...
      for (Instruction &I : *BB)
        RemapInstruction(&I, VMap,
                         RF_IgnoreMissingLocals | RF_NoModuleLevelChanges);

    // Catchrets targeting cloned blocks need to be updated separately from
    // the loop above because they are not in the current funclet.
    SmallVector<CatchReturnInst *, 2> FixupCatchrets;
    for (auto &BBMapping : Orig2Clone) {
      BasicBlock *OldBlock = BBMapping.first;
      BasicBlock *NewBlock = BBMapping.second;

      FixupCatchrets.clear();
      for (BasicBlock *Pred : predecessors(OldBlock))
        if (auto *CatchRet = dyn_cast<CatchReturnInst>(Pred->getTerminator()))
          if (CatchRet->getCatchSwitchParentPad() == FuncletToken)
            FixupCatchrets.push_back(CatchRet);

      for (CatchReturnInst *CatchRet : FixupCatchrets)
        CatchRet->setSuccessor(NewBlock);
    }

    auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) {
      unsigned NumPreds = PN->getNumIncomingValues();
      for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd;
           ++PredIdx) {
        BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx);
        bool EdgeTargetsFunclet;
        if (auto *CRI =
                dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
          EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken);
        } else {
          ColorVector &IncomingColors = BlockColors[IncomingBlock];
          assert(!IncomingColors.empty() && "Block not colored!");
          assert((IncomingColors.size() == 1 ||
                  llvm::all_of(IncomingColors,
                               [&](BasicBlock *Color) {
                                 return Color != FuncletPadBB;
                               })) &&
                 "Cloning should leave this funclet's blocks monochromatic");
          EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB);
        }
        if (IsForOldBlock != EdgeTargetsFunclet)
          continue;
        PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false);
        // Revisit the next entry.
        --PredIdx;
        --PredEnd;
      }
    };

    for (auto &BBMapping : Orig2Clone) {
      BasicBlock *OldBlock = BBMapping.first;
      BasicBlock *NewBlock = BBMapping.second;
      for (PHINode &OldPN : OldBlock->phis()) {
        UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true);
      }
      for (PHINode &NewPN : NewBlock->phis()) {
        UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false);
      }
    }

    // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
    // the PHI nodes for NewBB now.
    for (auto &BBMapping : Orig2Clone) {
      BasicBlock *OldBlock = BBMapping.first;
      BasicBlock *NewBlock = BBMapping.second;
      for (BasicBlock *SuccBB : successors(NewBlock)) {
        for (PHINode &SuccPN : SuccBB->phis()) {
          // Ok, we have a PHI node.  Figure out what the incoming value was for
          // the OldBlock.
          int OldBlockIdx = SuccPN.getBasicBlockIndex(OldBlock);
          if (OldBlockIdx == -1)
            break;
          Value *IV = SuccPN.getIncomingValue(OldBlockIdx);

          // Remap the value if necessary.
          if (auto *Inst = dyn_cast<Instruction>(IV)) {
            ValueToValueMapTy::iterator I = VMap.find(Inst);
            if (I != VMap.end())
              IV = I->second;
          }

          SuccPN.addIncoming(IV, NewBlock);
        }
      }
    }

    for (ValueToValueMapTy::value_type VT : VMap) {
      // If there were values defined in BB that are used outside the funclet,
      // then we now have to update all uses of the value to use either the
      // original value, the cloned value, or some PHI derived value.  This can
      // require arbitrary PHI insertion, of which we are prepared to do, clean
      // these up now.
      SmallVector<Use *, 16> UsesToRename;

      auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
      if (!OldI)
        continue;
      auto *NewI = cast<Instruction>(VT.second);
      // Scan all uses of this instruction to see if it is used outside of its
      // funclet, and if so, record them in UsesToRename.
      for (Use &U : OldI->uses()) {
        Instruction *UserI = cast<Instruction>(U.getUser());
        BasicBlock *UserBB = UserI->getParent();
        ColorVector &ColorsForUserBB = BlockColors[UserBB];
        assert(!ColorsForUserBB.empty());
        if (ColorsForUserBB.size() > 1 ||
            *ColorsForUserBB.begin() != FuncletPadBB)
          UsesToRename.push_back(&U);
      }

      // If there are no uses outside the block, we're done with this
      // instruction.
      if (UsesToRename.empty())
        continue;

      // We found a use of OldI outside of the funclet.  Rename all uses of OldI
      // that are outside its funclet to be uses of the appropriate PHI node
      // etc.
      SSAUpdater SSAUpdate;
      SSAUpdate.Initialize(OldI->getType(), OldI->getName());
      SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
      SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);

      while (!UsesToRename.empty())
        SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
    }
  }
}

void WinEHPrepare::removeImplausibleInstructions(Function &F) {
  // Remove implausible terminators and replace them with UnreachableInst.
  for (auto &Funclet : FuncletBlocks) {
    BasicBlock *FuncletPadBB = Funclet.first;
    std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second;
    Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
    auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI);
    auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad);
    auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad);

    for (BasicBlock *BB : BlocksInFunclet) {
      for (Instruction &I : *BB) {
        CallSite CS(&I);
        if (!CS)
          continue;

        Value *FuncletBundleOperand = nullptr;
        if (auto BU = CS.getOperandBundle(LLVMContext::OB_funclet))
          FuncletBundleOperand = BU->Inputs.front();

        if (FuncletBundleOperand == FuncletPad)
          continue;

        // Skip call sites which are nounwind intrinsics or inline asm.
        auto *CalledFn =
            dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
        if (CalledFn && ((CalledFn->isIntrinsic() && CS.doesNotThrow()) ||
                         CS.isInlineAsm()))
          continue;

        // This call site was not part of this funclet, remove it.
        if (CS.isInvoke()) {
          // Remove the unwind edge if it was an invoke.
          removeUnwindEdge(BB);
          // Get a pointer to the new call.
          BasicBlock::iterator CallI =
              std::prev(BB->getTerminator()->getIterator());
          auto *CI = cast<CallInst>(&*CallI);
          changeToUnreachable(CI, /*UseLLVMTrap=*/false);
        } else {
          changeToUnreachable(&I, /*UseLLVMTrap=*/false);
        }

        // There are no more instructions in the block (except for unreachable),
        // we are done.
        break;
      }

      TerminatorInst *TI = BB->getTerminator();
      // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
      bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad;
      // The token consumed by a CatchReturnInst must match the funclet token.
      bool IsUnreachableCatchret = false;
      if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
        IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
      // The token consumed by a CleanupReturnInst must match the funclet token.
      bool IsUnreachableCleanupret = false;
      if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
        IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
      if (IsUnreachableRet || IsUnreachableCatchret ||
          IsUnreachableCleanupret) {
        changeToUnreachable(TI, /*UseLLVMTrap=*/false);
      } else if (isa<InvokeInst>(TI)) {
        if (Personality == EHPersonality::MSVC_CXX && CleanupPad) {
          // Invokes within a cleanuppad for the MSVC++ personality never
          // transfer control to their unwind edge: the personality will
          // terminate the program.
          removeUnwindEdge(BB);
        }
      }
    }
  }
}

void WinEHPrepare::cleanupPreparedFunclets(Function &F) {
  // Clean-up some of the mess we made by removing useles PHI nodes, trivial
  // branches, etc.
  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
    BasicBlock *BB = &*FI++;
    SimplifyInstructionsInBlock(BB);
    ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true);
    MergeBlockIntoPredecessor(BB);
  }

  // We might have some unreachable blocks after cleaning up some impossible
  // control flow.
  removeUnreachableBlocks(F);
}

#ifndef NDEBUG
void WinEHPrepare::verifyPreparedFunclets(Function &F) {
  for (BasicBlock &BB : F) {
    size_t NumColors = BlockColors[&BB].size();
    assert(NumColors == 1 && "Expected monochromatic BB!");
    if (NumColors == 0)
      report_fatal_error("Uncolored BB!");
    if (NumColors > 1)
      report_fatal_error("Multicolor BB!");
    assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) &&
           "EH Pad still has a PHI!");
  }
}
#endif

bool WinEHPrepare::prepareExplicitEH(Function &F) {
  // Remove unreachable blocks.  It is not valuable to assign them a color and
  // their existence can trick us into thinking values are alive when they are
  // not.
  removeUnreachableBlocks(F);

  // Determine which blocks are reachable from which funclet entries.
  colorFunclets(F);

  cloneCommonBlocks(F);

  if (!DisableDemotion)
    demotePHIsOnFunclets(F);

  if (!DisableCleanups) {
    DEBUG(verifyFunction(F));
    removeImplausibleInstructions(F);

    DEBUG(verifyFunction(F));
    cleanupPreparedFunclets(F);
  }

  DEBUG(verifyPreparedFunclets(F));
  // Recolor the CFG to verify that all is well.
  DEBUG(colorFunclets(F));
  DEBUG(verifyPreparedFunclets(F));

  BlockColors.clear();
  FuncletBlocks.clear();

  return true;
}

// TODO: Share loads when one use dominates another, or when a catchpad exit
// dominates uses (needs dominators).
AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) {
  BasicBlock *PHIBlock = PN->getParent();
  AllocaInst *SpillSlot = nullptr;
  Instruction *EHPad = PHIBlock->getFirstNonPHI();

  if (!isa<TerminatorInst>(EHPad)) {
    // If the EHPad isn't a terminator, then we can insert a load in this block
    // that will dominate all uses.
    SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr,
                               Twine(PN->getName(), ".wineh.spillslot"),
                               &F.getEntryBlock().front());
    Value *V = new LoadInst(SpillSlot, Twine(PN->getName(), ".wineh.reload"),
                            &*PHIBlock->getFirstInsertionPt());
    PN->replaceAllUsesWith(V);
    return SpillSlot;
  }

  // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
  // loads of the slot before every use.
  DenseMap<BasicBlock *, Value *> Loads;
  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
       UI != UE;) {
    Use &U = *UI++;
    auto *UsingInst = cast<Instruction>(U.getUser());
    if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) {
      // Use is on an EH pad phi.  Leave it alone; we'll insert loads and
      // stores for it separately.
      continue;
    }
    replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
  }
  return SpillSlot;
}

// TODO: improve store placement.  Inserting at def is probably good, but need
// to be careful not to introduce interfering stores (needs liveness analysis).
// TODO: identify related phi nodes that can share spill slots, and share them
// (also needs liveness).
void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI,
                                   AllocaInst *SpillSlot) {
  // Use a worklist of (Block, Value) pairs -- the given Value needs to be
  // stored to the spill slot by the end of the given Block.
  SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;

  Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});

  while (!Worklist.empty()) {
    BasicBlock *EHBlock;
    Value *InVal;
    std::tie(EHBlock, InVal) = Worklist.pop_back_val();

    PHINode *PN = dyn_cast<PHINode>(InVal);
    if (PN && PN->getParent() == EHBlock) {
      // The value is defined by another PHI we need to remove, with no room to
      // insert a store after the PHI, so each predecessor needs to store its
      // incoming value.
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
        Value *PredVal = PN->getIncomingValue(i);

        // Undef can safely be skipped.
        if (isa<UndefValue>(PredVal))
          continue;

        insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
      }
    } else {
      // We need to store InVal, which dominates EHBlock, but can't put a store
      // in EHBlock, so need to put stores in each predecessor.
      for (BasicBlock *PredBlock : predecessors(EHBlock)) {
        insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
      }
    }
  }
}

void WinEHPrepare::insertPHIStore(
    BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
    SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {

  if (PredBlock->isEHPad() &&
      isa<TerminatorInst>(PredBlock->getFirstNonPHI())) {
    // Pred is unsplittable, so we need to queue it on the worklist.
    Worklist.push_back({PredBlock, PredVal});
    return;
  }

  // Otherwise, insert the store at the end of the basic block.
  new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
}

void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
                                      DenseMap<BasicBlock *, Value *> &Loads,
                                      Function &F) {
  // Lazilly create the spill slot.
  if (!SpillSlot)
    SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr,
                               Twine(V->getName(), ".wineh.spillslot"),
                               &F.getEntryBlock().front());

  auto *UsingInst = cast<Instruction>(U.getUser());
  if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
    // If this is a PHI node, we can't insert a load of the value before
    // the use.  Instead insert the load in the predecessor block
    // corresponding to the incoming value.
    //
    // Note that if there are multiple edges from a basic block to this
    // PHI node that we cannot have multiple loads.  The problem is that
    // the resulting PHI node will have multiple values (from each load)
    // coming in from the same block, which is illegal SSA form.
    // For this reason, we keep track of and reuse loads we insert.
    BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
    if (auto *CatchRet =
            dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
      // Putting a load above a catchret and use on the phi would still leave
      // a cross-funclet def/use.  We need to split the edge, change the
      // catchret to target the new block, and put the load there.
      BasicBlock *PHIBlock = UsingInst->getParent();
      BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
      // SplitEdge gives us:
      //   IncomingBlock:
      //     ...
      //     br label %NewBlock
      //   NewBlock:
      //     catchret label %PHIBlock
      // But we need:
      //   IncomingBlock:
      //     ...
      //     catchret label %NewBlock
      //   NewBlock:
      //     br label %PHIBlock
      // So move the terminators to each others' blocks and swap their
      // successors.
      BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
      Goto->removeFromParent();
      CatchRet->removeFromParent();
      IncomingBlock->getInstList().push_back(CatchRet);
      NewBlock->getInstList().push_back(Goto);
      Goto->setSuccessor(0, PHIBlock);
      CatchRet->setSuccessor(NewBlock);
      // Update the color mapping for the newly split edge.
      // Grab a reference to the ColorVector to be inserted before getting the
      // reference to the vector we are copying because inserting the new
      // element in BlockColors might cause the map to be reallocated.
      ColorVector &ColorsForNewBlock = BlockColors[NewBlock];
      ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock];
      ColorsForNewBlock = ColorsForPHIBlock;
      for (BasicBlock *FuncletPad : ColorsForPHIBlock)
        FuncletBlocks[FuncletPad].push_back(NewBlock);
      // Treat the new block as incoming for load insertion.
      IncomingBlock = NewBlock;
    }
    Value *&Load = Loads[IncomingBlock];
    // Insert the load into the predecessor block
    if (!Load)
      Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
                          /*Volatile=*/false, IncomingBlock->getTerminator());

    U.set(Load);
  } else {
    // Reload right before the old use.
    auto *Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
                              /*Volatile=*/false, UsingInst);
    U.set(Load);
  }
}

void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II,
                                      MCSymbol *InvokeBegin,
                                      MCSymbol *InvokeEnd) {
  assert(InvokeStateMap.count(II) &&
         "should get invoke with precomputed state");
  LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd);
}

WinEHFuncInfo::WinEHFuncInfo() {}