Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
//===-- PPCTargetMachine.cpp - Define TargetMachine for PowerPC -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Top-level implementation for the PowerPC target.
//
//===----------------------------------------------------------------------===//

#include "PPCTargetMachine.h"
#include "MCTargetDesc/PPCMCTargetDesc.h"
#include "PPC.h"
#include "PPCSubtarget.h"
#include "PPCTargetObjectFile.h"
#include "PPCTargetTransformInfo.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetLoweringObjectFile.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Scalar.h"
#include <cassert>
#include <memory>
#include <string>

using namespace llvm;


static cl::opt<bool>
    EnableBranchCoalescing("enable-ppc-branch-coalesce", cl::Hidden,
                           cl::desc("enable coalescing of duplicate branches for PPC"));
static cl::
opt<bool> DisableCTRLoops("disable-ppc-ctrloops", cl::Hidden,
                        cl::desc("Disable CTR loops for PPC"));

static cl::
opt<bool> DisablePreIncPrep("disable-ppc-preinc-prep", cl::Hidden,
                            cl::desc("Disable PPC loop preinc prep"));

static cl::opt<bool>
VSXFMAMutateEarly("schedule-ppc-vsx-fma-mutation-early",
  cl::Hidden, cl::desc("Schedule VSX FMA instruction mutation early"));

static cl::
opt<bool> DisableVSXSwapRemoval("disable-ppc-vsx-swap-removal", cl::Hidden,
                                cl::desc("Disable VSX Swap Removal for PPC"));

static cl::
opt<bool> DisableQPXLoadSplat("disable-ppc-qpx-load-splat", cl::Hidden,
                              cl::desc("Disable QPX load splat simplification"));

static cl::
opt<bool> DisableMIPeephole("disable-ppc-peephole", cl::Hidden,
                            cl::desc("Disable machine peepholes for PPC"));

static cl::opt<bool>
EnableGEPOpt("ppc-gep-opt", cl::Hidden,
             cl::desc("Enable optimizations on complex GEPs"),
             cl::init(true));

static cl::opt<bool>
EnablePrefetch("enable-ppc-prefetching",
                  cl::desc("disable software prefetching on PPC"),
                  cl::init(false), cl::Hidden);

static cl::opt<bool>
EnableExtraTOCRegDeps("enable-ppc-extra-toc-reg-deps",
                      cl::desc("Add extra TOC register dependencies"),
                      cl::init(true), cl::Hidden);

static cl::opt<bool>
EnableMachineCombinerPass("ppc-machine-combiner",
                          cl::desc("Enable the machine combiner pass"),
                          cl::init(true), cl::Hidden);

static cl::opt<bool>
  ReduceCRLogical("ppc-reduce-cr-logicals",
                  cl::desc("Expand eligible cr-logical binary ops to branches"),
                  cl::init(false), cl::Hidden);
extern "C" void LLVMInitializePowerPCTarget() {
  // Register the targets
  RegisterTargetMachine<PPCTargetMachine> A(getThePPC32Target());
  RegisterTargetMachine<PPCTargetMachine> B(getThePPC64Target());
  RegisterTargetMachine<PPCTargetMachine> C(getThePPC64LETarget());

  PassRegistry &PR = *PassRegistry::getPassRegistry();
  initializePPCBoolRetToIntPass(PR);
  initializePPCExpandISELPass(PR);
  initializePPCPreEmitPeepholePass(PR);
  initializePPCTLSDynamicCallPass(PR);
  initializePPCMIPeepholePass(PR);
}

/// Return the datalayout string of a subtarget.
static std::string getDataLayoutString(const Triple &T) {
  bool is64Bit = T.getArch() == Triple::ppc64 || T.getArch() == Triple::ppc64le;
  std::string Ret;

  // Most PPC* platforms are big endian, PPC64LE is little endian.
  if (T.getArch() == Triple::ppc64le)
    Ret = "e";
  else
    Ret = "E";

  Ret += DataLayout::getManglingComponent(T);

  // PPC32 has 32 bit pointers. The PS3 (OS Lv2) is a PPC64 machine with 32 bit
  // pointers.
  if (!is64Bit || T.getOS() == Triple::Lv2)
    Ret += "-p:32:32";

  // Note, the alignment values for f64 and i64 on ppc64 in Darwin
  // documentation are wrong; these are correct (i.e. "what gcc does").
  if (is64Bit || !T.isOSDarwin())
    Ret += "-i64:64";
  else
    Ret += "-f64:32:64";

  // PPC64 has 32 and 64 bit registers, PPC32 has only 32 bit ones.
  if (is64Bit)
    Ret += "-n32:64";
  else
    Ret += "-n32";

  return Ret;
}

static std::string computeFSAdditions(StringRef FS, CodeGenOpt::Level OL,
                                      const Triple &TT) {
  std::string FullFS = FS;

  // Make sure 64-bit features are available when CPUname is generic
  if (TT.getArch() == Triple::ppc64 || TT.getArch() == Triple::ppc64le) {
    if (!FullFS.empty())
      FullFS = "+64bit," + FullFS;
    else
      FullFS = "+64bit";
  }

  if (OL >= CodeGenOpt::Default) {
    if (!FullFS.empty())
      FullFS = "+crbits," + FullFS;
    else
      FullFS = "+crbits";
  }

  if (OL != CodeGenOpt::None) {
    if (!FullFS.empty())
      FullFS = "+invariant-function-descriptors," + FullFS;
    else
      FullFS = "+invariant-function-descriptors";
  }

  return FullFS;
}

static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
  // If it isn't a Mach-O file then it's going to be a linux ELF
  // object file.
  if (TT.isOSDarwin())
    return llvm::make_unique<TargetLoweringObjectFileMachO>();

  return llvm::make_unique<PPC64LinuxTargetObjectFile>();
}

static PPCTargetMachine::PPCABI computeTargetABI(const Triple &TT,
                                                 const TargetOptions &Options) {
  if (Options.MCOptions.getABIName().startswith("elfv1"))
    return PPCTargetMachine::PPC_ABI_ELFv1;
  else if (Options.MCOptions.getABIName().startswith("elfv2"))
    return PPCTargetMachine::PPC_ABI_ELFv2;

  assert(Options.MCOptions.getABIName().empty() &&
         "Unknown target-abi option!");

  if (TT.isMacOSX())
    return PPCTargetMachine::PPC_ABI_UNKNOWN;

  switch (TT.getArch()) {
  case Triple::ppc64le:
    return PPCTargetMachine::PPC_ABI_ELFv2;
  case Triple::ppc64:
    return PPCTargetMachine::PPC_ABI_ELFv1;
  default:
    return PPCTargetMachine::PPC_ABI_UNKNOWN;
  }
}

static Reloc::Model getEffectiveRelocModel(const Triple &TT,
                                           Optional<Reloc::Model> RM) {
  if (RM.hasValue())
    return *RM;

  // Darwin defaults to dynamic-no-pic.
  if (TT.isOSDarwin())
    return Reloc::DynamicNoPIC;

  // Non-darwin 64-bit platforms are PIC by default.
  if (TT.getArch() == Triple::ppc64 || TT.getArch() == Triple::ppc64le)
    return Reloc::PIC_;

  // 32-bit is static by default.
  return Reloc::Static;
}

static CodeModel::Model getEffectiveCodeModel(const Triple &TT,
                                              Optional<CodeModel::Model> CM,
                                              bool JIT) {
  if (CM)
    return *CM;
  if (!TT.isOSDarwin() && !JIT &&
      (TT.getArch() == Triple::ppc64 || TT.getArch() == Triple::ppc64le))
    return CodeModel::Medium;
  return CodeModel::Small;
}

// The FeatureString here is a little subtle. We are modifying the feature
// string with what are (currently) non-function specific overrides as it goes
// into the LLVMTargetMachine constructor and then using the stored value in the
// Subtarget constructor below it.
PPCTargetMachine::PPCTargetMachine(const Target &T, const Triple &TT,
                                   StringRef CPU, StringRef FS,
                                   const TargetOptions &Options,
                                   Optional<Reloc::Model> RM,
                                   Optional<CodeModel::Model> CM,
                                   CodeGenOpt::Level OL, bool JIT)
    : LLVMTargetMachine(T, getDataLayoutString(TT), TT, CPU,
                        computeFSAdditions(FS, OL, TT), Options,
                        getEffectiveRelocModel(TT, RM),
                        getEffectiveCodeModel(TT, CM, JIT), OL),
      TLOF(createTLOF(getTargetTriple())),
      TargetABI(computeTargetABI(TT, Options)) {
  initAsmInfo();
}

PPCTargetMachine::~PPCTargetMachine() = default;

const PPCSubtarget *
PPCTargetMachine::getSubtargetImpl(const Function &F) const {
  Attribute CPUAttr = F.getFnAttribute("target-cpu");
  Attribute FSAttr = F.getFnAttribute("target-features");

  std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
                        ? CPUAttr.getValueAsString().str()
                        : TargetCPU;
  std::string FS = !FSAttr.hasAttribute(Attribute::None)
                       ? FSAttr.getValueAsString().str()
                       : TargetFS;

  // FIXME: This is related to the code below to reset the target options,
  // we need to know whether or not the soft float flag is set on the
  // function before we can generate a subtarget. We also need to use
  // it as a key for the subtarget since that can be the only difference
  // between two functions.
  bool SoftFloat =
      F.getFnAttribute("use-soft-float").getValueAsString() == "true";
  // If the soft float attribute is set on the function turn on the soft float
  // subtarget feature.
  if (SoftFloat)
    FS += FS.empty() ? "-hard-float" : ",-hard-float";

  auto &I = SubtargetMap[CPU + FS];
  if (!I) {
    // This needs to be done before we create a new subtarget since any
    // creation will depend on the TM and the code generation flags on the
    // function that reside in TargetOptions.
    resetTargetOptions(F);
    I = llvm::make_unique<PPCSubtarget>(
        TargetTriple, CPU,
        // FIXME: It would be good to have the subtarget additions here
        // not necessary. Anything that turns them on/off (overrides) ends
        // up being put at the end of the feature string, but the defaults
        // shouldn't require adding them. Fixing this means pulling Feature64Bit
        // out of most of the target cpus in the .td file and making it set only
        // as part of initialization via the TargetTriple.
        computeFSAdditions(FS, getOptLevel(), getTargetTriple()), *this);
  }
  return I.get();
}

//===----------------------------------------------------------------------===//
// Pass Pipeline Configuration
//===----------------------------------------------------------------------===//

namespace {

/// PPC Code Generator Pass Configuration Options.
class PPCPassConfig : public TargetPassConfig {
public:
  PPCPassConfig(PPCTargetMachine &TM, PassManagerBase &PM)
    : TargetPassConfig(TM, PM) {}

  PPCTargetMachine &getPPCTargetMachine() const {
    return getTM<PPCTargetMachine>();
  }

  void addIRPasses() override;
  bool addPreISel() override;
  bool addILPOpts() override;
  bool addInstSelector() override;
  void addMachineSSAOptimization() override;
  void addPreRegAlloc() override;
  void addPreSched2() override;
  void addPreEmitPass() override;
};

} // end anonymous namespace

TargetPassConfig *PPCTargetMachine::createPassConfig(PassManagerBase &PM) {
  return new PPCPassConfig(*this, PM);
}

void PPCPassConfig::addIRPasses() {
  if (TM->getOptLevel() != CodeGenOpt::None)
    addPass(createPPCBoolRetToIntPass());
  addPass(createAtomicExpandPass());

  // For the BG/Q (or if explicitly requested), add explicit data prefetch
  // intrinsics.
  bool UsePrefetching = TM->getTargetTriple().getVendor() == Triple::BGQ &&
                        getOptLevel() != CodeGenOpt::None;
  if (EnablePrefetch.getNumOccurrences() > 0)
    UsePrefetching = EnablePrefetch;
  if (UsePrefetching)
    addPass(createLoopDataPrefetchPass());

  if (TM->getOptLevel() >= CodeGenOpt::Default && EnableGEPOpt) {
    // Call SeparateConstOffsetFromGEP pass to extract constants within indices
    // and lower a GEP with multiple indices to either arithmetic operations or
    // multiple GEPs with single index.
    addPass(createSeparateConstOffsetFromGEPPass(TM, true));
    // Call EarlyCSE pass to find and remove subexpressions in the lowered
    // result.
    addPass(createEarlyCSEPass());
    // Do loop invariant code motion in case part of the lowered result is
    // invariant.
    addPass(createLICMPass());
  }

  TargetPassConfig::addIRPasses();
}

bool PPCPassConfig::addPreISel() {
  if (!DisablePreIncPrep && getOptLevel() != CodeGenOpt::None)
    addPass(createPPCLoopPreIncPrepPass(getPPCTargetMachine()));

  if (!DisableCTRLoops && getOptLevel() != CodeGenOpt::None)
    addPass(createPPCCTRLoops());

  return false;
}

bool PPCPassConfig::addILPOpts() {
  addPass(&EarlyIfConverterID);

  if (EnableMachineCombinerPass)
    addPass(&MachineCombinerID);

  return true;
}

bool PPCPassConfig::addInstSelector() {
  // Install an instruction selector.
  addPass(createPPCISelDag(getPPCTargetMachine(), getOptLevel()));

#ifndef NDEBUG
  if (!DisableCTRLoops && getOptLevel() != CodeGenOpt::None)
    addPass(createPPCCTRLoopsVerify());
#endif

  addPass(createPPCVSXCopyPass());
  return false;
}

void PPCPassConfig::addMachineSSAOptimization() {
  // PPCBranchCoalescingPass need to be done before machine sinking
  // since it merges empty blocks.
  if (EnableBranchCoalescing && getOptLevel() != CodeGenOpt::None)
    addPass(createPPCBranchCoalescingPass());
  TargetPassConfig::addMachineSSAOptimization();
  // For little endian, remove where possible the vector swap instructions
  // introduced at code generation to normalize vector element order.
  if (TM->getTargetTriple().getArch() == Triple::ppc64le &&
      !DisableVSXSwapRemoval)
    addPass(createPPCVSXSwapRemovalPass());
  // Reduce the number of cr-logical ops.
  if (ReduceCRLogical && getOptLevel() != CodeGenOpt::None)
    addPass(createPPCReduceCRLogicalsPass());
  // Target-specific peephole cleanups performed after instruction
  // selection.
  if (!DisableMIPeephole) {
    addPass(createPPCMIPeepholePass());
    addPass(&DeadMachineInstructionElimID);
  }
}

void PPCPassConfig::addPreRegAlloc() {
  if (getOptLevel() != CodeGenOpt::None) {
    initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
    insertPass(VSXFMAMutateEarly ? &RegisterCoalescerID : &MachineSchedulerID,
               &PPCVSXFMAMutateID);
  }

  // FIXME: We probably don't need to run these for -fPIE.
  if (getPPCTargetMachine().isPositionIndependent()) {
    // FIXME: LiveVariables should not be necessary here!
    // PPCTLSDynamicCallPass uses LiveIntervals which previously dependent on
    // LiveVariables. This (unnecessary) dependency has been removed now,
    // however a stage-2 clang build fails without LiveVariables computed here.
    addPass(&LiveVariablesID, false);
    addPass(createPPCTLSDynamicCallPass());
  }
  if (EnableExtraTOCRegDeps)
    addPass(createPPCTOCRegDepsPass());
}

void PPCPassConfig::addPreSched2() {
  if (getOptLevel() != CodeGenOpt::None) {
    addPass(&IfConverterID);

    // This optimization must happen after anything that might do store-to-load
    // forwarding. Here we're after RA (and, thus, when spills are inserted)
    // but before post-RA scheduling.
    if (!DisableQPXLoadSplat)
      addPass(createPPCQPXLoadSplatPass());
  }
}

void PPCPassConfig::addPreEmitPass() {
  addPass(createPPCPreEmitPeepholePass());
  addPass(createPPCExpandISELPass());

  if (getOptLevel() != CodeGenOpt::None)
    addPass(createPPCEarlyReturnPass(), false);
  // Must run branch selection immediately preceding the asm printer.
  addPass(createPPCBranchSelectionPass(), false);
}

TargetTransformInfo
PPCTargetMachine::getTargetTransformInfo(const Function &F) {
  return TargetTransformInfo(PPCTTIImpl(this, F));
}