Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass transforms simple global variables that never have their address
// taken.  If obviously true, it marks read/write globals as constant, deletes
// variables only stored to, etc.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/GlobalOpt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/CtorUtils.h"
#include "llvm/Transforms/Utils/Evaluator.h"
#include "llvm/Transforms/Utils/GlobalStatus.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <cstdint>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "globalopt"

STATISTIC(NumMarked    , "Number of globals marked constant");
STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
STATISTIC(NumDeleted   , "Number of globals deleted");
STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
STATISTIC(NumLocalized , "Number of globals localized");
STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");

/// Is this global variable possibly used by a leak checker as a root?  If so,
/// we might not really want to eliminate the stores to it.
static bool isLeakCheckerRoot(GlobalVariable *GV) {
  // A global variable is a root if it is a pointer, or could plausibly contain
  // a pointer.  There are two challenges; one is that we could have a struct
  // the has an inner member which is a pointer.  We recurse through the type to
  // detect these (up to a point).  The other is that we may actually be a union
  // of a pointer and another type, and so our LLVM type is an integer which
  // gets converted into a pointer, or our type is an [i8 x #] with a pointer
  // potentially contained here.

  if (GV->hasPrivateLinkage())
    return false;

  SmallVector<Type *, 4> Types;
  Types.push_back(GV->getValueType());

  unsigned Limit = 20;
  do {
    Type *Ty = Types.pop_back_val();
    switch (Ty->getTypeID()) {
      default: break;
      case Type::PointerTyID: return true;
      case Type::ArrayTyID:
      case Type::VectorTyID: {
        SequentialType *STy = cast<SequentialType>(Ty);
        Types.push_back(STy->getElementType());
        break;
      }
      case Type::StructTyID: {
        StructType *STy = cast<StructType>(Ty);
        if (STy->isOpaque()) return true;
        for (StructType::element_iterator I = STy->element_begin(),
                 E = STy->element_end(); I != E; ++I) {
          Type *InnerTy = *I;
          if (isa<PointerType>(InnerTy)) return true;
          if (isa<CompositeType>(InnerTy))
            Types.push_back(InnerTy);
        }
        break;
      }
    }
    if (--Limit == 0) return true;
  } while (!Types.empty());
  return false;
}

/// Given a value that is stored to a global but never read, determine whether
/// it's safe to remove the store and the chain of computation that feeds the
/// store.
static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
  do {
    if (isa<Constant>(V))
      return true;
    if (!V->hasOneUse())
      return false;
    if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
        isa<GlobalValue>(V))
      return false;
    if (isAllocationFn(V, TLI))
      return true;

    Instruction *I = cast<Instruction>(V);
    if (I->mayHaveSideEffects())
      return false;
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
      if (!GEP->hasAllConstantIndices())
        return false;
    } else if (I->getNumOperands() != 1) {
      return false;
    }

    V = I->getOperand(0);
  } while (true);
}

/// This GV is a pointer root.  Loop over all users of the global and clean up
/// any that obviously don't assign the global a value that isn't dynamically
/// allocated.
static bool CleanupPointerRootUsers(GlobalVariable *GV,
                                    const TargetLibraryInfo *TLI) {
  // A brief explanation of leak checkers.  The goal is to find bugs where
  // pointers are forgotten, causing an accumulating growth in memory
  // usage over time.  The common strategy for leak checkers is to whitelist the
  // memory pointed to by globals at exit.  This is popular because it also
  // solves another problem where the main thread of a C++ program may shut down
  // before other threads that are still expecting to use those globals.  To
  // handle that case, we expect the program may create a singleton and never
  // destroy it.

  bool Changed = false;

  // If Dead[n].first is the only use of a malloc result, we can delete its
  // chain of computation and the store to the global in Dead[n].second.
  SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;

  // Constants can't be pointers to dynamically allocated memory.
  for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
       UI != E;) {
    User *U = *UI++;
    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
      Value *V = SI->getValueOperand();
      if (isa<Constant>(V)) {
        Changed = true;
        SI->eraseFromParent();
      } else if (Instruction *I = dyn_cast<Instruction>(V)) {
        if (I->hasOneUse())
          Dead.push_back(std::make_pair(I, SI));
      }
    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
      if (isa<Constant>(MSI->getValue())) {
        Changed = true;
        MSI->eraseFromParent();
      } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
        if (I->hasOneUse())
          Dead.push_back(std::make_pair(I, MSI));
      }
    } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
      GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
      if (MemSrc && MemSrc->isConstant()) {
        Changed = true;
        MTI->eraseFromParent();
      } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
        if (I->hasOneUse())
          Dead.push_back(std::make_pair(I, MTI));
      }
    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
      if (CE->use_empty()) {
        CE->destroyConstant();
        Changed = true;
      }
    } else if (Constant *C = dyn_cast<Constant>(U)) {
      if (isSafeToDestroyConstant(C)) {
        C->destroyConstant();
        // This could have invalidated UI, start over from scratch.
        Dead.clear();
        CleanupPointerRootUsers(GV, TLI);
        return true;
      }
    }
  }

  for (int i = 0, e = Dead.size(); i != e; ++i) {
    if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
      Dead[i].second->eraseFromParent();
      Instruction *I = Dead[i].first;
      do {
        if (isAllocationFn(I, TLI))
          break;
        Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
        if (!J)
          break;
        I->eraseFromParent();
        I = J;
      } while (true);
      I->eraseFromParent();
    }
  }

  return Changed;
}

/// We just marked GV constant.  Loop over all users of the global, cleaning up
/// the obvious ones.  This is largely just a quick scan over the use list to
/// clean up the easy and obvious cruft.  This returns true if it made a change.
static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
                                       const DataLayout &DL,
                                       TargetLibraryInfo *TLI) {
  bool Changed = false;
  // Note that we need to use a weak value handle for the worklist items. When
  // we delete a constant array, we may also be holding pointer to one of its
  // elements (or an element of one of its elements if we're dealing with an
  // array of arrays) in the worklist.
  SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
  while (!WorkList.empty()) {
    Value *UV = WorkList.pop_back_val();
    if (!UV)
      continue;

    User *U = cast<User>(UV);

    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
      if (Init) {
        // Replace the load with the initializer.
        LI->replaceAllUsesWith(Init);
        LI->eraseFromParent();
        Changed = true;
      }
    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
      // Store must be unreachable or storing Init into the global.
      SI->eraseFromParent();
      Changed = true;
    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
      if (CE->getOpcode() == Instruction::GetElementPtr) {
        Constant *SubInit = nullptr;
        if (Init)
          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
        Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
      } else if ((CE->getOpcode() == Instruction::BitCast &&
                  CE->getType()->isPointerTy()) ||
                 CE->getOpcode() == Instruction::AddrSpaceCast) {
        // Pointer cast, delete any stores and memsets to the global.
        Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
      }

      if (CE->use_empty()) {
        CE->destroyConstant();
        Changed = true;
      }
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
      // and will invalidate our notion of what Init is.
      Constant *SubInit = nullptr;
      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
        ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
            ConstantFoldInstruction(GEP, DL, TLI));
        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);

        // If the initializer is an all-null value and we have an inbounds GEP,
        // we already know what the result of any load from that GEP is.
        // TODO: Handle splats.
        if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
          SubInit = Constant::getNullValue(GEP->getResultElementType());
      }
      Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);

      if (GEP->use_empty()) {
        GEP->eraseFromParent();
        Changed = true;
      }
    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
      if (MI->getRawDest() == V) {
        MI->eraseFromParent();
        Changed = true;
      }

    } else if (Constant *C = dyn_cast<Constant>(U)) {
      // If we have a chain of dead constantexprs or other things dangling from
      // us, and if they are all dead, nuke them without remorse.
      if (isSafeToDestroyConstant(C)) {
        C->destroyConstant();
        CleanupConstantGlobalUsers(V, Init, DL, TLI);
        return true;
      }
    }
  }
  return Changed;
}

/// Return true if the specified instruction is a safe user of a derived
/// expression from a global that we want to SROA.
static bool isSafeSROAElementUse(Value *V) {
  // We might have a dead and dangling constant hanging off of here.
  if (Constant *C = dyn_cast<Constant>(V))
    return isSafeToDestroyConstant(C);

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return false;

  // Loads are ok.
  if (isa<LoadInst>(I)) return true;

  // Stores *to* the pointer are ok.
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return SI->getOperand(0) != V;

  // Otherwise, it must be a GEP.
  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
  if (!GEPI) return false;

  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
    return false;

  for (User *U : GEPI->users())
    if (!isSafeSROAElementUse(U))
      return false;
  return true;
}

/// U is a direct user of the specified global value.  Look at it and its uses
/// and decide whether it is safe to SROA this global.
static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
  if (!isa<GetElementPtrInst>(U) &&
      (!isa<ConstantExpr>(U) ||
       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
    return false;

  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
  // don't like < 3 operand CE's, and we don't like non-constant integer
  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
  // value of C.
  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
      !cast<Constant>(U->getOperand(1))->isNullValue() ||
      !isa<ConstantInt>(U->getOperand(2)))
    return false;

  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
  ++GEPI;  // Skip over the pointer index.

  // If this is a use of an array allocation, do a bit more checking for sanity.
  if (GEPI.isSequential()) {
    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));

    // Check to make sure that index falls within the array.  If not,
    // something funny is going on, so we won't do the optimization.
    //
    if (GEPI.isBoundedSequential() &&
        Idx->getZExtValue() >= GEPI.getSequentialNumElements())
      return false;

    // We cannot scalar repl this level of the array unless any array
    // sub-indices are in-range constants.  In particular, consider:
    // A[0][i].  We cannot know that the user isn't doing invalid things like
    // allowing i to index an out-of-range subscript that accesses A[1].
    //
    // Scalar replacing *just* the outer index of the array is probably not
    // going to be a win anyway, so just give up.
    for (++GEPI; // Skip array index.
         GEPI != E;
         ++GEPI) {
      if (GEPI.isStruct())
        continue;

      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
      if (!IdxVal ||
          (GEPI.isBoundedSequential() &&
           IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
        return false;
    }
  }

  return llvm::all_of(U->users(),
                      [](User *UU) { return isSafeSROAElementUse(UU); });
}

/// Look at all uses of the global and decide whether it is safe for us to
/// perform this transformation.
static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
  for (User *U : GV->users())
    if (!IsUserOfGlobalSafeForSRA(U, GV))
      return false;

  return true;
}

/// Copy over the debug info for a variable to its SRA replacements.
static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
                                 uint64_t FragmentOffsetInBits,
                                 uint64_t FragmentSizeInBits,
                                 unsigned NumElements) {
  SmallVector<DIGlobalVariableExpression *, 1> GVs;
  GV->getDebugInfo(GVs);
  for (auto *GVE : GVs) {
    DIVariable *Var = GVE->getVariable();
    DIExpression *Expr = GVE->getExpression();
    if (NumElements > 1) {
      if (auto E = DIExpression::createFragmentExpression(
              Expr, FragmentOffsetInBits, FragmentSizeInBits))
        Expr = *E;
      else
        return;
    }
    auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
    NGV->addDebugInfo(NGVE);
  }
}

/// Perform scalar replacement of aggregates on the specified global variable.
/// This opens the door for other optimizations by exposing the behavior of the
/// program in a more fine-grained way.  We have determined that this
/// transformation is safe already.  We return the first global variable we
/// insert so that the caller can reprocess it.
static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
  // Make sure this global only has simple uses that we can SRA.
  if (!GlobalUsersSafeToSRA(GV))
    return nullptr;

  assert(GV->hasLocalLinkage());
  Constant *Init = GV->getInitializer();
  Type *Ty = Init->getType();

  std::vector<GlobalVariable *> NewGlobals;
  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();

  // Get the alignment of the global, either explicit or target-specific.
  unsigned StartAlignment = GV->getAlignment();
  if (StartAlignment == 0)
    StartAlignment = DL.getABITypeAlignment(GV->getType());

  if (StructType *STy = dyn_cast<StructType>(Ty)) {
    uint64_t FragmentOffset = 0;
    unsigned NumElements = STy->getNumElements();
    NewGlobals.reserve(NumElements);
    const StructLayout &Layout = *DL.getStructLayout(STy);
    for (unsigned i = 0, e = NumElements; i != e; ++i) {
      Constant *In = Init->getAggregateElement(i);
      assert(In && "Couldn't get element of initializer?");
      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
                                               GlobalVariable::InternalLinkage,
                                               In, GV->getName()+"."+Twine(i),
                                               GV->getThreadLocalMode(),
                                              GV->getType()->getAddressSpace());
      NGV->setExternallyInitialized(GV->isExternallyInitialized());
      NGV->copyAttributesFrom(GV);
      Globals.push_back(NGV);
      NewGlobals.push_back(NGV);

      // Calculate the known alignment of the field.  If the original aggregate
      // had 256 byte alignment for example, something might depend on that:
      // propagate info to each field.
      uint64_t FieldOffset = Layout.getElementOffset(i);
      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
      if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
        NGV->setAlignment(NewAlign);

      // Copy over the debug info for the variable.
      FragmentOffset = alignTo(FragmentOffset, NewAlign);
      uint64_t Size = DL.getTypeSizeInBits(NGV->getValueType());
      transferSRADebugInfo(GV, NGV, FragmentOffset, Size, NumElements);
      FragmentOffset += Size;
    }
  } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
    unsigned NumElements = STy->getNumElements();
    if (NumElements > 16 && GV->hasNUsesOrMore(16))
      return nullptr; // It's not worth it.
    NewGlobals.reserve(NumElements);
    auto ElTy = STy->getElementType();
    uint64_t EltSize = DL.getTypeAllocSize(ElTy);
    unsigned EltAlign = DL.getABITypeAlignment(ElTy);
    uint64_t FragmentSizeInBits = DL.getTypeSizeInBits(ElTy);
    for (unsigned i = 0, e = NumElements; i != e; ++i) {
      Constant *In = Init->getAggregateElement(i);
      assert(In && "Couldn't get element of initializer?");

      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
                                               GlobalVariable::InternalLinkage,
                                               In, GV->getName()+"."+Twine(i),
                                               GV->getThreadLocalMode(),
                                              GV->getType()->getAddressSpace());
      NGV->setExternallyInitialized(GV->isExternallyInitialized());
      NGV->copyAttributesFrom(GV);
      Globals.push_back(NGV);
      NewGlobals.push_back(NGV);

      // Calculate the known alignment of the field.  If the original aggregate
      // had 256 byte alignment for example, something might depend on that:
      // propagate info to each field.
      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
      if (NewAlign > EltAlign)
        NGV->setAlignment(NewAlign);
      transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits,
                           NumElements);
    }
  }

  if (NewGlobals.empty())
    return nullptr;

  DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");

  Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));

  // Loop over all of the uses of the global, replacing the constantexpr geps,
  // with smaller constantexpr geps or direct references.
  while (!GV->use_empty()) {
    User *GEP = GV->user_back();
    assert(((isa<ConstantExpr>(GEP) &&
             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");

    // Ignore the 1th operand, which has to be zero or else the program is quite
    // broken (undefined).  Get the 2nd operand, which is the structure or array
    // index.
    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.

    Value *NewPtr = NewGlobals[Val];
    Type *NewTy = NewGlobals[Val]->getValueType();

    // Form a shorter GEP if needed.
    if (GEP->getNumOperands() > 3) {
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
        SmallVector<Constant*, 8> Idxs;
        Idxs.push_back(NullInt);
        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
          Idxs.push_back(CE->getOperand(i));
        NewPtr =
            ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
      } else {
        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
        SmallVector<Value*, 8> Idxs;
        Idxs.push_back(NullInt);
        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
          Idxs.push_back(GEPI->getOperand(i));
        NewPtr = GetElementPtrInst::Create(
            NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
      }
    }
    GEP->replaceAllUsesWith(NewPtr);

    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
      GEPI->eraseFromParent();
    else
      cast<ConstantExpr>(GEP)->destroyConstant();
  }

  // Delete the old global, now that it is dead.
  Globals.erase(GV);
  ++NumSRA;

  // Loop over the new globals array deleting any globals that are obviously
  // dead.  This can arise due to scalarization of a structure or an array that
  // has elements that are dead.
  unsigned FirstGlobal = 0;
  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
    if (NewGlobals[i]->use_empty()) {
      Globals.erase(NewGlobals[i]);
      if (FirstGlobal == i) ++FirstGlobal;
    }

  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
}

/// Return true if all users of the specified value will trap if the value is
/// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
/// reprocessing them.
static bool AllUsesOfValueWillTrapIfNull(const Value *V,
                                        SmallPtrSetImpl<const PHINode*> &PHIs) {
  for (const User *U : V->users())
    if (isa<LoadInst>(U)) {
      // Will trap.
    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
      if (SI->getOperand(0) == V) {
        //cerr << "NONTRAPPING USE: " << *U;
        return false;  // Storing the value.
      }
    } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
      if (CI->getCalledValue() != V) {
        //cerr << "NONTRAPPING USE: " << *U;
        return false;  // Not calling the ptr
      }
    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
      if (II->getCalledValue() != V) {
        //cerr << "NONTRAPPING USE: " << *U;
        return false;  // Not calling the ptr
      }
    } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
      // If we've already seen this phi node, ignore it, it has already been
      // checked.
      if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
        return false;
    } else if (isa<ICmpInst>(U) &&
               isa<ConstantPointerNull>(U->getOperand(1))) {
      // Ignore icmp X, null
    } else {
      //cerr << "NONTRAPPING USE: " << *U;
      return false;
    }

  return true;
}

/// Return true if all uses of any loads from GV will trap if the loaded value
/// is null.  Note that this also permits comparisons of the loaded value
/// against null, as a special case.
static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
  for (const User *U : GV->users())
    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
      SmallPtrSet<const PHINode*, 8> PHIs;
      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
        return false;
    } else if (isa<StoreInst>(U)) {
      // Ignore stores to the global.
    } else {
      // We don't know or understand this user, bail out.
      //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
      return false;
    }
  return true;
}

static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
  bool Changed = false;
  for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
    Instruction *I = cast<Instruction>(*UI++);
    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
      LI->setOperand(0, NewV);
      Changed = true;
    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
      if (SI->getOperand(1) == V) {
        SI->setOperand(1, NewV);
        Changed = true;
      }
    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
      CallSite CS(I);
      if (CS.getCalledValue() == V) {
        // Calling through the pointer!  Turn into a direct call, but be careful
        // that the pointer is not also being passed as an argument.
        CS.setCalledFunction(NewV);
        Changed = true;
        bool PassedAsArg = false;
        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
          if (CS.getArgument(i) == V) {
            PassedAsArg = true;
            CS.setArgument(i, NewV);
          }

        if (PassedAsArg) {
          // Being passed as an argument also.  Be careful to not invalidate UI!
          UI = V->user_begin();
        }
      }
    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
                                ConstantExpr::getCast(CI->getOpcode(),
                                                      NewV, CI->getType()));
      if (CI->use_empty()) {
        Changed = true;
        CI->eraseFromParent();
      }
    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
      // Should handle GEP here.
      SmallVector<Constant*, 8> Idxs;
      Idxs.reserve(GEPI->getNumOperands()-1);
      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
           i != e; ++i)
        if (Constant *C = dyn_cast<Constant>(*i))
          Idxs.push_back(C);
        else
          break;
      if (Idxs.size() == GEPI->getNumOperands()-1)
        Changed |= OptimizeAwayTrappingUsesOfValue(
            GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs));
      if (GEPI->use_empty()) {
        Changed = true;
        GEPI->eraseFromParent();
      }
    }
  }

  return Changed;
}

/// The specified global has only one non-null value stored into it.  If there
/// are uses of the loaded value that would trap if the loaded value is
/// dynamically null, then we know that they cannot be reachable with a null
/// optimize away the load.
static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
                                            const DataLayout &DL,
                                            TargetLibraryInfo *TLI) {
  bool Changed = false;

  // Keep track of whether we are able to remove all the uses of the global
  // other than the store that defines it.
  bool AllNonStoreUsesGone = true;

  // Replace all uses of loads with uses of uses of the stored value.
  for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
    User *GlobalUser = *GUI++;
    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
      // If we were able to delete all uses of the loads
      if (LI->use_empty()) {
        LI->eraseFromParent();
        Changed = true;
      } else {
        AllNonStoreUsesGone = false;
      }
    } else if (isa<StoreInst>(GlobalUser)) {
      // Ignore the store that stores "LV" to the global.
      assert(GlobalUser->getOperand(1) == GV &&
             "Must be storing *to* the global");
    } else {
      AllNonStoreUsesGone = false;

      // If we get here we could have other crazy uses that are transitively
      // loaded.
      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
              isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
              isa<BitCastInst>(GlobalUser) ||
              isa<GetElementPtrInst>(GlobalUser)) &&
             "Only expect load and stores!");
    }
  }

  if (Changed) {
    DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n");
    ++NumGlobUses;
  }

  // If we nuked all of the loads, then none of the stores are needed either,
  // nor is the global.
  if (AllNonStoreUsesGone) {
    if (isLeakCheckerRoot(GV)) {
      Changed |= CleanupPointerRootUsers(GV, TLI);
    } else {
      Changed = true;
      CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
    }
    if (GV->use_empty()) {
      DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
      Changed = true;
      GV->eraseFromParent();
      ++NumDeleted;
    }
  }
  return Changed;
}

/// Walk the use list of V, constant folding all of the instructions that are
/// foldable.
static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
                                TargetLibraryInfo *TLI) {
  for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
    if (Instruction *I = dyn_cast<Instruction>(*UI++))
      if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
        I->replaceAllUsesWith(NewC);

        // Advance UI to the next non-I use to avoid invalidating it!
        // Instructions could multiply use V.
        while (UI != E && *UI == I)
          ++UI;
        if (isInstructionTriviallyDead(I, TLI))
          I->eraseFromParent();
      }
}

/// This function takes the specified global variable, and transforms the
/// program as if it always contained the result of the specified malloc.
/// Because it is always the result of the specified malloc, there is no reason
/// to actually DO the malloc.  Instead, turn the malloc into a global, and any
/// loads of GV as uses of the new global.
static GlobalVariable *
OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
                              ConstantInt *NElements, const DataLayout &DL,
                              TargetLibraryInfo *TLI) {
  DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');

  Type *GlobalType;
  if (NElements->getZExtValue() == 1)
    GlobalType = AllocTy;
  else
    // If we have an array allocation, the global variable is of an array.
    GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());

  // Create the new global variable.  The contents of the malloc'd memory is
  // undefined, so initialize with an undef value.
  GlobalVariable *NewGV = new GlobalVariable(
      *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
      UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
      GV->getThreadLocalMode());

  // If there are bitcast users of the malloc (which is typical, usually we have
  // a malloc + bitcast) then replace them with uses of the new global.  Update
  // other users to use the global as well.
  BitCastInst *TheBC = nullptr;
  while (!CI->use_empty()) {
    Instruction *User = cast<Instruction>(CI->user_back());
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
      if (BCI->getType() == NewGV->getType()) {
        BCI->replaceAllUsesWith(NewGV);
        BCI->eraseFromParent();
      } else {
        BCI->setOperand(0, NewGV);
      }
    } else {
      if (!TheBC)
        TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
      User->replaceUsesOfWith(CI, TheBC);
    }
  }

  Constant *RepValue = NewGV;
  if (NewGV->getType() != GV->getValueType())
    RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());

  // If there is a comparison against null, we will insert a global bool to
  // keep track of whether the global was initialized yet or not.
  GlobalVariable *InitBool =
    new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
                       GlobalValue::InternalLinkage,
                       ConstantInt::getFalse(GV->getContext()),
                       GV->getName()+".init", GV->getThreadLocalMode());
  bool InitBoolUsed = false;

  // Loop over all uses of GV, processing them in turn.
  while (!GV->use_empty()) {
    if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
      // The global is initialized when the store to it occurs.
      new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
                    SI->getOrdering(), SI->getSyncScopeID(), SI);
      SI->eraseFromParent();
      continue;
    }

    LoadInst *LI = cast<LoadInst>(GV->user_back());
    while (!LI->use_empty()) {
      Use &LoadUse = *LI->use_begin();
      ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
      if (!ICI) {
        LoadUse = RepValue;
        continue;
      }

      // Replace the cmp X, 0 with a use of the bool value.
      // Sink the load to where the compare was, if atomic rules allow us to.
      Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
                               LI->getOrdering(), LI->getSyncScopeID(),
                               LI->isUnordered() ? (Instruction*)ICI : LI);
      InitBoolUsed = true;
      switch (ICI->getPredicate()) {
      default: llvm_unreachable("Unknown ICmp Predicate!");
      case ICmpInst::ICMP_ULT:
      case ICmpInst::ICMP_SLT:   // X < null -> always false
        LV = ConstantInt::getFalse(GV->getContext());
        break;
      case ICmpInst::ICMP_ULE:
      case ICmpInst::ICMP_SLE:
      case ICmpInst::ICMP_EQ:
        LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
        break;
      case ICmpInst::ICMP_NE:
      case ICmpInst::ICMP_UGE:
      case ICmpInst::ICMP_SGE:
      case ICmpInst::ICMP_UGT:
      case ICmpInst::ICMP_SGT:
        break;  // no change.
      }
      ICI->replaceAllUsesWith(LV);
      ICI->eraseFromParent();
    }
    LI->eraseFromParent();
  }

  // If the initialization boolean was used, insert it, otherwise delete it.
  if (!InitBoolUsed) {
    while (!InitBool->use_empty())  // Delete initializations
      cast<StoreInst>(InitBool->user_back())->eraseFromParent();
    delete InitBool;
  } else
    GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);

  // Now the GV is dead, nuke it and the malloc..
  GV->eraseFromParent();
  CI->eraseFromParent();

  // To further other optimizations, loop over all users of NewGV and try to
  // constant prop them.  This will promote GEP instructions with constant
  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
  ConstantPropUsersOf(NewGV, DL, TLI);
  if (RepValue != NewGV)
    ConstantPropUsersOf(RepValue, DL, TLI);

  return NewGV;
}

/// Scan the use-list of V checking to make sure that there are no complex uses
/// of V.  We permit simple things like dereferencing the pointer, but not
/// storing through the address, unless it is to the specified global.
static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
                                                      const GlobalVariable *GV,
                                        SmallPtrSetImpl<const PHINode*> &PHIs) {
  for (const User *U : V->users()) {
    const Instruction *Inst = cast<Instruction>(U);

    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
      continue; // Fine, ignore.
    }

    if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
        return false;  // Storing the pointer itself... bad.
      continue; // Otherwise, storing through it, or storing into GV... fine.
    }

    // Must index into the array and into the struct.
    if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
        return false;
      continue;
    }

    if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
      // cycles.
      if (PHIs.insert(PN).second)
        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
          return false;
      continue;
    }

    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
        return false;
      continue;
    }

    return false;
  }
  return true;
}

/// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
/// allocation into loads from the global and uses of the resultant pointer.
/// Further, delete the store into GV.  This assumes that these value pass the
/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
                                          GlobalVariable *GV) {
  while (!Alloc->use_empty()) {
    Instruction *U = cast<Instruction>(*Alloc->user_begin());
    Instruction *InsertPt = U;
    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
      // If this is the store of the allocation into the global, remove it.
      if (SI->getOperand(1) == GV) {
        SI->eraseFromParent();
        continue;
      }
    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
      // Insert the load in the corresponding predecessor, not right before the
      // PHI.
      InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
    } else if (isa<BitCastInst>(U)) {
      // Must be bitcast between the malloc and store to initialize the global.
      ReplaceUsesOfMallocWithGlobal(U, GV);
      U->eraseFromParent();
      continue;
    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
      // If this is a "GEP bitcast" and the user is a store to the global, then
      // just process it as a bitcast.
      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
          if (SI->getOperand(1) == GV) {
            // Must be bitcast GEP between the malloc and store to initialize
            // the global.
            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
            GEPI->eraseFromParent();
            continue;
          }
    }

    // Insert a load from the global, and use it instead of the malloc.
    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
    U->replaceUsesOfWith(Alloc, NL);
  }
}

/// Verify that all uses of V (a load, or a phi of a load) are simple enough to
/// perform heap SRA on.  This permits GEP's that index through the array and
/// struct field, icmps of null, and PHIs.
static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
                        SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
                        SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
  // We permit two users of the load: setcc comparing against the null
  // pointer, and a getelementptr of a specific form.
  for (const User *U : V->users()) {
    const Instruction *UI = cast<Instruction>(U);

    // Comparison against null is ok.
    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
        return false;
      continue;
    }

    // getelementptr is also ok, but only a simple form.
    if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
      // Must index into the array and into the struct.
      if (GEPI->getNumOperands() < 3)
        return false;

      // Otherwise the GEP is ok.
      continue;
    }

    if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
      if (!LoadUsingPHIsPerLoad.insert(PN).second)
        // This means some phi nodes are dependent on each other.
        // Avoid infinite looping!
        return false;
      if (!LoadUsingPHIs.insert(PN).second)
        // If we have already analyzed this PHI, then it is safe.
        continue;

      // Make sure all uses of the PHI are simple enough to transform.
      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
        return false;

      continue;
    }

    // Otherwise we don't know what this is, not ok.
    return false;
  }

  return true;
}

/// If all users of values loaded from GV are simple enough to perform HeapSRA,
/// return true.
static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
                                                    Instruction *StoredVal) {
  SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
  SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
  for (const User *U : GV->users())
    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
                                          LoadUsingPHIsPerLoad))
        return false;
      LoadUsingPHIsPerLoad.clear();
    }

  // If we reach here, we know that all uses of the loads and transitive uses
  // (through PHI nodes) are simple enough to transform.  However, we don't know
  // that all inputs the to the PHI nodes are in the same equivalence sets.
  // Check to verify that all operands of the PHIs are either PHIS that can be
  // transformed, loads from GV, or MI itself.
  for (const PHINode *PN : LoadUsingPHIs) {
    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
      Value *InVal = PN->getIncomingValue(op);

      // PHI of the stored value itself is ok.
      if (InVal == StoredVal) continue;

      if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
        // One of the PHIs in our set is (optimistically) ok.
        if (LoadUsingPHIs.count(InPN))
          continue;
        return false;
      }

      // Load from GV is ok.
      if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
        if (LI->getOperand(0) == GV)
          continue;

      // UNDEF? NULL?

      // Anything else is rejected.
      return false;
    }
  }

  return true;
}

static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
              DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
                   std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
  std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];

  if (FieldNo >= FieldVals.size())
    FieldVals.resize(FieldNo+1);

  // If we already have this value, just reuse the previously scalarized
  // version.
  if (Value *FieldVal = FieldVals[FieldNo])
    return FieldVal;

  // Depending on what instruction this is, we have several cases.
  Value *Result;
  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
    // This is a scalarized version of the load from the global.  Just create
    // a new Load of the scalarized global.
    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
                                           InsertedScalarizedValues,
                                           PHIsToRewrite),
                          LI->getName()+".f"+Twine(FieldNo), LI);
  } else {
    PHINode *PN = cast<PHINode>(V);
    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
    // field.

    PointerType *PTy = cast<PointerType>(PN->getType());
    StructType *ST = cast<StructType>(PTy->getElementType());

    unsigned AS = PTy->getAddressSpace();
    PHINode *NewPN =
      PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
                     PN->getNumIncomingValues(),
                     PN->getName()+".f"+Twine(FieldNo), PN);
    Result = NewPN;
    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
  }

  return FieldVals[FieldNo] = Result;
}

/// Given a load instruction and a value derived from the load, rewrite the
/// derived value to use the HeapSRoA'd load.
static void RewriteHeapSROALoadUser(Instruction *LoadUser,
              DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
                   std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
  // If this is a comparison against null, handle it.
  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
    // If we have a setcc of the loaded pointer, we can use a setcc of any
    // field.
    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
                                   InsertedScalarizedValues, PHIsToRewrite);

    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
                              Constant::getNullValue(NPtr->getType()),
                              SCI->getName());
    SCI->replaceAllUsesWith(New);
    SCI->eraseFromParent();
    return;
  }

  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
           && "Unexpected GEPI!");

    // Load the pointer for this field.
    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
                                     InsertedScalarizedValues, PHIsToRewrite);

    // Create the new GEP idx vector.
    SmallVector<Value*, 8> GEPIdx;
    GEPIdx.push_back(GEPI->getOperand(1));
    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());

    Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
                                             GEPI->getName(), GEPI);
    GEPI->replaceAllUsesWith(NGEPI);
    GEPI->eraseFromParent();
    return;
  }

  // Recursively transform the users of PHI nodes.  This will lazily create the
  // PHIs that are needed for individual elements.  Keep track of what PHIs we
  // see in InsertedScalarizedValues so that we don't get infinite loops (very
  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
  // already been seen first by another load, so its uses have already been
  // processed.
  PHINode *PN = cast<PHINode>(LoadUser);
  if (!InsertedScalarizedValues.insert(std::make_pair(PN,
                                              std::vector<Value *>())).second)
    return;

  // If this is the first time we've seen this PHI, recursively process all
  // users.
  for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
    Instruction *User = cast<Instruction>(*UI++);
    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
  }
}

/// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
/// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
/// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
              DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
                  std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
  for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
    Instruction *User = cast<Instruction>(*UI++);
    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
  }

  if (Load->use_empty()) {
    Load->eraseFromParent();
    InsertedScalarizedValues.erase(Load);
  }
}

/// CI is an allocation of an array of structures.  Break it up into multiple
/// allocations of arrays of the fields.
static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
                                            Value *NElems, const DataLayout &DL,
                                            const TargetLibraryInfo *TLI) {
  DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
  Type *MAT = getMallocAllocatedType(CI, TLI);
  StructType *STy = cast<StructType>(MAT);

  // There is guaranteed to be at least one use of the malloc (storing
  // it into GV).  If there are other uses, change them to be uses of
  // the global to simplify later code.  This also deletes the store
  // into GV.
  ReplaceUsesOfMallocWithGlobal(CI, GV);

  // Okay, at this point, there are no users of the malloc.  Insert N
  // new mallocs at the same place as CI, and N globals.
  std::vector<Value *> FieldGlobals;
  std::vector<Value *> FieldMallocs;

  SmallVector<OperandBundleDef, 1> OpBundles;
  CI->getOperandBundlesAsDefs(OpBundles);

  unsigned AS = GV->getType()->getPointerAddressSpace();
  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
    Type *FieldTy = STy->getElementType(FieldNo);
    PointerType *PFieldTy = PointerType::get(FieldTy, AS);

    GlobalVariable *NGV = new GlobalVariable(
        *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
        Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
        nullptr, GV->getThreadLocalMode());
    NGV->copyAttributesFrom(GV);
    FieldGlobals.push_back(NGV);

    unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
    if (StructType *ST = dyn_cast<StructType>(FieldTy))
      TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
    Type *IntPtrTy = DL.getIntPtrType(CI->getType());
    Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
                                        ConstantInt::get(IntPtrTy, TypeSize),
                                        NElems, OpBundles, nullptr,
                                        CI->getName() + ".f" + Twine(FieldNo));
    FieldMallocs.push_back(NMI);
    new StoreInst(NMI, NGV, CI);
  }

  // The tricky aspect of this transformation is handling the case when malloc
  // fails.  In the original code, malloc failing would set the result pointer
  // of malloc to null.  In this case, some mallocs could succeed and others
  // could fail.  As such, we emit code that looks like this:
  //    F0 = malloc(field0)
  //    F1 = malloc(field1)
  //    F2 = malloc(field2)
  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
  //      if (F0) { free(F0); F0 = 0; }
  //      if (F1) { free(F1); F1 = 0; }
  //      if (F2) { free(F2); F2 = 0; }
  //    }
  // The malloc can also fail if its argument is too large.
  Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
  Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
                                  ConstantZero, "isneg");
  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
    Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
                             Constant::getNullValue(FieldMallocs[i]->getType()),
                               "isnull");
    RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
  }

  // Split the basic block at the old malloc.
  BasicBlock *OrigBB = CI->getParent();
  BasicBlock *ContBB =
      OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");

  // Create the block to check the first condition.  Put all these blocks at the
  // end of the function as they are unlikely to be executed.
  BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
                                                "malloc_ret_null",
                                                OrigBB->getParent());

  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
  // branch on RunningOr.
  OrigBB->getTerminator()->eraseFromParent();
  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);

  // Within the NullPtrBlock, we need to emit a comparison and branch for each
  // pointer, because some may be null while others are not.
  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
                              Constant::getNullValue(GVVal->getType()));
    BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
                                               OrigBB->getParent());
    BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
                                               OrigBB->getParent());
    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
                                         Cmp, NullPtrBlock);

    // Fill in FreeBlock.
    CallInst::CreateFree(GVVal, OpBundles, BI);
    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
                  FreeBlock);
    BranchInst::Create(NextBlock, FreeBlock);

    NullPtrBlock = NextBlock;
  }

  BranchInst::Create(ContBB, NullPtrBlock);

  // CI is no longer needed, remove it.
  CI->eraseFromParent();

  /// As we process loads, if we can't immediately update all uses of the load,
  /// keep track of what scalarized loads are inserted for a given load.
  DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
  InsertedScalarizedValues[GV] = FieldGlobals;

  std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;

  // Okay, the malloc site is completely handled.  All of the uses of GV are now
  // loads, and all uses of those loads are simple.  Rewrite them to use loads
  // of the per-field globals instead.
  for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
    Instruction *User = cast<Instruction>(*UI++);

    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
      continue;
    }

    // Must be a store of null.
    StoreInst *SI = cast<StoreInst>(User);
    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
           "Unexpected heap-sra user!");

    // Insert a store of null into each global.
    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
      Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
      Constant *Null = Constant::getNullValue(ValTy);
      new StoreInst(Null, FieldGlobals[i], SI);
    }
    // Erase the original store.
    SI->eraseFromParent();
  }

  // While we have PHIs that are interesting to rewrite, do it.
  while (!PHIsToRewrite.empty()) {
    PHINode *PN = PHIsToRewrite.back().first;
    unsigned FieldNo = PHIsToRewrite.back().second;
    PHIsToRewrite.pop_back();
    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");

    // Add all the incoming values.  This can materialize more phis.
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
      Value *InVal = PN->getIncomingValue(i);
      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
                               PHIsToRewrite);
      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
    }
  }

  // Drop all inter-phi links and any loads that made it this far.
  for (DenseMap<Value *, std::vector<Value *>>::iterator
       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
       I != E; ++I) {
    if (PHINode *PN = dyn_cast<PHINode>(I->first))
      PN->dropAllReferences();
    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
      LI->dropAllReferences();
  }

  // Delete all the phis and loads now that inter-references are dead.
  for (DenseMap<Value *, std::vector<Value *>>::iterator
       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
       I != E; ++I) {
    if (PHINode *PN = dyn_cast<PHINode>(I->first))
      PN->eraseFromParent();
    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
      LI->eraseFromParent();
  }

  // The old global is now dead, remove it.
  GV->eraseFromParent();

  ++NumHeapSRA;
  return cast<GlobalVariable>(FieldGlobals[0]);
}

/// This function is called when we see a pointer global variable with a single
/// value stored it that is a malloc or cast of malloc.
static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
                                               Type *AllocTy,
                                               AtomicOrdering Ordering,
                                               const DataLayout &DL,
                                               TargetLibraryInfo *TLI) {
  // If this is a malloc of an abstract type, don't touch it.
  if (!AllocTy->isSized())
    return false;

  // We can't optimize this global unless all uses of it are *known* to be
  // of the malloc value, not of the null initializer value (consider a use
  // that compares the global's value against zero to see if the malloc has
  // been reached).  To do this, we check to see if all uses of the global
  // would trap if the global were null: this proves that they must all
  // happen after the malloc.
  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
    return false;

  // We can't optimize this if the malloc itself is used in a complex way,
  // for example, being stored into multiple globals.  This allows the
  // malloc to be stored into the specified global, loaded icmp'd, and
  // GEP'd.  These are all things we could transform to using the global
  // for.
  SmallPtrSet<const PHINode*, 8> PHIs;
  if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
    return false;

  // If we have a global that is only initialized with a fixed size malloc,
  // transform the program to use global memory instead of malloc'd memory.
  // This eliminates dynamic allocation, avoids an indirection accessing the
  // data, and exposes the resultant global to further GlobalOpt.
  // We cannot optimize the malloc if we cannot determine malloc array size.
  Value *NElems = getMallocArraySize(CI, DL, TLI, true);
  if (!NElems)
    return false;

  if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
    // Restrict this transformation to only working on small allocations
    // (2048 bytes currently), as we don't want to introduce a 16M global or
    // something.
    if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
      OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
      return true;
    }

  // If the allocation is an array of structures, consider transforming this
  // into multiple malloc'd arrays, one for each field.  This is basically
  // SRoA for malloc'd memory.

  if (Ordering != AtomicOrdering::NotAtomic)
    return false;

  // If this is an allocation of a fixed size array of structs, analyze as a
  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
  if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
    if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
      AllocTy = AT->getElementType();

  StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
  if (!AllocSTy)
    return false;

  // This the structure has an unreasonable number of fields, leave it
  // alone.
  if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
      AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {

    // If this is a fixed size array, transform the Malloc to be an alloc of
    // structs.  malloc [100 x struct],1 -> malloc struct, 100
    if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
      Type *IntPtrTy = DL.getIntPtrType(CI->getType());
      unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
      Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
      Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
      SmallVector<OperandBundleDef, 1> OpBundles;
      CI->getOperandBundlesAsDefs(OpBundles);
      Instruction *Malloc =
          CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
                                 OpBundles, nullptr, CI->getName());
      Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
      CI->replaceAllUsesWith(Cast);
      CI->eraseFromParent();
      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
        CI = cast<CallInst>(BCI->getOperand(0));
      else
        CI = cast<CallInst>(Malloc);
    }

    PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
                         TLI);
    return true;
  }

  return false;
}

// Try to optimize globals based on the knowledge that only one value (besides
// its initializer) is ever stored to the global.
static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
                                     AtomicOrdering Ordering,
                                     const DataLayout &DL,
                                     TargetLibraryInfo *TLI) {
  // Ignore no-op GEPs and bitcasts.
  StoredOnceVal = StoredOnceVal->stripPointerCasts();

  // If we are dealing with a pointer global that is initialized to null and
  // only has one (non-null) value stored into it, then we can optimize any
  // users of the loaded value (often calls and loads) that would trap if the
  // value was null.
  if (GV->getInitializer()->getType()->isPointerTy() &&
      GV->getInitializer()->isNullValue()) {
    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
      if (GV->getInitializer()->getType() != SOVC->getType())
        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());

      // Optimize away any trapping uses of the loaded value.
      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
        return true;
    } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
      Type *MallocType = getMallocAllocatedType(CI, TLI);
      if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
                                                           Ordering, DL, TLI))
        return true;
    }
  }

  return false;
}

/// At this point, we have learned that the only two values ever stored into GV
/// are its initializer and OtherVal.  See if we can shrink the global into a
/// boolean and select between the two values whenever it is used.  This exposes
/// the values to other scalar optimizations.
static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
  Type *GVElType = GV->getValueType();

  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
  // an FP value, pointer or vector, don't do this optimization because a select
  // between them is very expensive and unlikely to lead to later
  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
  // where v1 and v2 both require constant pool loads, a big loss.
  if (GVElType == Type::getInt1Ty(GV->getContext()) ||
      GVElType->isFloatingPointTy() ||
      GVElType->isPointerTy() || GVElType->isVectorTy())
    return false;

  // Walk the use list of the global seeing if all the uses are load or store.
  // If there is anything else, bail out.
  for (User *U : GV->users())
    if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
      return false;

  DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");

  // Create the new global, initializing it to false.
  GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
                                             false,
                                             GlobalValue::InternalLinkage,
                                        ConstantInt::getFalse(GV->getContext()),
                                             GV->getName()+".b",
                                             GV->getThreadLocalMode(),
                                             GV->getType()->getAddressSpace());
  NewGV->copyAttributesFrom(GV);
  GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);

  Constant *InitVal = GV->getInitializer();
  assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
         "No reason to shrink to bool!");

  SmallVector<DIGlobalVariableExpression *, 1> GVs;
  GV->getDebugInfo(GVs);

  // If initialized to zero and storing one into the global, we can use a cast
  // instead of a select to synthesize the desired value.
  bool IsOneZero = false;
  bool EmitOneOrZero = true;
  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)){
    IsOneZero = InitVal->isNullValue() && CI->isOne();

    if (ConstantInt *CIInit = dyn_cast<ConstantInt>(GV->getInitializer())){
      uint64_t ValInit = CIInit->getZExtValue();
      uint64_t ValOther = CI->getZExtValue();
      uint64_t ValMinus = ValOther - ValInit;

      for(auto *GVe : GVs){
        DIGlobalVariable *DGV = GVe->getVariable();
        DIExpression *E = GVe->getExpression();

        // It is expected that the address of global optimized variable is on
        // top of the stack. After optimization, value of that variable will
        // be ether 0 for initial value or 1 for other value. The following
        // expression should return constant integer value depending on the
        // value at global object address:
        // val * (ValOther - ValInit) + ValInit:
        // DW_OP_deref DW_OP_constu <ValMinus>
        // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
        E = DIExpression::get(NewGV->getContext(),
                             {dwarf::DW_OP_deref,
                              dwarf::DW_OP_constu,
                              ValMinus,
                              dwarf::DW_OP_mul,
                              dwarf::DW_OP_constu,
                              ValInit,
                              dwarf::DW_OP_plus,
                              dwarf::DW_OP_stack_value});
        DIGlobalVariableExpression *DGVE =
          DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
        NewGV->addDebugInfo(DGVE);
     }
     EmitOneOrZero = false;
    }
  }

  if (EmitOneOrZero) {
     // FIXME: This will only emit address for debugger on which will
     // be written only 0 or 1.
     for(auto *GV : GVs)
       NewGV->addDebugInfo(GV);
   }

  while (!GV->use_empty()) {
    Instruction *UI = cast<Instruction>(GV->user_back());
    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
      // Change the store into a boolean store.
      bool StoringOther = SI->getOperand(0) == OtherVal;
      // Only do this if we weren't storing a loaded value.
      Value *StoreVal;
      if (StoringOther || SI->getOperand(0) == InitVal) {
        StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
                                    StoringOther);
      } else {
        // Otherwise, we are storing a previously loaded copy.  To do this,
        // change the copy from copying the original value to just copying the
        // bool.
        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));

        // If we've already replaced the input, StoredVal will be a cast or
        // select instruction.  If not, it will be a load of the original
        // global.
        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
          assert(LI->getOperand(0) == GV && "Not a copy!");
          // Insert a new load, to preserve the saved value.
          StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
                                  LI->getOrdering(), LI->getSyncScopeID(), LI);
        } else {
          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
                 "This is not a form that we understand!");
          StoreVal = StoredVal->getOperand(0);
          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
        }
      }
      new StoreInst(StoreVal, NewGV, false, 0,
                    SI->getOrdering(), SI->getSyncScopeID(), SI);
    } else {
      // Change the load into a load of bool then a select.
      LoadInst *LI = cast<LoadInst>(UI);
      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
      Value *NSI;
      if (IsOneZero)
        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
      else
        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
      NSI->takeName(LI);
      LI->replaceAllUsesWith(NSI);
    }
    UI->eraseFromParent();
  }

  // Retain the name of the old global variable. People who are debugging their
  // programs may expect these variables to be named the same.
  NewGV->takeName(GV);
  GV->eraseFromParent();
  return true;
}

static bool deleteIfDead(GlobalValue &GV,
                         SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
  GV.removeDeadConstantUsers();

  if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
    return false;

  if (const Comdat *C = GV.getComdat())
    if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
      return false;

  bool Dead;
  if (auto *F = dyn_cast<Function>(&GV))
    Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
  else
    Dead = GV.use_empty();
  if (!Dead)
    return false;

  DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
  GV.eraseFromParent();
  ++NumDeleted;
  return true;
}

static bool isPointerValueDeadOnEntryToFunction(
    const Function *F, GlobalValue *GV,
    function_ref<DominatorTree &(Function &)> LookupDomTree) {
  // Find all uses of GV. We expect them all to be in F, and if we can't
  // identify any of the uses we bail out.
  //
  // On each of these uses, identify if the memory that GV points to is
  // used/required/live at the start of the function. If it is not, for example
  // if the first thing the function does is store to the GV, the GV can
  // possibly be demoted.
  //
  // We don't do an exhaustive search for memory operations - simply look
  // through bitcasts as they're quite common and benign.
  const DataLayout &DL = GV->getParent()->getDataLayout();
  SmallVector<LoadInst *, 4> Loads;
  SmallVector<StoreInst *, 4> Stores;
  for (auto *U : GV->users()) {
    if (Operator::getOpcode(U) == Instruction::BitCast) {
      for (auto *UU : U->users()) {
        if (auto *LI = dyn_cast<LoadInst>(UU))
          Loads.push_back(LI);
        else if (auto *SI = dyn_cast<StoreInst>(UU))
          Stores.push_back(SI);
        else
          return false;
      }
      continue;
    }

    Instruction *I = dyn_cast<Instruction>(U);
    if (!I)
      return false;
    assert(I->getParent()->getParent() == F);

    if (auto *LI = dyn_cast<LoadInst>(I))
      Loads.push_back(LI);
    else if (auto *SI = dyn_cast<StoreInst>(I))
      Stores.push_back(SI);
    else
      return false;
  }

  // We have identified all uses of GV into loads and stores. Now check if all
  // of them are known not to depend on the value of the global at the function
  // entry point. We do this by ensuring that every load is dominated by at
  // least one store.
  auto &DT = LookupDomTree(*const_cast<Function *>(F));

  // The below check is quadratic. Check we're not going to do too many tests.
  // FIXME: Even though this will always have worst-case quadratic time, we
  // could put effort into minimizing the average time by putting stores that
  // have been shown to dominate at least one load at the beginning of the
  // Stores array, making subsequent dominance checks more likely to succeed
  // early.
  //
  // The threshold here is fairly large because global->local demotion is a
  // very powerful optimization should it fire.
  const unsigned Threshold = 100;
  if (Loads.size() * Stores.size() > Threshold)
    return false;

  for (auto *L : Loads) {
    auto *LTy = L->getType();
    if (none_of(Stores, [&](const StoreInst *S) {
          auto *STy = S->getValueOperand()->getType();
          // The load is only dominated by the store if DomTree says so
          // and the number of bits loaded in L is less than or equal to
          // the number of bits stored in S.
          return DT.dominates(S, L) &&
                 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
        }))
      return false;
  }
  // All loads have known dependences inside F, so the global can be localized.
  return true;
}

/// C may have non-instruction users. Can all of those users be turned into
/// instructions?
static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
  // We don't do this exhaustively. The most common pattern that we really need
  // to care about is a constant GEP or constant bitcast - so just looking
  // through one single ConstantExpr.
  //
  // The set of constants that this function returns true for must be able to be
  // handled by makeAllConstantUsesInstructions.
  for (auto *U : C->users()) {
    if (isa<Instruction>(U))
      continue;
    if (!isa<ConstantExpr>(U))
      // Non instruction, non-constantexpr user; cannot convert this.
      return false;
    for (auto *UU : U->users())
      if (!isa<Instruction>(UU))
        // A constantexpr used by another constant. We don't try and recurse any
        // further but just bail out at this point.
        return false;
  }

  return true;
}

/// C may have non-instruction users, and
/// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
/// non-instruction users to instructions.
static void makeAllConstantUsesInstructions(Constant *C) {
  SmallVector<ConstantExpr*,4> Users;
  for (auto *U : C->users()) {
    if (isa<ConstantExpr>(U))
      Users.push_back(cast<ConstantExpr>(U));
    else
      // We should never get here; allNonInstructionUsersCanBeMadeInstructions
      // should not have returned true for C.
      assert(
          isa<Instruction>(U) &&
          "Can't transform non-constantexpr non-instruction to instruction!");
  }

  SmallVector<Value*,4> UUsers;
  for (auto *U : Users) {
    UUsers.clear();
    for (auto *UU : U->users())
      UUsers.push_back(UU);
    for (auto *UU : UUsers) {
      Instruction *UI = cast<Instruction>(UU);
      Instruction *NewU = U->getAsInstruction();
      NewU->insertBefore(UI);
      UI->replaceUsesOfWith(U, NewU);
    }
    // We've replaced all the uses, so destroy the constant. (destroyConstant
    // will update value handles and metadata.)
    U->destroyConstant();
  }
}

/// Analyze the specified global variable and optimize
/// it if possible.  If we make a change, return true.
static bool processInternalGlobal(
    GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI,
    function_ref<DominatorTree &(Function &)> LookupDomTree) {
  auto &DL = GV->getParent()->getDataLayout();
  // If this is a first class global and has only one accessing function and
  // this function is non-recursive, we replace the global with a local alloca
  // in this function.
  //
  // NOTE: It doesn't make sense to promote non-single-value types since we
  // are just replacing static memory to stack memory.
  //
  // If the global is in different address space, don't bring it to stack.
  if (!GS.HasMultipleAccessingFunctions &&
      GS.AccessingFunction &&
      GV->getValueType()->isSingleValueType() &&
      GV->getType()->getAddressSpace() == 0 &&
      !GV->isExternallyInitialized() &&
      allNonInstructionUsersCanBeMadeInstructions(GV) &&
      GS.AccessingFunction->doesNotRecurse() &&
      isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
                                          LookupDomTree)) {
    const DataLayout &DL = GV->getParent()->getDataLayout();

    DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
    Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
                                                   ->getEntryBlock().begin());
    Type *ElemTy = GV->getValueType();
    // FIXME: Pass Global's alignment when globals have alignment
    AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
                                        GV->getName(), &FirstI);
    if (!isa<UndefValue>(GV->getInitializer()))
      new StoreInst(GV->getInitializer(), Alloca, &FirstI);

    makeAllConstantUsesInstructions(GV);

    GV->replaceAllUsesWith(Alloca);
    GV->eraseFromParent();
    ++NumLocalized;
    return true;
  }

  // If the global is never loaded (but may be stored to), it is dead.
  // Delete it now.
  if (!GS.IsLoaded) {
    DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");

    bool Changed;
    if (isLeakCheckerRoot(GV)) {
      // Delete any constant stores to the global.
      Changed = CleanupPointerRootUsers(GV, TLI);
    } else {
      // Delete any stores we can find to the global.  We may not be able to
      // make it completely dead though.
      Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
    }

    // If the global is dead now, delete it.
    if (GV->use_empty()) {
      GV->eraseFromParent();
      ++NumDeleted;
      Changed = true;
    }
    return Changed;

  }
  if (GS.StoredType <= GlobalStatus::InitializerStored) {
    DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
    GV->setConstant(true);

    // Clean up any obviously simplifiable users now.
    CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);

    // If the global is dead now, just nuke it.
    if (GV->use_empty()) {
      DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
            << "all users and delete global!\n");
      GV->eraseFromParent();
      ++NumDeleted;
      return true;
    }

    // Fall through to the next check; see if we can optimize further.
    ++NumMarked;
  }
  if (!GV->getInitializer()->getType()->isSingleValueType()) {
    const DataLayout &DL = GV->getParent()->getDataLayout();
    if (SRAGlobal(GV, DL))
      return true;
  }
  if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
    // If the initial value for the global was an undef value, and if only
    // one other value was stored into it, we can just change the
    // initializer to be the stored value, then delete all stores to the
    // global.  This allows us to mark it constant.
    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
      if (isa<UndefValue>(GV->getInitializer())) {
        // Change the initial value here.
        GV->setInitializer(SOVConstant);

        // Clean up any obviously simplifiable users now.
        CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);

        if (GV->use_empty()) {
          DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
                       << "simplify all users and delete global!\n");
          GV->eraseFromParent();
          ++NumDeleted;
        }
        ++NumSubstitute;
        return true;
      }

    // Try to optimize globals based on the knowledge that only one value
    // (besides its initializer) is ever stored to the global.
    if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI))
      return true;

    // Otherwise, if the global was not a boolean, we can shrink it to be a
    // boolean.
    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
      if (GS.Ordering == AtomicOrdering::NotAtomic) {
        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
          ++NumShrunkToBool;
          return true;
        }
      }
    }
  }

  return false;
}

/// Analyze the specified global variable and optimize it if possible.  If we
/// make a change, return true.
static bool
processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI,
              function_ref<DominatorTree &(Function &)> LookupDomTree) {
  if (GV.getName().startswith("llvm."))
    return false;

  GlobalStatus GS;

  if (GlobalStatus::analyzeGlobal(&GV, GS))
    return false;

  bool Changed = false;
  if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
    auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
                                               : GlobalValue::UnnamedAddr::Local;
    if (NewUnnamedAddr != GV.getUnnamedAddr()) {
      GV.setUnnamedAddr(NewUnnamedAddr);
      NumUnnamed++;
      Changed = true;
    }
  }

  // Do more involved optimizations if the global is internal.
  if (!GV.hasLocalLinkage())
    return Changed;

  auto *GVar = dyn_cast<GlobalVariable>(&GV);
  if (!GVar)
    return Changed;

  if (GVar->isConstant() || !GVar->hasInitializer())
    return Changed;

  return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed;
}

/// Walk all of the direct calls of the specified function, changing them to
/// FastCC.
static void ChangeCalleesToFastCall(Function *F) {
  for (User *U : F->users()) {
    if (isa<BlockAddress>(U))
      continue;
    CallSite CS(cast<Instruction>(U));
    CS.setCallingConv(CallingConv::Fast);
  }
}

static AttributeList StripNest(LLVMContext &C, AttributeList Attrs) {
  // There can be at most one attribute set with a nest attribute.
  unsigned NestIndex;
  if (Attrs.hasAttrSomewhere(Attribute::Nest, &NestIndex))
    return Attrs.removeAttribute(C, NestIndex, Attribute::Nest);
  return Attrs;
}

static void RemoveNestAttribute(Function *F) {
  F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
  for (User *U : F->users()) {
    if (isa<BlockAddress>(U))
      continue;
    CallSite CS(cast<Instruction>(U));
    CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
  }
}

/// Return true if this is a calling convention that we'd like to change.  The
/// idea here is that we don't want to mess with the convention if the user
/// explicitly requested something with performance implications like coldcc,
/// GHC, or anyregcc.
static bool isProfitableToMakeFastCC(Function *F) {
  CallingConv::ID CC = F->getCallingConv();
  // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
  return CC == CallingConv::C || CC == CallingConv::X86_ThisCall;
}

static bool
OptimizeFunctions(Module &M, TargetLibraryInfo *TLI,
                  function_ref<DominatorTree &(Function &)> LookupDomTree,
                  SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
  bool Changed = false;
  // Optimize functions.
  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
    Function *F = &*FI++;
    // Functions without names cannot be referenced outside this module.
    if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
      F->setLinkage(GlobalValue::InternalLinkage);

    if (deleteIfDead(*F, NotDiscardableComdats)) {
      Changed = true;
      continue;
    }

    // LLVM's definition of dominance allows instructions that are cyclic
    // in unreachable blocks, e.g.:
    // %pat = select i1 %condition, @global, i16* %pat
    // because any instruction dominates an instruction in a block that's
    // not reachable from entry.
    // So, remove unreachable blocks from the function, because a) there's
    // no point in analyzing them and b) GlobalOpt should otherwise grow
    // some more complicated logic to break these cycles.
    // Removing unreachable blocks might invalidate the dominator so we
    // recalculate it.
    if (!F->isDeclaration()) {
      if (removeUnreachableBlocks(*F)) {
        auto &DT = LookupDomTree(*F);
        DT.recalculate(*F);
        Changed = true;
      }
    }

    Changed |= processGlobal(*F, TLI, LookupDomTree);

    if (!F->hasLocalLinkage())
      continue;
    if (isProfitableToMakeFastCC(F) && !F->isVarArg() &&
        !F->hasAddressTaken()) {
      // If this function has a calling convention worth changing, is not a
      // varargs function, and is only called directly, promote it to use the
      // Fast calling convention.
      F->setCallingConv(CallingConv::Fast);
      ChangeCalleesToFastCall(F);
      ++NumFastCallFns;
      Changed = true;
    }

    if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
        !F->hasAddressTaken()) {
      // The function is not used by a trampoline intrinsic, so it is safe
      // to remove the 'nest' attribute.
      RemoveNestAttribute(F);
      ++NumNestRemoved;
      Changed = true;
    }
  }
  return Changed;
}

static bool
OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI,
                   function_ref<DominatorTree &(Function &)> LookupDomTree,
                   SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
  bool Changed = false;

  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
       GVI != E; ) {
    GlobalVariable *GV = &*GVI++;
    // Global variables without names cannot be referenced outside this module.
    if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
      GV->setLinkage(GlobalValue::InternalLinkage);
    // Simplify the initializer.
    if (GV->hasInitializer())
      if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
        auto &DL = M.getDataLayout();
        Constant *New = ConstantFoldConstant(C, DL, TLI);
        if (New && New != C)
          GV->setInitializer(New);
      }

    if (deleteIfDead(*GV, NotDiscardableComdats)) {
      Changed = true;
      continue;
    }

    Changed |= processGlobal(*GV, TLI, LookupDomTree);
  }
  return Changed;
}

/// Evaluate a piece of a constantexpr store into a global initializer.  This
/// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
/// GEP operands of Addr [0, OpNo) have been stepped into.
static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
                                   ConstantExpr *Addr, unsigned OpNo) {
  // Base case of the recursion.
  if (OpNo == Addr->getNumOperands()) {
    assert(Val->getType() == Init->getType() && "Type mismatch!");
    return Val;
  }

  SmallVector<Constant*, 32> Elts;
  if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
    // Break up the constant into its elements.
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
      Elts.push_back(Init->getAggregateElement(i));

    // Replace the element that we are supposed to.
    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
    unsigned Idx = CU->getZExtValue();
    assert(Idx < STy->getNumElements() && "Struct index out of range!");
    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);

    // Return the modified struct.
    return ConstantStruct::get(STy, Elts);
  }

  ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
  SequentialType *InitTy = cast<SequentialType>(Init->getType());
  uint64_t NumElts = InitTy->getNumElements();

  // Break up the array into elements.
  for (uint64_t i = 0, e = NumElts; i != e; ++i)
    Elts.push_back(Init->getAggregateElement(i));

  assert(CI->getZExtValue() < NumElts);
  Elts[CI->getZExtValue()] =
    EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);

  if (Init->getType()->isArrayTy())
    return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
  return ConstantVector::get(Elts);
}

/// We have decided that Addr (which satisfies the predicate
/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
static void CommitValueTo(Constant *Val, Constant *Addr) {
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
    assert(GV->hasInitializer());
    GV->setInitializer(Val);
    return;
  }

  ConstantExpr *CE = cast<ConstantExpr>(Addr);
  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
  GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
}

/// Evaluate static constructors in the function, if we can.  Return true if we
/// can, false otherwise.
static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
                                      TargetLibraryInfo *TLI) {
  // Call the function.
  Evaluator Eval(DL, TLI);
  Constant *RetValDummy;
  bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
                                           SmallVector<Constant*, 0>());

  if (EvalSuccess) {
    ++NumCtorsEvaluated;

    // We succeeded at evaluation: commit the result.
    DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
          << F->getName() << "' to " << Eval.getMutatedMemory().size()
          << " stores.\n");
    for (const auto &I : Eval.getMutatedMemory())
      CommitValueTo(I.second, I.first);
    for (GlobalVariable *GV : Eval.getInvariants())
      GV->setConstant(true);
  }

  return EvalSuccess;
}

static int compareNames(Constant *const *A, Constant *const *B) {
  Value *AStripped = (*A)->stripPointerCastsNoFollowAliases();
  Value *BStripped = (*B)->stripPointerCastsNoFollowAliases();
  return AStripped->getName().compare(BStripped->getName());
}

static void setUsedInitializer(GlobalVariable &V,
                               const SmallPtrSet<GlobalValue *, 8> &Init) {
  if (Init.empty()) {
    V.eraseFromParent();
    return;
  }

  // Type of pointer to the array of pointers.
  PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);

  SmallVector<Constant *, 8> UsedArray;
  for (GlobalValue *GV : Init) {
    Constant *Cast
      = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
    UsedArray.push_back(Cast);
  }
  // Sort to get deterministic order.
  array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
  ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());

  Module *M = V.getParent();
  V.removeFromParent();
  GlobalVariable *NV =
      new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
                         ConstantArray::get(ATy, UsedArray), "");
  NV->takeName(&V);
  NV->setSection("llvm.metadata");
  delete &V;
}

namespace {

/// An easy to access representation of llvm.used and llvm.compiler.used.
class LLVMUsed {
  SmallPtrSet<GlobalValue *, 8> Used;
  SmallPtrSet<GlobalValue *, 8> CompilerUsed;
  GlobalVariable *UsedV;
  GlobalVariable *CompilerUsedV;

public:
  LLVMUsed(Module &M) {
    UsedV = collectUsedGlobalVariables(M, Used, false);
    CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
  }

  using iterator = SmallPtrSet<GlobalValue *, 8>::iterator;
  using used_iterator_range = iterator_range<iterator>;

  iterator usedBegin() { return Used.begin(); }
  iterator usedEnd() { return Used.end(); }

  used_iterator_range used() {
    return used_iterator_range(usedBegin(), usedEnd());
  }

  iterator compilerUsedBegin() { return CompilerUsed.begin(); }
  iterator compilerUsedEnd() { return CompilerUsed.end(); }

  used_iterator_range compilerUsed() {
    return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
  }

  bool usedCount(GlobalValue *GV) const { return Used.count(GV); }

  bool compilerUsedCount(GlobalValue *GV) const {
    return CompilerUsed.count(GV);
  }

  bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
  bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
  bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }

  bool compilerUsedInsert(GlobalValue *GV) {
    return CompilerUsed.insert(GV).second;
  }

  void syncVariablesAndSets() {
    if (UsedV)
      setUsedInitializer(*UsedV, Used);
    if (CompilerUsedV)
      setUsedInitializer(*CompilerUsedV, CompilerUsed);
  }
};

} // end anonymous namespace

static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
  if (GA.use_empty()) // No use at all.
    return false;

  assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
         "We should have removed the duplicated "
         "element from llvm.compiler.used");
  if (!GA.hasOneUse())
    // Strictly more than one use. So at least one is not in llvm.used and
    // llvm.compiler.used.
    return true;

  // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
  return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
}

static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
                                               const LLVMUsed &U) {
  unsigned N = 2;
  assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
         "We should have removed the duplicated "
         "element from llvm.compiler.used");
  if (U.usedCount(&V) || U.compilerUsedCount(&V))
    ++N;
  return V.hasNUsesOrMore(N);
}

static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
  if (!GA.hasLocalLinkage())
    return true;

  return U.usedCount(&GA) || U.compilerUsedCount(&GA);
}

static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
                             bool &RenameTarget) {
  RenameTarget = false;
  bool Ret = false;
  if (hasUseOtherThanLLVMUsed(GA, U))
    Ret = true;

  // If the alias is externally visible, we may still be able to simplify it.
  if (!mayHaveOtherReferences(GA, U))
    return Ret;

  // If the aliasee has internal linkage, give it the name and linkage
  // of the alias, and delete the alias.  This turns:
  //   define internal ... @f(...)
  //   @a = alias ... @f
  // into:
  //   define ... @a(...)
  Constant *Aliasee = GA.getAliasee();
  GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
  if (!Target->hasLocalLinkage())
    return Ret;

  // Do not perform the transform if multiple aliases potentially target the
  // aliasee. This check also ensures that it is safe to replace the section
  // and other attributes of the aliasee with those of the alias.
  if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
    return Ret;

  RenameTarget = true;
  return true;
}

static bool
OptimizeGlobalAliases(Module &M,
                      SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
  bool Changed = false;
  LLVMUsed Used(M);

  for (GlobalValue *GV : Used.used())
    Used.compilerUsedErase(GV);

  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
       I != E;) {
    GlobalAlias *J = &*I++;

    // Aliases without names cannot be referenced outside this module.
    if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
      J->setLinkage(GlobalValue::InternalLinkage);

    if (deleteIfDead(*J, NotDiscardableComdats)) {
      Changed = true;
      continue;
    }

    // If the aliasee may change at link time, nothing can be done - bail out.
    if (J->isInterposable())
      continue;

    Constant *Aliasee = J->getAliasee();
    GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
    // We can't trivially replace the alias with the aliasee if the aliasee is
    // non-trivial in some way.
    // TODO: Try to handle non-zero GEPs of local aliasees.
    if (!Target)
      continue;
    Target->removeDeadConstantUsers();

    // Make all users of the alias use the aliasee instead.
    bool RenameTarget;
    if (!hasUsesToReplace(*J, Used, RenameTarget))
      continue;

    J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
    ++NumAliasesResolved;
    Changed = true;

    if (RenameTarget) {
      // Give the aliasee the name, linkage and other attributes of the alias.
      Target->takeName(&*J);
      Target->setLinkage(J->getLinkage());
      Target->setVisibility(J->getVisibility());
      Target->setDLLStorageClass(J->getDLLStorageClass());

      if (Used.usedErase(&*J))
        Used.usedInsert(Target);

      if (Used.compilerUsedErase(&*J))
        Used.compilerUsedInsert(Target);
    } else if (mayHaveOtherReferences(*J, Used))
      continue;

    // Delete the alias.
    M.getAliasList().erase(J);
    ++NumAliasesRemoved;
    Changed = true;
  }

  Used.syncVariablesAndSets();

  return Changed;
}

static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
  LibFunc F = LibFunc_cxa_atexit;
  if (!TLI->has(F))
    return nullptr;

  Function *Fn = M.getFunction(TLI->getName(F));
  if (!Fn)
    return nullptr;

  // Make sure that the function has the correct prototype.
  if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
    return nullptr;

  return Fn;
}

/// Returns whether the given function is an empty C++ destructor and can
/// therefore be eliminated.
/// Note that we assume that other optimization passes have already simplified
/// the code so we only look for a function with a single basic block, where
/// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
/// other side-effect free instructions.
static bool cxxDtorIsEmpty(const Function &Fn,
                           SmallPtrSet<const Function *, 8> &CalledFunctions) {
  // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
  // nounwind, but that doesn't seem worth doing.
  if (Fn.isDeclaration())
    return false;

  if (++Fn.begin() != Fn.end())
    return false;

  const BasicBlock &EntryBlock = Fn.getEntryBlock();
  for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
       I != E; ++I) {
    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
      // Ignore debug intrinsics.
      if (isa<DbgInfoIntrinsic>(CI))
        continue;

      const Function *CalledFn = CI->getCalledFunction();

      if (!CalledFn)
        return false;

      SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);

      // Don't treat recursive functions as empty.
      if (!NewCalledFunctions.insert(CalledFn).second)
        return false;

      if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
        return false;
    } else if (isa<ReturnInst>(*I))
      return true; // We're done.
    else if (I->mayHaveSideEffects())
      return false; // Destructor with side effects, bail.
  }

  return false;
}

static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
  /// Itanium C++ ABI p3.3.5:
  ///
  ///   After constructing a global (or local static) object, that will require
  ///   destruction on exit, a termination function is registered as follows:
  ///
  ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
  ///
  ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
  ///   call f(p) when DSO d is unloaded, before all such termination calls
  ///   registered before this one. It returns zero if registration is
  ///   successful, nonzero on failure.

  // This pass will look for calls to __cxa_atexit where the function is trivial
  // and remove them.
  bool Changed = false;

  for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
       I != E;) {
    // We're only interested in calls. Theoretically, we could handle invoke
    // instructions as well, but neither llvm-gcc nor clang generate invokes
    // to __cxa_atexit.
    CallInst *CI = dyn_cast<CallInst>(*I++);
    if (!CI)
      continue;

    Function *DtorFn =
      dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
    if (!DtorFn)
      continue;

    SmallPtrSet<const Function *, 8> CalledFunctions;
    if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
      continue;

    // Just remove the call.
    CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
    CI->eraseFromParent();

    ++NumCXXDtorsRemoved;

    Changed |= true;
  }

  return Changed;
}

static bool optimizeGlobalsInModule(
    Module &M, const DataLayout &DL, TargetLibraryInfo *TLI,
    function_ref<DominatorTree &(Function &)> LookupDomTree) {
  SmallSet<const Comdat *, 8> NotDiscardableComdats;
  bool Changed = false;
  bool LocalChange = true;
  while (LocalChange) {
    LocalChange = false;

    NotDiscardableComdats.clear();
    for (const GlobalVariable &GV : M.globals())
      if (const Comdat *C = GV.getComdat())
        if (!GV.isDiscardableIfUnused() || !GV.use_empty())
          NotDiscardableComdats.insert(C);
    for (Function &F : M)
      if (const Comdat *C = F.getComdat())
        if (!F.isDefTriviallyDead())
          NotDiscardableComdats.insert(C);
    for (GlobalAlias &GA : M.aliases())
      if (const Comdat *C = GA.getComdat())
        if (!GA.isDiscardableIfUnused() || !GA.use_empty())
          NotDiscardableComdats.insert(C);

    // Delete functions that are trivially dead, ccc -> fastcc
    LocalChange |=
        OptimizeFunctions(M, TLI, LookupDomTree, NotDiscardableComdats);

    // Optimize global_ctors list.
    LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
      return EvaluateStaticConstructor(F, DL, TLI);
    });

    // Optimize non-address-taken globals.
    LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree,
                                      NotDiscardableComdats);

    // Resolve aliases, when possible.
    LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);

    // Try to remove trivial global destructors if they are not removed
    // already.
    Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
    if (CXAAtExitFn)
      LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);

    Changed |= LocalChange;
  }

  // TODO: Move all global ctors functions to the end of the module for code
  // layout.

  return Changed;
}

PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
    auto &DL = M.getDataLayout();
    auto &TLI = AM.getResult<TargetLibraryAnalysis>(M);
    auto &FAM =
        AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
    auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
      return FAM.getResult<DominatorTreeAnalysis>(F);
    };
    if (!optimizeGlobalsInModule(M, DL, &TLI, LookupDomTree))
      return PreservedAnalyses::all();
    return PreservedAnalyses::none();
}

namespace {

struct GlobalOptLegacyPass : public ModulePass {
  static char ID; // Pass identification, replacement for typeid

  GlobalOptLegacyPass() : ModulePass(ID) {
    initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnModule(Module &M) override {
    if (skipModule(M))
      return false;

    auto &DL = M.getDataLayout();
    auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
    auto LookupDomTree = [this](Function &F) -> DominatorTree & {
      return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
    };
    return optimizeGlobalsInModule(M, DL, TLI, LookupDomTree);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
  }
};

} // end anonymous namespace

char GlobalOptLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
                      "Global Variable Optimizer", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
                    "Global Variable Optimizer", false, false)

ModulePass *llvm::createGlobalOptimizerPass() {
  return new GlobalOptLegacyPass();
}