Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
//===-- PGOMemOPSizeOpt.cpp - Optimizations based on value profiling ===//
//
//                      The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the transformation that optimizes memory intrinsics
// such as memcpy using the size value profile. When memory intrinsic size
// value profile metadata is available, a single memory intrinsic is expanded
// to a sequence of guarded specialized versions that are called with the
// hottest size(s), for later expansion into more optimal inline sequences.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/PassSupport.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/PGOInstrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <cassert>
#include <cstdint>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "pgo-memop-opt"

STATISTIC(NumOfPGOMemOPOpt, "Number of memop intrinsics optimized.");
STATISTIC(NumOfPGOMemOPAnnotate, "Number of memop intrinsics annotated.");

// The minimum call count to optimize memory intrinsic calls.
static cl::opt<unsigned>
    MemOPCountThreshold("pgo-memop-count-threshold", cl::Hidden, cl::ZeroOrMore,
                        cl::init(1000),
                        cl::desc("The minimum count to optimize memory "
                                 "intrinsic calls"));

// Command line option to disable memory intrinsic optimization. The default is
// false. This is for debug purpose.
static cl::opt<bool> DisableMemOPOPT("disable-memop-opt", cl::init(false),
                                     cl::Hidden, cl::desc("Disable optimize"));

// The percent threshold to optimize memory intrinsic calls.
static cl::opt<unsigned>
    MemOPPercentThreshold("pgo-memop-percent-threshold", cl::init(40),
                          cl::Hidden, cl::ZeroOrMore,
                          cl::desc("The percentage threshold for the "
                                   "memory intrinsic calls optimization"));

// Maximum number of versions for optimizing memory intrinsic call.
static cl::opt<unsigned>
    MemOPMaxVersion("pgo-memop-max-version", cl::init(3), cl::Hidden,
                    cl::ZeroOrMore,
                    cl::desc("The max version for the optimized memory "
                             " intrinsic calls"));

// Scale the counts from the annotation using the BB count value.
static cl::opt<bool>
    MemOPScaleCount("pgo-memop-scale-count", cl::init(true), cl::Hidden,
                    cl::desc("Scale the memop size counts using the basic "
                             " block count value"));

// This option sets the rangge of precise profile memop sizes.
extern cl::opt<std::string> MemOPSizeRange;

// This option sets the value that groups large memop sizes
extern cl::opt<unsigned> MemOPSizeLarge;

namespace {
class PGOMemOPSizeOptLegacyPass : public FunctionPass {
public:
  static char ID;

  PGOMemOPSizeOptLegacyPass() : FunctionPass(ID) {
    initializePGOMemOPSizeOptLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override { return "PGOMemOPSize"; }

private:
  bool runOnFunction(Function &F) override;
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<BlockFrequencyInfoWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
  }
};
} // end anonymous namespace

char PGOMemOPSizeOptLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(PGOMemOPSizeOptLegacyPass, "pgo-memop-opt",
                      "Optimize memory intrinsic using its size value profile",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_END(PGOMemOPSizeOptLegacyPass, "pgo-memop-opt",
                    "Optimize memory intrinsic using its size value profile",
                    false, false)

FunctionPass *llvm::createPGOMemOPSizeOptLegacyPass() {
  return new PGOMemOPSizeOptLegacyPass();
}

namespace {
class MemOPSizeOpt : public InstVisitor<MemOPSizeOpt> {
public:
  MemOPSizeOpt(Function &Func, BlockFrequencyInfo &BFI,
               OptimizationRemarkEmitter &ORE)
      : Func(Func), BFI(BFI), ORE(ORE), Changed(false) {
    ValueDataArray =
        llvm::make_unique<InstrProfValueData[]>(MemOPMaxVersion + 2);
    // Get the MemOPSize range information from option MemOPSizeRange,
    getMemOPSizeRangeFromOption(MemOPSizeRange, PreciseRangeStart,
                                PreciseRangeLast);
  }
  bool isChanged() const { return Changed; }
  void perform() {
    WorkList.clear();
    visit(Func);

    for (auto &MI : WorkList) {
      ++NumOfPGOMemOPAnnotate;
      if (perform(MI)) {
        Changed = true;
        ++NumOfPGOMemOPOpt;
        DEBUG(dbgs() << "MemOP call: " << MI->getCalledFunction()->getName()
                     << "is Transformed.\n");
      }
    }
  }

  void visitMemIntrinsic(MemIntrinsic &MI) {
    Value *Length = MI.getLength();
    // Not perform on constant length calls.
    if (dyn_cast<ConstantInt>(Length))
      return;
    WorkList.push_back(&MI);
  }

private:
  Function &Func;
  BlockFrequencyInfo &BFI;
  OptimizationRemarkEmitter &ORE;
  bool Changed;
  std::vector<MemIntrinsic *> WorkList;
  // Start of the previse range.
  int64_t PreciseRangeStart;
  // Last value of the previse range.
  int64_t PreciseRangeLast;
  // The space to read the profile annotation.
  std::unique_ptr<InstrProfValueData[]> ValueDataArray;
  bool perform(MemIntrinsic *MI);

  // This kind shows which group the value falls in. For PreciseValue, we have
  // the profile count for that value. LargeGroup groups the values that are in
  // range [LargeValue, +inf). NonLargeGroup groups the rest of values.
  enum MemOPSizeKind { PreciseValue, NonLargeGroup, LargeGroup };

  MemOPSizeKind getMemOPSizeKind(int64_t Value) const {
    if (Value == MemOPSizeLarge && MemOPSizeLarge != 0)
      return LargeGroup;
    if (Value == PreciseRangeLast + 1)
      return NonLargeGroup;
    return PreciseValue;
  }
};

static const char *getMIName(const MemIntrinsic *MI) {
  switch (MI->getIntrinsicID()) {
  case Intrinsic::memcpy:
    return "memcpy";
  case Intrinsic::memmove:
    return "memmove";
  case Intrinsic::memset:
    return "memset";
  default:
    return "unknown";
  }
}

static bool isProfitable(uint64_t Count, uint64_t TotalCount) {
  assert(Count <= TotalCount);
  if (Count < MemOPCountThreshold)
    return false;
  if (Count < TotalCount * MemOPPercentThreshold / 100)
    return false;
  return true;
}

static inline uint64_t getScaledCount(uint64_t Count, uint64_t Num,
                                      uint64_t Denom) {
  if (!MemOPScaleCount)
    return Count;
  bool Overflowed;
  uint64_t ScaleCount = SaturatingMultiply(Count, Num, &Overflowed);
  return ScaleCount / Denom;
}

bool MemOPSizeOpt::perform(MemIntrinsic *MI) {
  assert(MI);
  if (MI->getIntrinsicID() == Intrinsic::memmove)
    return false;

  uint32_t NumVals, MaxNumPromotions = MemOPMaxVersion + 2;
  uint64_t TotalCount;
  if (!getValueProfDataFromInst(*MI, IPVK_MemOPSize, MaxNumPromotions,
                                ValueDataArray.get(), NumVals, TotalCount))
    return false;

  uint64_t ActualCount = TotalCount;
  uint64_t SavedTotalCount = TotalCount;
  if (MemOPScaleCount) {
    auto BBEdgeCount = BFI.getBlockProfileCount(MI->getParent());
    if (!BBEdgeCount)
      return false;
    ActualCount = *BBEdgeCount;
  }

  ArrayRef<InstrProfValueData> VDs(ValueDataArray.get(), NumVals);
  DEBUG(dbgs() << "Read one memory intrinsic profile with count " << ActualCount
               << "\n");
  DEBUG(
      for (auto &VD
           : VDs) { dbgs() << "  (" << VD.Value << "," << VD.Count << ")\n"; });

  if (ActualCount < MemOPCountThreshold)
    return false;
  // Skip if the total value profiled count is 0, in which case we can't
  // scale up the counts properly (and there is no profitable transformation).
  if (TotalCount == 0)
    return false;

  TotalCount = ActualCount;
  if (MemOPScaleCount)
    DEBUG(dbgs() << "Scale counts: numerator = " << ActualCount
                 << " denominator = " << SavedTotalCount << "\n");

  // Keeping track of the count of the default case:
  uint64_t RemainCount = TotalCount;
  uint64_t SavedRemainCount = SavedTotalCount;
  SmallVector<uint64_t, 16> SizeIds;
  SmallVector<uint64_t, 16> CaseCounts;
  uint64_t MaxCount = 0;
  unsigned Version = 0;
  // Default case is in the front -- save the slot here.
  CaseCounts.push_back(0);
  for (auto &VD : VDs) {
    int64_t V = VD.Value;
    uint64_t C = VD.Count;
    if (MemOPScaleCount)
      C = getScaledCount(C, ActualCount, SavedTotalCount);

    // Only care precise value here.
    if (getMemOPSizeKind(V) != PreciseValue)
      continue;

    // ValueCounts are sorted on the count. Break at the first un-profitable
    // value.
    if (!isProfitable(C, RemainCount))
      break;

    SizeIds.push_back(V);
    CaseCounts.push_back(C);
    if (C > MaxCount)
      MaxCount = C;

    assert(RemainCount >= C);
    RemainCount -= C;
    assert(SavedRemainCount >= VD.Count);
    SavedRemainCount -= VD.Count;

    if (++Version > MemOPMaxVersion && MemOPMaxVersion != 0)
      break;
  }

  if (Version == 0)
    return false;

  CaseCounts[0] = RemainCount;
  if (RemainCount > MaxCount)
    MaxCount = RemainCount;

  uint64_t SumForOpt = TotalCount - RemainCount;

  DEBUG(dbgs() << "Optimize one memory intrinsic call to " << Version
               << " Versions (covering " << SumForOpt << " out of "
               << TotalCount << ")\n");

  // mem_op(..., size)
  // ==>
  // switch (size) {
  //   case s1:
  //      mem_op(..., s1);
  //      goto merge_bb;
  //   case s2:
  //      mem_op(..., s2);
  //      goto merge_bb;
  //   ...
  //   default:
  //      mem_op(..., size);
  //      goto merge_bb;
  // }
  // merge_bb:

  BasicBlock *BB = MI->getParent();
  DEBUG(dbgs() << "\n\n== Basic Block Before ==\n");
  DEBUG(dbgs() << *BB << "\n");
  auto OrigBBFreq = BFI.getBlockFreq(BB);

  BasicBlock *DefaultBB = SplitBlock(BB, MI);
  BasicBlock::iterator It(*MI);
  ++It;
  assert(It != DefaultBB->end());
  BasicBlock *MergeBB = SplitBlock(DefaultBB, &(*It));
  MergeBB->setName("MemOP.Merge");
  BFI.setBlockFreq(MergeBB, OrigBBFreq.getFrequency());
  DefaultBB->setName("MemOP.Default");

  auto &Ctx = Func.getContext();
  IRBuilder<> IRB(BB);
  BB->getTerminator()->eraseFromParent();
  Value *SizeVar = MI->getLength();
  SwitchInst *SI = IRB.CreateSwitch(SizeVar, DefaultBB, SizeIds.size());

  // Clear the value profile data.
  MI->setMetadata(LLVMContext::MD_prof, nullptr);
  // If all promoted, we don't need the MD.prof metadata.
  if (SavedRemainCount > 0 || Version != NumVals)
    // Otherwise we need update with the un-promoted records back.
    annotateValueSite(*Func.getParent(), *MI, VDs.slice(Version),
                      SavedRemainCount, IPVK_MemOPSize, NumVals);

  DEBUG(dbgs() << "\n\n== Basic Block After==\n");

  for (uint64_t SizeId : SizeIds) {
    BasicBlock *CaseBB = BasicBlock::Create(
        Ctx, Twine("MemOP.Case.") + Twine(SizeId), &Func, DefaultBB);
    Instruction *NewInst = MI->clone();
    // Fix the argument.
    MemIntrinsic * MemI = dyn_cast<MemIntrinsic>(NewInst);
    IntegerType *SizeType = dyn_cast<IntegerType>(MemI->getLength()->getType());
    assert(SizeType && "Expected integer type size argument.");
    ConstantInt *CaseSizeId = ConstantInt::get(SizeType, SizeId);
    MemI->setLength(CaseSizeId);
    CaseBB->getInstList().push_back(NewInst);
    IRBuilder<> IRBCase(CaseBB);
    IRBCase.CreateBr(MergeBB);
    SI->addCase(CaseSizeId, CaseBB);
    DEBUG(dbgs() << *CaseBB << "\n");
  }
  setProfMetadata(Func.getParent(), SI, CaseCounts, MaxCount);

  DEBUG(dbgs() << *BB << "\n");
  DEBUG(dbgs() << *DefaultBB << "\n");
  DEBUG(dbgs() << *MergeBB << "\n");

  ORE.emit([&]() {
    using namespace ore;
    return OptimizationRemark(DEBUG_TYPE, "memopt-opt", MI)
             << "optimized " << NV("Intrinsic", StringRef(getMIName(MI)))
             << " with count " << NV("Count", SumForOpt) << " out of "
             << NV("Total", TotalCount) << " for " << NV("Versions", Version)
             << " versions";
  });

  return true;
}
} // namespace

static bool PGOMemOPSizeOptImpl(Function &F, BlockFrequencyInfo &BFI,
                                OptimizationRemarkEmitter &ORE) {
  if (DisableMemOPOPT)
    return false;

  if (F.hasFnAttribute(Attribute::OptimizeForSize))
    return false;
  MemOPSizeOpt MemOPSizeOpt(F, BFI, ORE);
  MemOPSizeOpt.perform();
  return MemOPSizeOpt.isChanged();
}

bool PGOMemOPSizeOptLegacyPass::runOnFunction(Function &F) {
  BlockFrequencyInfo &BFI =
      getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
  auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
  return PGOMemOPSizeOptImpl(F, BFI, ORE);
}

namespace llvm {
char &PGOMemOPSizeOptID = PGOMemOPSizeOptLegacyPass::ID;

PreservedAnalyses PGOMemOPSizeOpt::run(Function &F,
                                       FunctionAnalysisManager &FAM) {
  auto &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
  auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
  bool Changed = PGOMemOPSizeOptImpl(F, BFI, ORE);
  if (!Changed)
    return PreservedAnalyses::all();
  auto PA = PreservedAnalyses();
  PA.preserve<GlobalsAA>();
  return PA;
}
} // namespace llvm