Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
// SValBuilder.cpp - Basic class for all SValBuilder implementations -*- C++ -*-
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file defines SValBuilder, the base class for all (complete) SValBuilder
//  implementations.
//
//===----------------------------------------------------------------------===//

#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ExprCXX.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"

using namespace clang;
using namespace ento;

//===----------------------------------------------------------------------===//
// Basic SVal creation.
//===----------------------------------------------------------------------===//

void SValBuilder::anchor() { }

DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
  if (Loc::isLocType(type))
    return makeNull();

  if (type->isIntegralOrEnumerationType())
    return makeIntVal(0, type);

  if (type->isArrayType() || type->isRecordType() || type->isVectorType() ||
      type->isAnyComplexType())
    return makeCompoundVal(type, BasicVals.getEmptySValList());

  // FIXME: Handle floats.
  return UnknownVal();
}

NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
                                const llvm::APSInt& rhs, QualType type) {
  // The Environment ensures we always get a persistent APSInt in
  // BasicValueFactory, so we don't need to get the APSInt from
  // BasicValueFactory again.
  assert(lhs);
  assert(!Loc::isLocType(type));
  return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
}

NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs,
                               BinaryOperator::Opcode op, const SymExpr *rhs,
                               QualType type) {
  assert(rhs);
  assert(!Loc::isLocType(type));
  return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
}

NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
                               const SymExpr *rhs, QualType type) {
  assert(lhs && rhs);
  assert(!Loc::isLocType(type));
  return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
}

NonLoc SValBuilder::makeNonLoc(const SymExpr *operand,
                               QualType fromTy, QualType toTy) {
  assert(operand);
  assert(!Loc::isLocType(toTy));
  return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
}

SVal SValBuilder::convertToArrayIndex(SVal val) {
  if (val.isUnknownOrUndef())
    return val;

  // Common case: we have an appropriately sized integer.
  if (Optional<nonloc::ConcreteInt> CI = val.getAs<nonloc::ConcreteInt>()) {
    const llvm::APSInt& I = CI->getValue();
    if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
      return val;
  }

  return evalCastFromNonLoc(val.castAs<NonLoc>(), ArrayIndexTy);
}

nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
  return makeTruthVal(boolean->getValue());
}

DefinedOrUnknownSVal
SValBuilder::getRegionValueSymbolVal(const TypedValueRegion* region) {
  QualType T = region->getValueType();

  if (T->isNullPtrType())
    return makeZeroVal(T);
  
  if (!SymbolManager::canSymbolicate(T))
    return UnknownVal();

  SymbolRef sym = SymMgr.getRegionValueSymbol(region);

  if (Loc::isLocType(T))
    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));

  return nonloc::SymbolVal(sym);
}

DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag,
                                                   const Expr *Ex,
                                                   const LocationContext *LCtx,
                                                   unsigned Count) {
  QualType T = Ex->getType();

  if (T->isNullPtrType())
    return makeZeroVal(T);

  // Compute the type of the result. If the expression is not an R-value, the
  // result should be a location.
  QualType ExType = Ex->getType();
  if (Ex->isGLValue())
    T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType);

  return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count);
}

DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
                                                   const Expr *expr,
                                                   const LocationContext *LCtx,
                                                   QualType type,
                                                   unsigned count) {
  if (type->isNullPtrType())
    return makeZeroVal(type);

  if (!SymbolManager::canSymbolicate(type))
    return UnknownVal();

  SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag);

  if (Loc::isLocType(type))
    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));

  return nonloc::SymbolVal(sym);
}


DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt,
                                                   const LocationContext *LCtx,
                                                   QualType type,
                                                   unsigned visitCount) {
  if (type->isNullPtrType())
    return makeZeroVal(type);

  if (!SymbolManager::canSymbolicate(type))
    return UnknownVal();

  SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount);

  if (Loc::isLocType(type))
    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));

  return nonloc::SymbolVal(sym);
}

DefinedOrUnknownSVal
SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
                                      const LocationContext *LCtx,
                                      unsigned VisitCount) {
  QualType T = E->getType();
  assert(Loc::isLocType(T));
  assert(SymbolManager::canSymbolicate(T));
  if (T->isNullPtrType())
    return makeZeroVal(T);

  SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, T, VisitCount);
  return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
}

DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
                                              const MemRegion *region,
                                              const Expr *expr, QualType type,
                                              const LocationContext *LCtx,
                                              unsigned count) {
  assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");

  SymbolRef sym =
      SymMgr.getMetadataSymbol(region, expr, type, LCtx, count, symbolTag);

  if (Loc::isLocType(type))
    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));

  return nonloc::SymbolVal(sym);
}

DefinedOrUnknownSVal
SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
                                             const TypedValueRegion *region) {
  QualType T = region->getValueType();

  if (T->isNullPtrType())
    return makeZeroVal(T);

  if (!SymbolManager::canSymbolicate(T))
    return UnknownVal();

  SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);

  if (Loc::isLocType(T))
    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));

  return nonloc::SymbolVal(sym);
}

DefinedSVal SValBuilder::getMemberPointer(const DeclaratorDecl* DD) {
  assert(!DD || isa<CXXMethodDecl>(DD) || isa<FieldDecl>(DD));

  if (auto *MD = dyn_cast_or_null<CXXMethodDecl>(DD)) {
    // Sema treats pointers to static member functions as have function pointer
    // type, so return a function pointer for the method.
    // We don't need to play a similar trick for static member fields
    // because these are represented as plain VarDecls and not FieldDecls
    // in the AST.
    if (MD->isStatic())
      return getFunctionPointer(MD);
  }

  return nonloc::PointerToMember(DD);
}

DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
  return loc::MemRegionVal(MemMgr.getFunctionCodeRegion(func));
}

DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
                                         CanQualType locTy,
                                         const LocationContext *locContext,
                                         unsigned blockCount) {
  const BlockCodeRegion *BC =
    MemMgr.getBlockCodeRegion(block, locTy, locContext->getAnalysisDeclContext());
  const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext,
                                                        blockCount);
  return loc::MemRegionVal(BD);
}

/// Return a memory region for the 'this' object reference.
loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
                                          const StackFrameContext *SFC) {
  return loc::MemRegionVal(getRegionManager().
                           getCXXThisRegion(D->getThisType(getContext()), SFC));
}

/// Return a memory region for the 'this' object reference.
loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
                                          const StackFrameContext *SFC) {
  const Type *T = D->getTypeForDecl();
  QualType PT = getContext().getPointerType(QualType(T, 0));
  return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
}

Optional<SVal> SValBuilder::getConstantVal(const Expr *E) {
  E = E->IgnoreParens();

  switch (E->getStmtClass()) {
  // Handle expressions that we treat differently from the AST's constant
  // evaluator.
  case Stmt::AddrLabelExprClass:
    return makeLoc(cast<AddrLabelExpr>(E));

  case Stmt::CXXScalarValueInitExprClass:
  case Stmt::ImplicitValueInitExprClass:
    return makeZeroVal(E->getType());

  case Stmt::ObjCStringLiteralClass: {
    const ObjCStringLiteral *SL = cast<ObjCStringLiteral>(E);
    return makeLoc(getRegionManager().getObjCStringRegion(SL));
  }

  case Stmt::StringLiteralClass: {
    const StringLiteral *SL = cast<StringLiteral>(E);
    return makeLoc(getRegionManager().getStringRegion(SL));
  }

  // Fast-path some expressions to avoid the overhead of going through the AST's
  // constant evaluator
  case Stmt::CharacterLiteralClass: {
    const CharacterLiteral *C = cast<CharacterLiteral>(E);
    return makeIntVal(C->getValue(), C->getType());
  }

  case Stmt::CXXBoolLiteralExprClass:
    return makeBoolVal(cast<CXXBoolLiteralExpr>(E));

  case Stmt::TypeTraitExprClass: {
    const TypeTraitExpr *TE = cast<TypeTraitExpr>(E);
    return makeTruthVal(TE->getValue(), TE->getType());
  }

  case Stmt::IntegerLiteralClass:
    return makeIntVal(cast<IntegerLiteral>(E));

  case Stmt::ObjCBoolLiteralExprClass:
    return makeBoolVal(cast<ObjCBoolLiteralExpr>(E));

  case Stmt::CXXNullPtrLiteralExprClass:
    return makeNull();

  case Stmt::ImplicitCastExprClass: {
    const CastExpr *CE = cast<CastExpr>(E);
    switch (CE->getCastKind()) {
    default:
      break;
    case CK_ArrayToPointerDecay:
    case CK_BitCast: {
      const Expr *SE = CE->getSubExpr();
      Optional<SVal> Val = getConstantVal(SE);
      if (!Val)
        return None;
      return evalCast(*Val, CE->getType(), SE->getType());
    }
    }
    // FALLTHROUGH
    LLVM_FALLTHROUGH;
  }

  // If we don't have a special case, fall back to the AST's constant evaluator.
  default: {
    // Don't try to come up with a value for materialized temporaries.
    if (E->isGLValue())
      return None;

    ASTContext &Ctx = getContext();
    llvm::APSInt Result;
    if (E->EvaluateAsInt(Result, Ctx))
      return makeIntVal(Result);

    if (Loc::isLocType(E->getType()))
      if (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
        return makeNull();

    return None;
  }
  }
}

//===----------------------------------------------------------------------===//

SVal SValBuilder::makeSymExprValNN(ProgramStateRef State,
                                   BinaryOperator::Opcode Op,
                                   NonLoc LHS, NonLoc RHS,
                                   QualType ResultTy) {
  if (!State->isTainted(RHS) && !State->isTainted(LHS))
    return UnknownVal();

  const SymExpr *symLHS = LHS.getAsSymExpr();
  const SymExpr *symRHS = RHS.getAsSymExpr();
  // TODO: When the Max Complexity is reached, we should conjure a symbol
  // instead of generating an Unknown value and propagate the taint info to it.
  const unsigned MaxComp = 10000; // 100000 28X

  if (symLHS && symRHS &&
      (symLHS->computeComplexity() + symRHS->computeComplexity()) <  MaxComp)
    return makeNonLoc(symLHS, Op, symRHS, ResultTy);

  if (symLHS && symLHS->computeComplexity() < MaxComp)
    if (Optional<nonloc::ConcreteInt> rInt = RHS.getAs<nonloc::ConcreteInt>())
      return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);

  if (symRHS && symRHS->computeComplexity() < MaxComp)
    if (Optional<nonloc::ConcreteInt> lInt = LHS.getAs<nonloc::ConcreteInt>())
      return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);

  return UnknownVal();
}


SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
                            SVal lhs, SVal rhs, QualType type) {

  if (lhs.isUndef() || rhs.isUndef())
    return UndefinedVal();

  if (lhs.isUnknown() || rhs.isUnknown())
    return UnknownVal();

  if (lhs.getAs<nonloc::LazyCompoundVal>() ||
      rhs.getAs<nonloc::LazyCompoundVal>()) {
    return UnknownVal();
  }

  if (Optional<Loc> LV = lhs.getAs<Loc>()) {
    if (Optional<Loc> RV = rhs.getAs<Loc>())
      return evalBinOpLL(state, op, *LV, *RV, type);

    return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type);
  }

  if (Optional<Loc> RV = rhs.getAs<Loc>()) {
    // Support pointer arithmetic where the addend is on the left
    // and the pointer on the right.
    assert(op == BO_Add);

    // Commute the operands.
    return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type);
  }

  return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(),
                     type);
}

DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
                                         DefinedOrUnknownSVal lhs,
                                         DefinedOrUnknownSVal rhs) {
  return evalBinOp(state, BO_EQ, lhs, rhs, getConditionType())
      .castAs<DefinedOrUnknownSVal>();
}

/// Recursively check if the pointer types are equal modulo const, volatile,
/// and restrict qualifiers. Also, assume that all types are similar to 'void'.
/// Assumes the input types are canonical.
static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
                                                         QualType FromTy) {
  while (Context.UnwrapSimilarPointerTypes(ToTy, FromTy)) {
    Qualifiers Quals1, Quals2;
    ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
    FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);

    // Make sure that non-cvr-qualifiers the other qualifiers (e.g., address
    // spaces) are identical.
    Quals1.removeCVRQualifiers();
    Quals2.removeCVRQualifiers();
    if (Quals1 != Quals2)
      return false;
  }

  // If we are casting to void, the 'From' value can be used to represent the
  // 'To' value.
  if (ToTy->isVoidType())
    return true;

  if (ToTy != FromTy)
    return false;

  return true;
}

// Handles casts of type CK_IntegralCast.
// At the moment, this function will redirect to evalCast, except when the range
// of the original value is known to be greater than the max of the target type.
SVal SValBuilder::evalIntegralCast(ProgramStateRef state, SVal val,
                                   QualType castTy, QualType originalTy) {

  // No truncations if target type is big enough.
  if (getContext().getTypeSize(castTy) >= getContext().getTypeSize(originalTy))
    return evalCast(val, castTy, originalTy);

  const SymExpr *se = val.getAsSymbolicExpression();
  if (!se) // Let evalCast handle non symbolic expressions.
    return evalCast(val, castTy, originalTy);

  // Find the maximum value of the target type.
  APSIntType ToType(getContext().getTypeSize(castTy),
                    castTy->isUnsignedIntegerType());
  llvm::APSInt ToTypeMax = ToType.getMaxValue();
  NonLoc ToTypeMaxVal =
      makeIntVal(ToTypeMax.isUnsigned() ? ToTypeMax.getZExtValue()
                                        : ToTypeMax.getSExtValue(),
                 castTy)
          .castAs<NonLoc>();
  // Check the range of the symbol being casted against the maximum value of the
  // target type.
  NonLoc FromVal = val.castAs<NonLoc>();
  QualType CmpTy = getConditionType();
  NonLoc CompVal =
      evalBinOpNN(state, BO_LE, FromVal, ToTypeMaxVal, CmpTy).castAs<NonLoc>();
  ProgramStateRef IsNotTruncated, IsTruncated;
  std::tie(IsNotTruncated, IsTruncated) = state->assume(CompVal);
  if (!IsNotTruncated && IsTruncated) {
    // Symbol is truncated so we evaluate it as a cast.
    NonLoc CastVal = makeNonLoc(se, originalTy, castTy);
    return CastVal;
  }
  return evalCast(val, castTy, originalTy);
}

// FIXME: should rewrite according to the cast kind.
SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) {
  castTy = Context.getCanonicalType(castTy);
  originalTy = Context.getCanonicalType(originalTy);
  if (val.isUnknownOrUndef() || castTy == originalTy)
    return val;

  if (castTy->isBooleanType()) {
    if (val.isUnknownOrUndef())
      return val;
    if (val.isConstant())
      return makeTruthVal(!val.isZeroConstant(), castTy);
    if (!Loc::isLocType(originalTy) &&
        !originalTy->isIntegralOrEnumerationType() &&
        !originalTy->isMemberPointerType())
      return UnknownVal();
    if (SymbolRef Sym = val.getAsSymbol(true)) {
      BasicValueFactory &BVF = getBasicValueFactory();
      // FIXME: If we had a state here, we could see if the symbol is known to
      // be zero, but we don't.
      return makeNonLoc(Sym, BO_NE, BVF.getValue(0, Sym->getType()), castTy);
    }
    // Loc values are not always true, they could be weakly linked functions.
    if (Optional<Loc> L = val.getAs<Loc>())
      return evalCastFromLoc(*L, castTy);

    Loc L = val.castAs<nonloc::LocAsInteger>().getLoc();
    return evalCastFromLoc(L, castTy);
  }

  // For const casts, casts to void, just propagate the value.
  if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType())
    if (shouldBeModeledWithNoOp(Context, Context.getPointerType(castTy),
                                         Context.getPointerType(originalTy)))
      return val;

  // Check for casts from pointers to integers.
  if (castTy->isIntegralOrEnumerationType() && Loc::isLocType(originalTy))
    return evalCastFromLoc(val.castAs<Loc>(), castTy);

  // Check for casts from integers to pointers.
  if (Loc::isLocType(castTy) && originalTy->isIntegralOrEnumerationType()) {
    if (Optional<nonloc::LocAsInteger> LV = val.getAs<nonloc::LocAsInteger>()) {
      if (const MemRegion *R = LV->getLoc().getAsRegion()) {
        StoreManager &storeMgr = StateMgr.getStoreManager();
        R = storeMgr.castRegion(R, castTy);
        return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
      }
      return LV->getLoc();
    }
    return dispatchCast(val, castTy);
  }

  // Just pass through function and block pointers.
  if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) {
    assert(Loc::isLocType(castTy));
    return val;
  }

  // Check for casts from array type to another type.
  if (const ArrayType *arrayT =
                      dyn_cast<ArrayType>(originalTy.getCanonicalType())) {
    // We will always decay to a pointer.
    QualType elemTy = arrayT->getElementType();
    val = StateMgr.ArrayToPointer(val.castAs<Loc>(), elemTy);

    // Are we casting from an array to a pointer?  If so just pass on
    // the decayed value.
    if (castTy->isPointerType() || castTy->isReferenceType())
      return val;

    // Are we casting from an array to an integer?  If so, cast the decayed
    // pointer value to an integer.
    assert(castTy->isIntegralOrEnumerationType());

    // FIXME: Keep these here for now in case we decide soon that we
    // need the original decayed type.
    //    QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
    //    QualType pointerTy = C.getPointerType(elemTy);
    return evalCastFromLoc(val.castAs<Loc>(), castTy);
  }

  // Check for casts from a region to a specific type.
  if (const MemRegion *R = val.getAsRegion()) {
    // Handle other casts of locations to integers.
    if (castTy->isIntegralOrEnumerationType())
      return evalCastFromLoc(loc::MemRegionVal(R), castTy);

    // FIXME: We should handle the case where we strip off view layers to get
    //  to a desugared type.
    if (!Loc::isLocType(castTy)) {
      // FIXME: There can be gross cases where one casts the result of a function
      // (that returns a pointer) to some other value that happens to fit
      // within that pointer value.  We currently have no good way to
      // model such operations.  When this happens, the underlying operation
      // is that the caller is reasoning about bits.  Conceptually we are
      // layering a "view" of a location on top of those bits.  Perhaps
      // we need to be more lazy about mutual possible views, even on an
      // SVal?  This may be necessary for bit-level reasoning as well.
      return UnknownVal();
    }

    // We get a symbolic function pointer for a dereference of a function
    // pointer, but it is of function type. Example:

    //  struct FPRec {
    //    void (*my_func)(int * x);
    //  };
    //
    //  int bar(int x);
    //
    //  int f1_a(struct FPRec* foo) {
    //    int x;
    //    (*foo->my_func)(&x);
    //    return bar(x)+1; // no-warning
    //  }

    assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() ||
           originalTy->isBlockPointerType() || castTy->isReferenceType());

    StoreManager &storeMgr = StateMgr.getStoreManager();

    // Delegate to store manager to get the result of casting a region to a
    // different type.  If the MemRegion* returned is NULL, this expression
    // Evaluates to UnknownVal.
    R = storeMgr.castRegion(R, castTy);
    return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
  }

  return dispatchCast(val, castTy);
}