Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
//===- Relocations.cpp ----------------------------------------------------===//
//
//                             The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains platform-independent functions to process relocations.
// I'll describe the overview of this file here.
//
// Simple relocations are easy to handle for the linker. For example,
// for R_X86_64_PC64 relocs, the linker just has to fix up locations
// with the relative offsets to the target symbols. It would just be
// reading records from relocation sections and applying them to output.
//
// But not all relocations are that easy to handle. For example, for
// R_386_GOTOFF relocs, the linker has to create new GOT entries for
// symbols if they don't exist, and fix up locations with GOT entry
// offsets from the beginning of GOT section. So there is more than
// fixing addresses in relocation processing.
//
// ELF defines a large number of complex relocations.
//
// The functions in this file analyze relocations and do whatever needs
// to be done. It includes, but not limited to, the following.
//
//  - create GOT/PLT entries
//  - create new relocations in .dynsym to let the dynamic linker resolve
//    them at runtime (since ELF supports dynamic linking, not all
//    relocations can be resolved at link-time)
//  - create COPY relocs and reserve space in .bss
//  - replace expensive relocs (in terms of runtime cost) with cheap ones
//  - error out infeasible combinations such as PIC and non-relative relocs
//
// Note that the functions in this file don't actually apply relocations
// because it doesn't know about the output file nor the output file buffer.
// It instead stores Relocation objects to InputSection's Relocations
// vector to let it apply later in InputSection::writeTo.
//
//===----------------------------------------------------------------------===//

#include "Relocations.h"
#include "Config.h"
#include "LinkerScript.h"
#include "OutputSections.h"
#include "Strings.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"
#include "lld/Common/Memory.h"

#include "llvm/Support/Endian.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support::endian;

using namespace lld;
using namespace lld::elf;

// Construct a message in the following format.
//
// >>> defined in /home/alice/src/foo.o
// >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
// >>>               /home/alice/src/bar.o:(.text+0x1)
static std::string getLocation(InputSectionBase &S, const Symbol &Sym,
                               uint64_t Off) {
  std::string Msg =
      "\n>>> defined in " + toString(Sym.File) + "\n>>> referenced by ";
  std::string Src = S.getSrcMsg(Sym, Off);
  if (!Src.empty())
    Msg += Src + "\n>>>               ";
  return Msg + S.getObjMsg(Off);
}

// This is a MIPS-specific rule.
//
// In case of MIPS GP-relative relocations always resolve to a definition
// in a regular input file, ignoring the one-definition rule. So we,
// for example, should not attempt to create a dynamic relocation even
// if the target symbol is preemptible. There are two two MIPS GP-relative
// relocations R_MIPS_GPREL16 and R_MIPS_GPREL32. But only R_MIPS_GPREL16
// can be against a preemptible symbol.
//
// To get MIPS relocation type we apply 0xff mask. In case of O32 ABI all
// relocation types occupy eight bit. In case of N64 ABI we extract first
// relocation from 3-in-1 packet because only the first relocation can
// be against a real symbol.
static bool isMipsGprel(RelType Type) {
  if (Config->EMachine != EM_MIPS)
    return false;
  Type &= 0xff;
  return Type == R_MIPS_GPREL16 || Type == R_MICROMIPS_GPREL16 ||
         Type == R_MICROMIPS_GPREL7_S2;
}

// This function is similar to the `handleTlsRelocation`. MIPS does not
// support any relaxations for TLS relocations so by factoring out MIPS
// handling in to the separate function we can simplify the code and do not
// pollute other `handleTlsRelocation` by MIPS `ifs` statements.
// Mips has a custom MipsGotSection that handles the writing of GOT entries
// without dynamic relocations.
template <class ELFT>
static unsigned handleMipsTlsRelocation(RelType Type, Symbol &Sym,
                                        InputSectionBase &C, uint64_t Offset,
                                        int64_t Addend, RelExpr Expr) {
  if (Expr == R_MIPS_TLSLD) {
    if (InX::MipsGot->addTlsIndex() && Config->Pic)
      InX::RelaDyn->addReloc({Target->TlsModuleIndexRel, InX::MipsGot,
                              InX::MipsGot->getTlsIndexOff(), false, nullptr,
                              0});
    C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
    return 1;
  }

  if (Expr == R_MIPS_TLSGD) {
    if (InX::MipsGot->addDynTlsEntry(Sym) && Sym.IsPreemptible) {
      uint64_t Off = InX::MipsGot->getGlobalDynOffset(Sym);
      InX::RelaDyn->addReloc(
          {Target->TlsModuleIndexRel, InX::MipsGot, Off, false, &Sym, 0});
      if (Sym.IsPreemptible)
        InX::RelaDyn->addReloc({Target->TlsOffsetRel, InX::MipsGot,
                                Off + Config->Wordsize, false, &Sym, 0});
    }
    C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
    return 1;
  }
  return 0;
}

// This function is similar to the `handleMipsTlsRelocation`. ARM also does not
// support any relaxations for TLS relocations. ARM is logically similar to Mips
// in how it handles TLS, but Mips uses its own custom GOT which handles some
// of the cases that ARM uses GOT relocations for.
//
// We look for TLS global dynamic and local dynamic relocations, these may
// require the generation of a pair of GOT entries that have associated
// dynamic relocations. When the results of the dynamic relocations can be
// resolved at static link time we do so. This is necessary for static linking
// as there will be no dynamic loader to resolve them at load-time.
//
// The pair of GOT entries created are of the form
// GOT[e0] Module Index (Used to find pointer to TLS block at run-time)
// GOT[e1] Offset of symbol in TLS block
template <class ELFT>
static unsigned handleARMTlsRelocation(RelType Type, Symbol &Sym,
                                       InputSectionBase &C, uint64_t Offset,
                                       int64_t Addend, RelExpr Expr) {
  // The Dynamic TLS Module Index Relocation for a symbol defined in an
  // executable is always 1. If the target Symbol is not preemptible then
  // we know the offset into the TLS block at static link time.
  bool NeedDynId = Sym.IsPreemptible || Config->Shared;
  bool NeedDynOff = Sym.IsPreemptible;

  auto AddTlsReloc = [&](uint64_t Off, RelType Type, Symbol *Dest, bool Dyn) {
    if (Dyn)
      InX::RelaDyn->addReloc({Type, InX::Got, Off, false, Dest, 0});
    else
      InX::Got->Relocations.push_back({R_ABS, Type, Off, 0, Dest});
  };

  // Local Dynamic is for access to module local TLS variables, while still
  // being suitable for being dynamically loaded via dlopen.
  // GOT[e0] is the module index, with a special value of 0 for the current
  // module. GOT[e1] is unused. There only needs to be one module index entry.
  if (Expr == R_TLSLD_PC && InX::Got->addTlsIndex()) {
    AddTlsReloc(InX::Got->getTlsIndexOff(), Target->TlsModuleIndexRel,
                NeedDynId ? nullptr : &Sym, NeedDynId);
    C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
    return 1;
  }

  // Global Dynamic is the most general purpose access model. When we know
  // the module index and offset of symbol in TLS block we can fill these in
  // using static GOT relocations.
  if (Expr == R_TLSGD_PC) {
    if (InX::Got->addDynTlsEntry(Sym)) {
      uint64_t Off = InX::Got->getGlobalDynOffset(Sym);
      AddTlsReloc(Off, Target->TlsModuleIndexRel, &Sym, NeedDynId);
      AddTlsReloc(Off + Config->Wordsize, Target->TlsOffsetRel, &Sym,
                  NeedDynOff);
    }
    C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
    return 1;
  }
  return 0;
}

// Returns the number of relocations processed.
template <class ELFT>
static unsigned
handleTlsRelocation(RelType Type, Symbol &Sym, InputSectionBase &C,
                    typename ELFT::uint Offset, int64_t Addend, RelExpr Expr) {
  if (!(C.Flags & SHF_ALLOC))
    return 0;

  if (!Sym.isTls())
    return 0;

  if (Config->EMachine == EM_ARM)
    return handleARMTlsRelocation<ELFT>(Type, Sym, C, Offset, Addend, Expr);
  if (Config->EMachine == EM_MIPS)
    return handleMipsTlsRelocation<ELFT>(Type, Sym, C, Offset, Addend, Expr);

  if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL>(Expr) &&
      Config->Shared) {
    if (InX::Got->addDynTlsEntry(Sym)) {
      uint64_t Off = InX::Got->getGlobalDynOffset(Sym);
      InX::RelaDyn->addReloc(
          {Target->TlsDescRel, InX::Got, Off, !Sym.IsPreemptible, &Sym, 0});
    }
    if (Expr != R_TLSDESC_CALL)
      C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
    return 1;
  }

  if (isRelExprOneOf<R_TLSLD_PC, R_TLSLD>(Expr)) {
    // Local-Dynamic relocs can be relaxed to Local-Exec.
    if (!Config->Shared) {
      C.Relocations.push_back(
          {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Sym});
      return 2;
    }
    if (InX::Got->addTlsIndex())
      InX::RelaDyn->addReloc({Target->TlsModuleIndexRel, InX::Got,
                              InX::Got->getTlsIndexOff(), false, nullptr, 0});
    C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
    return 1;
  }

  // Local-Dynamic relocs can be relaxed to Local-Exec.
  if (isRelExprOneOf<R_ABS, R_TLSLD, R_TLSLD_PC>(Expr) && !Config->Shared) {
    C.Relocations.push_back({R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Sym});
    return 1;
  }

  if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL, R_TLSGD,
                     R_TLSGD_PC>(Expr)) {
    if (Config->Shared) {
      if (InX::Got->addDynTlsEntry(Sym)) {
        uint64_t Off = InX::Got->getGlobalDynOffset(Sym);
        InX::RelaDyn->addReloc(
            {Target->TlsModuleIndexRel, InX::Got, Off, false, &Sym, 0});

        // If the symbol is preemptible we need the dynamic linker to write
        // the offset too.
        uint64_t OffsetOff = Off + Config->Wordsize;
        if (Sym.IsPreemptible)
          InX::RelaDyn->addReloc(
              {Target->TlsOffsetRel, InX::Got, OffsetOff, false, &Sym, 0});
        else
          InX::Got->Relocations.push_back(
              {R_ABS, Target->TlsOffsetRel, OffsetOff, 0, &Sym});
      }
      C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
      return 1;
    }

    // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
    // depending on the symbol being locally defined or not.
    if (Sym.IsPreemptible) {
      C.Relocations.push_back(
          {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_IE), Type,
           Offset, Addend, &Sym});
      if (!Sym.isInGot()) {
        InX::Got->addEntry(Sym);
        InX::RelaDyn->addReloc(
            {Target->TlsGotRel, InX::Got, Sym.getGotOffset(), false, &Sym, 0});
      }
    } else {
      C.Relocations.push_back(
          {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type,
           Offset, Addend, &Sym});
    }
    return Target->TlsGdRelaxSkip;
  }

  // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
  // defined.
  if (isRelExprOneOf<R_GOT, R_GOT_FROM_END, R_GOT_PC, R_GOT_PAGE_PC>(Expr) &&
      !Config->Shared && !Sym.IsPreemptible) {
    C.Relocations.push_back({R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Sym});
    return 1;
  }

  if (Expr == R_TLSDESC_CALL)
    return 1;
  return 0;
}

static RelType getMipsPairType(RelType Type, bool IsLocal) {
  switch (Type) {
  case R_MIPS_HI16:
    return R_MIPS_LO16;
  case R_MIPS_GOT16:
    // In case of global symbol, the R_MIPS_GOT16 relocation does not
    // have a pair. Each global symbol has a unique entry in the GOT
    // and a corresponding instruction with help of the R_MIPS_GOT16
    // relocation loads an address of the symbol. In case of local
    // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
    // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
    // relocations handle low 16 bits of the address. That allows
    // to allocate only one GOT entry for every 64 KBytes of local data.
    return IsLocal ? R_MIPS_LO16 : R_MIPS_NONE;
  case R_MICROMIPS_GOT16:
    return IsLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
  case R_MIPS_PCHI16:
    return R_MIPS_PCLO16;
  case R_MICROMIPS_HI16:
    return R_MICROMIPS_LO16;
  default:
    return R_MIPS_NONE;
  }
}

// True if non-preemptable symbol always has the same value regardless of where
// the DSO is loaded.
static bool isAbsolute(const Symbol &Sym) {
  if (Sym.isUndefWeak())
    return true;
  if (const auto *DR = dyn_cast<Defined>(&Sym))
    return DR->Section == nullptr; // Absolute symbol.
  return false;
}

static bool isAbsoluteValue(const Symbol &Sym) {
  return isAbsolute(Sym) || Sym.isTls();
}

// Returns true if Expr refers a PLT entry.
static bool needsPlt(RelExpr Expr) {
  return isRelExprOneOf<R_PLT_PC, R_PPC_PLT_OPD, R_PLT, R_PLT_PAGE_PC>(Expr);
}

// Returns true if Expr refers a GOT entry. Note that this function
// returns false for TLS variables even though they need GOT, because
// TLS variables uses GOT differently than the regular variables.
static bool needsGot(RelExpr Expr) {
  return isRelExprOneOf<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
                        R_MIPS_GOT_OFF32, R_GOT_PAGE_PC, R_GOT_PC,
                        R_GOT_FROM_END>(Expr);
}

// True if this expression is of the form Sym - X, where X is a position in the
// file (PC, or GOT for example).
static bool isRelExpr(RelExpr Expr) {
  return isRelExprOneOf<R_PC, R_GOTREL, R_GOTREL_FROM_END, R_MIPS_GOTREL,
                        R_PAGE_PC, R_RELAX_GOT_PC>(Expr);
}

// Returns true if a given relocation can be computed at link-time.
//
// For instance, we know the offset from a relocation to its target at
// link-time if the relocation is PC-relative and refers a
// non-interposable function in the same executable. This function
// will return true for such relocation.
//
// If this function returns false, that means we need to emit a
// dynamic relocation so that the relocation will be fixed at load-time.
static bool isStaticLinkTimeConstant(RelExpr E, RelType Type, const Symbol &Sym,
                                     InputSectionBase &S, uint64_t RelOff) {
  // These expressions always compute a constant
  if (isRelExprOneOf<R_GOT_FROM_END, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE,
                     R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC,
                     R_MIPS_TLSGD, R_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC,
                     R_GOTONLY_PC_FROM_END, R_PLT_PC, R_TLSGD_PC, R_TLSGD,
                     R_PPC_PLT_OPD, R_TLSDESC_CALL, R_TLSDESC_PAGE, R_HINT>(E))
    return true;

  // These never do, except if the entire file is position dependent or if
  // only the low bits are used.
  if (E == R_GOT || E == R_PLT || E == R_TLSDESC)
    return Target->usesOnlyLowPageBits(Type) || !Config->Pic;

  if (Sym.IsPreemptible)
    return false;
  if (!Config->Pic)
    return true;

  // The size of a non preemptible symbol is a constant.
  if (E == R_SIZE)
    return true;

  // For the target and the relocation, we want to know if they are
  // absolute or relative.
  bool AbsVal = isAbsoluteValue(Sym);
  bool RelE = isRelExpr(E);
  if (AbsVal && !RelE)
    return true;
  if (!AbsVal && RelE)
    return true;
  if (!AbsVal && !RelE)
    return Target->usesOnlyLowPageBits(Type);

  // Relative relocation to an absolute value. This is normally unrepresentable,
  // but if the relocation refers to a weak undefined symbol, we allow it to
  // resolve to the image base. This is a little strange, but it allows us to
  // link function calls to such symbols. Normally such a call will be guarded
  // with a comparison, which will load a zero from the GOT.
  // Another special case is MIPS _gp_disp symbol which represents offset
  // between start of a function and '_gp' value and defined as absolute just
  // to simplify the code.
  assert(AbsVal && RelE);
  if (Sym.isUndefWeak())
    return true;

  error("relocation " + toString(Type) + " cannot refer to absolute symbol: " +
        toString(Sym) + getLocation(S, Sym, RelOff));
  return true;
}

static RelExpr toPlt(RelExpr Expr) {
  if (Expr == R_PPC_OPD)
    return R_PPC_PLT_OPD;
  if (Expr == R_PC)
    return R_PLT_PC;
  if (Expr == R_PAGE_PC)
    return R_PLT_PAGE_PC;
  if (Expr == R_ABS)
    return R_PLT;
  return Expr;
}

static RelExpr fromPlt(RelExpr Expr) {
  // We decided not to use a plt. Optimize a reference to the plt to a
  // reference to the symbol itself.
  if (Expr == R_PLT_PC)
    return R_PC;
  if (Expr == R_PPC_PLT_OPD)
    return R_PPC_OPD;
  if (Expr == R_PLT)
    return R_ABS;
  return Expr;
}

// Returns true if a given shared symbol is in a read-only segment in a DSO.
template <class ELFT> static bool isReadOnly(SharedSymbol *SS) {
  typedef typename ELFT::Phdr Elf_Phdr;

  // Determine if the symbol is read-only by scanning the DSO's program headers.
  const SharedFile<ELFT> &File = SS->getFile<ELFT>();
  for (const Elf_Phdr &Phdr : check(File.getObj().program_headers()))
    if ((Phdr.p_type == ELF::PT_LOAD || Phdr.p_type == ELF::PT_GNU_RELRO) &&
        !(Phdr.p_flags & ELF::PF_W) && SS->Value >= Phdr.p_vaddr &&
        SS->Value < Phdr.p_vaddr + Phdr.p_memsz)
      return true;
  return false;
}

// Returns symbols at the same offset as a given symbol, including SS itself.
//
// If two or more symbols are at the same offset, and at least one of
// them are copied by a copy relocation, all of them need to be copied.
// Otherwise, they would refer different places at runtime.
template <class ELFT>
static std::vector<SharedSymbol *> getSymbolsAt(SharedSymbol *SS) {
  typedef typename ELFT::Sym Elf_Sym;

  SharedFile<ELFT> &File = SS->getFile<ELFT>();

  std::vector<SharedSymbol *> Ret;
  for (const Elf_Sym &S : File.getGlobalELFSyms()) {
    if (S.st_shndx == SHN_UNDEF || S.st_shndx == SHN_ABS ||
        S.st_value != SS->Value)
      continue;
    StringRef Name = check(S.getName(File.getStringTable()));
    Symbol *Sym = Symtab->find(Name);
    if (auto *Alias = dyn_cast_or_null<SharedSymbol>(Sym))
      Ret.push_back(Alias);
  }
  return Ret;
}

// Reserve space in .bss or .bss.rel.ro for copy relocation.
//
// The copy relocation is pretty much a hack. If you use a copy relocation
// in your program, not only the symbol name but the symbol's size, RW/RO
// bit and alignment become part of the ABI. In addition to that, if the
// symbol has aliases, the aliases become part of the ABI. That's subtle,
// but if you violate that implicit ABI, that can cause very counter-
// intuitive consequences.
//
// So, what is the copy relocation? It's for linking non-position
// independent code to DSOs. In an ideal world, all references to data
// exported by DSOs should go indirectly through GOT. But if object files
// are compiled as non-PIC, all data references are direct. There is no
// way for the linker to transform the code to use GOT, as machine
// instructions are already set in stone in object files. This is where
// the copy relocation takes a role.
//
// A copy relocation instructs the dynamic linker to copy data from a DSO
// to a specified address (which is usually in .bss) at load-time. If the
// static linker (that's us) finds a direct data reference to a DSO
// symbol, it creates a copy relocation, so that the symbol can be
// resolved as if it were in .bss rather than in a DSO.
//
// As you can see in this function, we create a copy relocation for the
// dynamic linker, and the relocation contains not only symbol name but
// various other informtion about the symbol. So, such attributes become a
// part of the ABI.
//
// Note for application developers: I can give you a piece of advice if
// you are writing a shared library. You probably should export only
// functions from your library. You shouldn't export variables.
//
// As an example what can happen when you export variables without knowing
// the semantics of copy relocations, assume that you have an exported
// variable of type T. It is an ABI-breaking change to add new members at
// end of T even though doing that doesn't change the layout of the
// existing members. That's because the space for the new members are not
// reserved in .bss unless you recompile the main program. That means they
// are likely to overlap with other data that happens to be laid out next
// to the variable in .bss. This kind of issue is sometimes very hard to
// debug. What's a solution? Instead of exporting a varaible V from a DSO,
// define an accessor getV().
template <class ELFT> static void addCopyRelSymbol(SharedSymbol *SS) {
  // Copy relocation against zero-sized symbol doesn't make sense.
  uint64_t SymSize = SS->getSize();
  if (SymSize == 0)
    fatal("cannot create a copy relocation for symbol " + toString(*SS));

  // See if this symbol is in a read-only segment. If so, preserve the symbol's
  // memory protection by reserving space in the .bss.rel.ro section.
  bool IsReadOnly = isReadOnly<ELFT>(SS);
  BssSection *Sec = make<BssSection>(IsReadOnly ? ".bss.rel.ro" : ".bss",
                                     SymSize, SS->Alignment);
  if (IsReadOnly)
    InX::BssRelRo->getParent()->addSection(Sec);
  else
    InX::Bss->getParent()->addSection(Sec);

  // Look through the DSO's dynamic symbol table for aliases and create a
  // dynamic symbol for each one. This causes the copy relocation to correctly
  // interpose any aliases.
  for (SharedSymbol *Sym : getSymbolsAt<ELFT>(SS)) {
    Sym->CopyRelSec = Sec;
    Sym->IsPreemptible = false;
    Sym->IsUsedInRegularObj = true;
    Sym->Used = true;
  }

  InX::RelaDyn->addReloc({Target->CopyRel, Sec, 0, false, SS, 0});
}

static void errorOrWarn(const Twine &Msg) {
  if (!Config->NoinhibitExec)
    error(Msg);
  else
    warn(Msg);
}

// Returns PLT relocation expression.
//
// This handles a non PIC program call to function in a shared library. In
// an ideal world, we could just report an error saying the relocation can
// overflow at runtime. In the real world with glibc, crt1.o has a
// R_X86_64_PC32 pointing to libc.so.
//
// The general idea on how to handle such cases is to create a PLT entry and
// use that as the function value.
//
// For the static linking part, we just return a plt expr and everything
// else will use the the PLT entry as the address.
//
// The remaining problem is making sure pointer equality still works. We
// need the help of the dynamic linker for that. We let it know that we have
// a direct reference to a so symbol by creating an undefined symbol with a
// non zero st_value. Seeing that, the dynamic linker resolves the symbol to
// the value of the symbol we created. This is true even for got entries, so
// pointer equality is maintained. To avoid an infinite loop, the only entry
// that points to the real function is a dedicated got entry used by the
// plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
// R_386_JMP_SLOT, etc).
static RelExpr getPltExpr(Symbol &Sym, RelExpr Expr, bool &IsConstant) {
  Sym.NeedsPltAddr = true;
  Sym.IsPreemptible = false;
  IsConstant = true;
  return toPlt(Expr);
}

// This modifies the expression if we can use a copy relocation or point the
// symbol to the PLT.
template <class ELFT>
static RelExpr adjustExpr(Symbol &Sym, RelExpr Expr, RelType Type,
                          InputSectionBase &S, uint64_t RelOff,
                          bool &IsConstant) {
  // If a relocation can be applied at link-time, we don't need to
  // create a dynamic relocation in the first place.
  if (IsConstant)
    return Expr;

  // We can create any dynamic relocation supported by the dynamic linker if a
  // section is writable or we are passed -z notext.
  bool CanWrite = (S.Flags & SHF_WRITE) || !Config->ZText;
  if (CanWrite && Target->isPicRel(Type))
    return Expr;

  // If the relocation is to a weak undef, and we are producing
  // executable, give up on it and produce a non preemptible 0.
  if (!Config->Shared && Sym.isUndefWeak()) {
    Sym.IsPreemptible = false;
    IsConstant = true;
    return Expr;
  }

  // If we got here we know that this relocation would require the dynamic
  // linker to write a value to read only memory or use an unsupported
  // relocation.

  // We can hack around it if we are producing an executable and
  // the refered symbol can be preemepted to refer to the executable.
  if (!CanWrite && (Config->Shared || (Config->Pic && !isRelExpr(Expr)))) {
    error(
        "can't create dynamic relocation " + toString(Type) + " against " +
        (Sym.getName().empty() ? "local symbol" : "symbol: " + toString(Sym)) +
        " in readonly segment; recompile object files with -fPIC" +
        getLocation(S, Sym, RelOff));
    return Expr;
  }

  // Copy relocations are only possible if we are creating an executable and the
  // symbol is shared.
  if (!Sym.isShared() || Config->Shared)
    return Expr;

  if (Sym.getVisibility() != STV_DEFAULT) {
    error("cannot preempt symbol: " + toString(Sym) +
          getLocation(S, Sym, RelOff));
    return Expr;
  }

  if (Sym.isObject()) {
    // Produce a copy relocation.
    auto *B = dyn_cast<SharedSymbol>(&Sym);
    if (B && !B->CopyRelSec) {
      if (Config->ZNocopyreloc)
        error("unresolvable relocation " + toString(Type) +
              " against symbol '" + toString(*B) +
              "'; recompile with -fPIC or remove '-z nocopyreloc'" +
              getLocation(S, Sym, RelOff));

      addCopyRelSymbol<ELFT>(B);
    }
    IsConstant = true;
    return Expr;
  }

  if (Sym.isFunc())
    return getPltExpr(Sym, Expr, IsConstant);

  errorOrWarn("symbol '" + toString(Sym) + "' defined in " +
              toString(Sym.File) + " has no type");
  return Expr;
}

// MIPS has an odd notion of "paired" relocations to calculate addends.
// For example, if a relocation is of R_MIPS_HI16, there must be a
// R_MIPS_LO16 relocation after that, and an addend is calculated using
// the two relocations.
template <class ELFT, class RelTy>
static int64_t computeMipsAddend(const RelTy &Rel, const RelTy *End,
                                 InputSectionBase &Sec, RelExpr Expr,
                                 bool IsLocal) {
  if (Expr == R_MIPS_GOTREL && IsLocal)
    return Sec.getFile<ELFT>()->MipsGp0;

  // The ABI says that the paired relocation is used only for REL.
  // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
  if (RelTy::IsRela)
    return 0;

  RelType Type = Rel.getType(Config->IsMips64EL);
  uint32_t PairTy = getMipsPairType(Type, IsLocal);
  if (PairTy == R_MIPS_NONE)
    return 0;

  const uint8_t *Buf = Sec.Data.data();
  uint32_t SymIndex = Rel.getSymbol(Config->IsMips64EL);

  // To make things worse, paired relocations might not be contiguous in
  // the relocation table, so we need to do linear search. *sigh*
  for (const RelTy *RI = &Rel; RI != End; ++RI)
    if (RI->getType(Config->IsMips64EL) == PairTy &&
        RI->getSymbol(Config->IsMips64EL) == SymIndex)
      return Target->getImplicitAddend(Buf + RI->r_offset, PairTy);

  warn("can't find matching " + toString(PairTy) + " relocation for " +
       toString(Type));
  return 0;
}

// Returns an addend of a given relocation. If it is RELA, an addend
// is in a relocation itself. If it is REL, we need to read it from an
// input section.
template <class ELFT, class RelTy>
static int64_t computeAddend(const RelTy &Rel, const RelTy *End,
                             InputSectionBase &Sec, RelExpr Expr,
                             bool IsLocal) {
  int64_t Addend;
  RelType Type = Rel.getType(Config->IsMips64EL);

  if (RelTy::IsRela) {
    Addend = getAddend<ELFT>(Rel);
  } else {
    const uint8_t *Buf = Sec.Data.data();
    Addend = Target->getImplicitAddend(Buf + Rel.r_offset, Type);
  }

  if (Config->EMachine == EM_PPC64 && Config->Pic && Type == R_PPC64_TOC)
    Addend += getPPC64TocBase();
  if (Config->EMachine == EM_MIPS)
    Addend += computeMipsAddend<ELFT>(Rel, End, Sec, Expr, IsLocal);

  return Addend;
}

// Report an undefined symbol if necessary.
// Returns true if this function printed out an error message.
static bool maybeReportUndefined(Symbol &Sym, InputSectionBase &Sec,
                                 uint64_t Offset) {
  if (Config->UnresolvedSymbols == UnresolvedPolicy::IgnoreAll)
    return false;

  if (Sym.isLocal() || !Sym.isUndefined() || Sym.isWeak())
    return false;

  bool CanBeExternal =
      Sym.computeBinding() != STB_LOCAL && Sym.getVisibility() == STV_DEFAULT;
  if (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore && CanBeExternal)
    return false;

  std::string Msg =
      "undefined symbol: " + toString(Sym) + "\n>>> referenced by ";

  std::string Src = Sec.getSrcMsg(Sym, Offset);
  if (!Src.empty())
    Msg += Src + "\n>>>               ";
  Msg += Sec.getObjMsg(Offset);

  if ((Config->UnresolvedSymbols == UnresolvedPolicy::Warn && CanBeExternal) ||
      Config->NoinhibitExec) {
    warn(Msg);
    return false;
  }

  error(Msg);
  return true;
}

// MIPS N32 ABI treats series of successive relocations with the same offset
// as a single relocation. The similar approach used by N64 ABI, but this ABI
// packs all relocations into the single relocation record. Here we emulate
// this for the N32 ABI. Iterate over relocation with the same offset and put
// theirs types into the single bit-set.
template <class RelTy> static RelType getMipsN32RelType(RelTy *&Rel, RelTy *End) {
  RelType Type = Rel->getType(Config->IsMips64EL);
  uint64_t Offset = Rel->r_offset;

  int N = 0;
  while (Rel + 1 != End && (Rel + 1)->r_offset == Offset)
    Type |= (++Rel)->getType(Config->IsMips64EL) << (8 * ++N);
  return Type;
}

// .eh_frame sections are mergeable input sections, so their input
// offsets are not linearly mapped to output section. For each input
// offset, we need to find a section piece containing the offset and
// add the piece's base address to the input offset to compute the
// output offset. That isn't cheap.
//
// This class is to speed up the offset computation. When we process
// relocations, we access offsets in the monotonically increasing
// order. So we can optimize for that access pattern.
//
// For sections other than .eh_frame, this class doesn't do anything.
namespace {
class OffsetGetter {
public:
  explicit OffsetGetter(InputSectionBase &Sec) {
    if (auto *Eh = dyn_cast<EhInputSection>(&Sec))
      Pieces = Eh->Pieces;
  }

  // Translates offsets in input sections to offsets in output sections.
  // Given offset must increase monotonically. We assume that Piece is
  // sorted by InputOff.
  uint64_t get(uint64_t Off) {
    if (Pieces.empty())
      return Off;

    while (I != Pieces.size() && Pieces[I].InputOff + Pieces[I].Size <= Off)
      ++I;
    if (I == Pieces.size())
      return Off;

    // Pieces must be contiguous, so there must be no holes in between.
    assert(Pieces[I].InputOff <= Off && "Relocation not in any piece");

    // Offset -1 means that the piece is dead (i.e. garbage collected).
    if (Pieces[I].OutputOff == -1)
      return -1;
    return Pieces[I].OutputOff + Off - Pieces[I].InputOff;
  }

private:
  ArrayRef<EhSectionPiece> Pieces;
  size_t I = 0;
};
} // namespace

template <class ELFT, class GotPltSection>
static void addPltEntry(PltSection *Plt, GotPltSection *GotPlt,
                        RelocationBaseSection *Rel, RelType Type, Symbol &Sym,
                        bool UseSymVA) {
  Plt->addEntry<ELFT>(Sym);
  GotPlt->addEntry(Sym);
  Rel->addReloc({Type, GotPlt, Sym.getGotPltOffset(), UseSymVA, &Sym, 0});
}

template <class ELFT> static void addGotEntry(Symbol &Sym, bool Preemptible) {
  InX::Got->addEntry(Sym);

  RelExpr Expr = Sym.isTls() ? R_TLS : R_ABS;
  uint64_t Off = Sym.getGotOffset();

  // If a GOT slot value can be calculated at link-time, which is now,
  // we can just fill that out.
  //
  // (We don't actually write a value to a GOT slot right now, but we
  // add a static relocation to a Relocations vector so that
  // InputSection::relocate will do the work for us. We may be able
  // to just write a value now, but it is a TODO.)
  bool IsLinkTimeConstant = !Preemptible && (!Config->Pic || isAbsolute(Sym));
  if (IsLinkTimeConstant) {
    InX::Got->Relocations.push_back({Expr, Target->GotRel, Off, 0, &Sym});
    return;
  }

  // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that
  // the GOT slot will be fixed at load-time.
  RelType Type;
  if (Sym.isTls())
    Type = Target->TlsGotRel;
  else if (!Preemptible && Config->Pic && !isAbsolute(Sym))
    Type = Target->RelativeRel;
  else
    Type = Target->GotRel;
  InX::RelaDyn->addReloc({Type, InX::Got, Off, !Preemptible, &Sym, 0});

  // REL type relocations don't have addend fields unlike RELAs, and
  // their addends are stored to the section to which they are applied.
  // So, store addends if we need to.
  //
  // This is ugly -- the difference between REL and RELA should be
  // handled in a better way. It's a TODO.
  if (!Config->IsRela && !Preemptible)
    InX::Got->Relocations.push_back({R_ABS, Target->GotRel, Off, 0, &Sym});
}

// The reason we have to do this early scan is as follows
// * To mmap the output file, we need to know the size
// * For that, we need to know how many dynamic relocs we will have.
// It might be possible to avoid this by outputting the file with write:
// * Write the allocated output sections, computing addresses.
// * Apply relocations, recording which ones require a dynamic reloc.
// * Write the dynamic relocations.
// * Write the rest of the file.
// This would have some drawbacks. For example, we would only know if .rela.dyn
// is needed after applying relocations. If it is, it will go after rw and rx
// sections. Given that it is ro, we will need an extra PT_LOAD. This
// complicates things for the dynamic linker and means we would have to reserve
// space for the extra PT_LOAD even if we end up not using it.
template <class ELFT, class RelTy>
static void scanRelocs(InputSectionBase &Sec, ArrayRef<RelTy> Rels) {
  OffsetGetter GetOffset(Sec);

  // Not all relocations end up in Sec.Relocations, but a lot do.
  Sec.Relocations.reserve(Rels.size());

  for (auto I = Rels.begin(), End = Rels.end(); I != End; ++I) {
    const RelTy &Rel = *I;
    Symbol &Sym = Sec.getFile<ELFT>()->getRelocTargetSym(Rel);
    RelType Type = Rel.getType(Config->IsMips64EL);

    // Deal with MIPS oddity.
    if (Config->MipsN32Abi)
      Type = getMipsN32RelType(I, End);

    // Get an offset in an output section this relocation is applied to.
    uint64_t Offset = GetOffset.get(Rel.r_offset);
    if (Offset == uint64_t(-1))
      continue;

    // Skip if the target symbol is an erroneous undefined symbol.
    if (maybeReportUndefined(Sym, Sec, Rel.r_offset))
      continue;

    RelExpr Expr =
        Target->getRelExpr(Type, Sym, Sec.Data.begin() + Rel.r_offset);

    // Ignore "hint" relocations because they are only markers for relaxation.
    if (isRelExprOneOf<R_HINT, R_NONE>(Expr))
      continue;

    // Handle yet another MIPS-ness.
    if (isMipsGprel(Type)) {
      int64_t Addend = computeAddend<ELFT>(Rel, End, Sec, Expr, Sym.isLocal());
      Sec.Relocations.push_back({R_MIPS_GOTREL, Type, Offset, Addend, &Sym});
      continue;
    }

    bool Preemptible = Sym.IsPreemptible;

    // Strenghten or relax a PLT access.
    //
    // GNU ifunc symbols must be accessed via PLT because their addresses
    // are determined by runtime.
    //
    // On the other hand, if we know that a PLT entry will be resolved within
    // the same ELF module, we can skip PLT access and directly jump to the
    // destination function. For example, if we are linking a main exectuable,
    // all dynamic symbols that can be resolved within the executable will
    // actually be resolved that way at runtime, because the main exectuable
    // is always at the beginning of a search list. We can leverage that fact.
    if (Sym.isGnuIFunc())
      Expr = toPlt(Expr);
    else if (!Preemptible && Expr == R_GOT_PC && !isAbsoluteValue(Sym))
      Expr =
          Target->adjustRelaxExpr(Type, Sec.Data.data() + Rel.r_offset, Expr);
    else if (!Preemptible)
      Expr = fromPlt(Expr);

    bool IsConstant =
        isStaticLinkTimeConstant(Expr, Type, Sym, Sec, Rel.r_offset);

    Expr = adjustExpr<ELFT>(Sym, Expr, Type, Sec, Rel.r_offset, IsConstant);
    if (errorCount())
      continue;

    // This relocation does not require got entry, but it is relative to got and
    // needs it to be created. Here we request for that.
    if (isRelExprOneOf<R_GOTONLY_PC, R_GOTONLY_PC_FROM_END, R_GOTREL,
                       R_GOTREL_FROM_END, R_PPC_TOC>(Expr))
      InX::Got->HasGotOffRel = true;

    // Read an addend.
    int64_t Addend = computeAddend<ELFT>(Rel, End, Sec, Expr, Sym.isLocal());

    // Process some TLS relocations, including relaxing TLS relocations.
    // Note that this function does not handle all TLS relocations.
    if (unsigned Processed =
            handleTlsRelocation<ELFT>(Type, Sym, Sec, Offset, Addend, Expr)) {
      I += (Processed - 1);
      continue;
    }

    // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol.
    if (needsPlt(Expr) && !Sym.isInPlt()) {
      if (Sym.isGnuIFunc() && !Preemptible)
        addPltEntry<ELFT>(InX::Iplt, InX::IgotPlt, InX::RelaIplt,
                          Target->IRelativeRel, Sym, true);
      else
        addPltEntry<ELFT>(InX::Plt, InX::GotPlt, InX::RelaPlt, Target->PltRel,
                          Sym, !Preemptible);
    }

    // Create a GOT slot if a relocation needs GOT.
    if (needsGot(Expr)) {
      if (Config->EMachine == EM_MIPS) {
        // MIPS ABI has special rules to process GOT entries and doesn't
        // require relocation entries for them. A special case is TLS
        // relocations. In that case dynamic loader applies dynamic
        // relocations to initialize TLS GOT entries.
        // See "Global Offset Table" in Chapter 5 in the following document
        // for detailed description:
        // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
        InX::MipsGot->addEntry(Sym, Addend, Expr);
        if (Sym.isTls() && Sym.IsPreemptible)
          InX::RelaDyn->addReloc({Target->TlsGotRel, InX::MipsGot,
                                  Sym.getGotOffset(), false, &Sym, 0});
      } else if (!Sym.isInGot()) {
        addGotEntry<ELFT>(Sym, Preemptible);
      }
    }

    if (!needsPlt(Expr) && !needsGot(Expr) && Sym.IsPreemptible) {
      // We don't know anything about the finaly symbol. Just ask the dynamic
      // linker to handle the relocation for us.
      if (!Target->isPicRel(Type))
        errorOrWarn(
            "relocation " + toString(Type) +
            " cannot be used against shared object; recompile with -fPIC" +
            getLocation(Sec, Sym, Offset));

      InX::RelaDyn->addReloc(
          {Target->getDynRel(Type), &Sec, Offset, false, &Sym, Addend});

      // MIPS ABI turns using of GOT and dynamic relocations inside out.
      // While regular ABI uses dynamic relocations to fill up GOT entries
      // MIPS ABI requires dynamic linker to fills up GOT entries using
      // specially sorted dynamic symbol table. This affects even dynamic
      // relocations against symbols which do not require GOT entries
      // creation explicitly, i.e. do not have any GOT-relocations. So if
      // a preemptible symbol has a dynamic relocation we anyway have
      // to create a GOT entry for it.
      // If a non-preemptible symbol has a dynamic relocation against it,
      // dynamic linker takes it st_value, adds offset and writes down
      // result of the dynamic relocation. In case of preemptible symbol
      // dynamic linker performs symbol resolution, writes the symbol value
      // to the GOT entry and reads the GOT entry when it needs to perform
      // a dynamic relocation.
      // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
      if (Config->EMachine == EM_MIPS)
        InX::MipsGot->addEntry(Sym, Addend, Expr);
      continue;
    }

    // The size is not going to change, so we fold it in here.
    if (Expr == R_SIZE)
      Addend += Sym.getSize();

    // If the produced value is a constant, we just remember to write it
    // when outputting this section. We also have to do it if the format
    // uses Elf_Rel, since in that case the written value is the addend.
    if (IsConstant) {
      Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
      continue;
    }

    // If the output being produced is position independent, the final value
    // is still not known. In that case we still need some help from the
    // dynamic linker. We can however do better than just copying the incoming
    // relocation. We can process some of it and and just ask the dynamic
    // linker to add the load address.
    if (Config->IsRela) {
      InX::RelaDyn->addReloc(
          {Target->RelativeRel, &Sec, Offset, true, &Sym, Addend});
    } else {
      // In REL, addends are stored to the target section.
      InX::RelaDyn->addReloc(
          {Target->RelativeRel, &Sec, Offset, true, &Sym, 0});
      Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
    }
  }
}

template <class ELFT> void elf::scanRelocations(InputSectionBase &S) {
  if (S.AreRelocsRela)
    scanRelocs<ELFT>(S, S.relas<ELFT>());
  else
    scanRelocs<ELFT>(S, S.rels<ELFT>());
}

// Thunk Implementation
//
// Thunks (sometimes called stubs, veneers or branch islands) are small pieces
// of code that the linker inserts inbetween a caller and a callee. The thunks
// are added at link time rather than compile time as the decision on whether
// a thunk is needed, such as the caller and callee being out of range, can only
// be made at link time.
//
// It is straightforward to tell given the current state of the program when a
// thunk is needed for a particular call. The more difficult part is that
// the thunk needs to be placed in the program such that the caller can reach
// the thunk and the thunk can reach the callee; furthermore, adding thunks to
// the program alters addresses, which can mean more thunks etc.
//
// In lld we have a synthetic ThunkSection that can hold many Thunks.
// The decision to have a ThunkSection act as a container means that we can
// more easily handle the most common case of a single block of contiguous
// Thunks by inserting just a single ThunkSection.
//
// The implementation of Thunks in lld is split across these areas
// Relocations.cpp : Framework for creating and placing thunks
// Thunks.cpp : The code generated for each supported thunk
// Target.cpp : Target specific hooks that the framework uses to decide when
//              a thunk is used
// Synthetic.cpp : Implementation of ThunkSection
// Writer.cpp : Iteratively call framework until no more Thunks added
//
// Thunk placement requirements:
// Mips LA25 thunks. These must be placed immediately before the callee section
// We can assume that the caller is in range of the Thunk. These are modelled
// by Thunks that return the section they must precede with
// getTargetInputSection().
//
// ARM interworking and range extension thunks. These thunks must be placed
// within range of the caller. All implemented ARM thunks can always reach the
// callee as they use an indirect jump via a register that has no range
// restrictions.
//
// Thunk placement algorithm:
// For Mips LA25 ThunkSections; the placement is explicit, it has to be before
// getTargetInputSection().
//
// For thunks that must be placed within range of the caller there are many
// possible choices given that the maximum range from the caller is usually
// much larger than the average InputSection size. Desirable properties include:
// - Maximize reuse of thunks by multiple callers
// - Minimize number of ThunkSections to simplify insertion
// - Handle impact of already added Thunks on addresses
// - Simple to understand and implement
//
// In lld for the first pass, we pre-create one or more ThunkSections per
// InputSectionDescription at Target specific intervals. A ThunkSection is
// placed so that the estimated end of the ThunkSection is within range of the
// start of the InputSectionDescription or the previous ThunkSection. For
// example:
// InputSectionDescription
// Section 0
// ...
// Section N
// ThunkSection 0
// Section N + 1
// ...
// Section N + K
// Thunk Section 1
//
// The intention is that we can add a Thunk to a ThunkSection that is well
// spaced enough to service a number of callers without having to do a lot
// of work. An important principle is that it is not an error if a Thunk cannot
// be placed in a pre-created ThunkSection; when this happens we create a new
// ThunkSection placed next to the caller. This allows us to handle the vast
// majority of thunks simply, but also handle rare cases where the branch range
// is smaller than the target specific spacing.
//
// The algorithm is expected to create all the thunks that are needed in a
// single pass, with a small number of programs needing a second pass due to
// the insertion of thunks in the first pass increasing the offset between
// callers and callees that were only just in range.
//
// A consequence of allowing new ThunkSections to be created outside of the
// pre-created ThunkSections is that in rare cases calls to Thunks that were in
// range in pass K, are out of range in some pass > K due to the insertion of
// more Thunks in between the caller and callee. When this happens we retarget
// the relocation back to the original target and create another Thunk.

// Remove ThunkSections that are empty, this should only be the initial set
// precreated on pass 0.

// Insert the Thunks for OutputSection OS into their designated place
// in the Sections vector, and recalculate the InputSection output section
// offsets.
// This may invalidate any output section offsets stored outside of InputSection
void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> OutputSections) {
  forEachInputSectionDescription(
      OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) {
        if (ISD->ThunkSections.empty())
          return;

        // Remove any zero sized precreated Thunks.
        llvm::erase_if(ISD->ThunkSections,
                       [](const std::pair<ThunkSection *, uint32_t> &TS) {
                         return TS.first->getSize() == 0;
                       });
        // ISD->ThunkSections contains all created ThunkSections, including
        // those inserted in previous passes. Extract the Thunks created this
        // pass and order them in ascending OutSecOff.
        std::vector<ThunkSection *> NewThunks;
        for (const std::pair<ThunkSection *, uint32_t> TS : ISD->ThunkSections)
          if (TS.second == Pass)
            NewThunks.push_back(TS.first);
        std::stable_sort(NewThunks.begin(), NewThunks.end(),
                         [](const ThunkSection *A, const ThunkSection *B) {
                           return A->OutSecOff < B->OutSecOff;
                         });

        // Merge sorted vectors of Thunks and InputSections by OutSecOff
        std::vector<InputSection *> Tmp;
        Tmp.reserve(ISD->Sections.size() + NewThunks.size());
        auto MergeCmp = [](const InputSection *A, const InputSection *B) {
          // std::merge requires a strict weak ordering.
          if (A->OutSecOff < B->OutSecOff)
            return true;
          if (A->OutSecOff == B->OutSecOff) {
            auto *TA = dyn_cast<ThunkSection>(A);
            auto *TB = dyn_cast<ThunkSection>(B);
            // Check if Thunk is immediately before any specific Target
            // InputSection for example Mips LA25 Thunks.
            if (TA && TA->getTargetInputSection() == B)
              return true;
            if (TA && !TB && !TA->getTargetInputSection())
              // Place Thunk Sections without specific targets before
              // non-Thunk Sections.
              return true;
          }
          return false;
        };
        std::merge(ISD->Sections.begin(), ISD->Sections.end(),
                   NewThunks.begin(), NewThunks.end(), std::back_inserter(Tmp),
                   MergeCmp);
        ISD->Sections = std::move(Tmp);
      });
}

// Find or create a ThunkSection within the InputSectionDescription (ISD) that
// is in range of Src. An ISD maps to a range of InputSections described by a
// linker script section pattern such as { .text .text.* }.
ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *OS, InputSection *IS,
                                           InputSectionDescription *ISD,
                                           uint32_t Type, uint64_t Src) {
  for (std::pair<ThunkSection *, uint32_t> TP : ISD->ThunkSections) {
    ThunkSection *TS = TP.first;
    uint64_t TSBase = OS->Addr + TS->OutSecOff;
    uint64_t TSLimit = TSBase + TS->getSize();
    if (Target->inBranchRange(Type, Src, (Src > TSLimit) ? TSBase : TSLimit))
      return TS;
  }

  // No suitable ThunkSection exists. This can happen when there is a branch
  // with lower range than the ThunkSection spacing or when there are too
  // many Thunks. Create a new ThunkSection as close to the InputSection as
  // possible. Error if InputSection is so large we cannot place ThunkSection
  // anywhere in Range.
  uint64_t ThunkSecOff = IS->OutSecOff;
  if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff)) {
    ThunkSecOff = IS->OutSecOff + IS->getSize();
    if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff))
      fatal("InputSection too large for range extension thunk " +
            IS->getObjMsg(Src - (OS->Addr + IS->OutSecOff)));
  }
  return addThunkSection(OS, ISD, ThunkSecOff);
}

// Add a Thunk that needs to be placed in a ThunkSection that immediately
// precedes its Target.
ThunkSection *ThunkCreator::getISThunkSec(InputSection *IS) {
  ThunkSection *TS = ThunkedSections.lookup(IS);
  if (TS)
    return TS;

  // Find InputSectionRange within Target Output Section (TOS) that the
  // InputSection (IS) that we need to precede is in.
  OutputSection *TOS = IS->getParent();
  for (BaseCommand *BC : TOS->SectionCommands)
    if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) {
      if (ISD->Sections.empty())
        continue;
      InputSection *first = ISD->Sections.front();
      InputSection *last = ISD->Sections.back();
      if (IS->OutSecOff >= first->OutSecOff &&
          IS->OutSecOff <= last->OutSecOff) {
        TS = addThunkSection(TOS, ISD, IS->OutSecOff);
        ThunkedSections[IS] = TS;
        break;
      }
    }
  return TS;
}

// Create one or more ThunkSections per OS that can be used to place Thunks.
// We attempt to place the ThunkSections using the following desirable
// properties:
// - Within range of the maximum number of callers
// - Minimise the number of ThunkSections
//
// We follow a simple but conservative heuristic to place ThunkSections at
// offsets that are multiples of a Target specific branch range.
// For an InputSectionRange that is smaller than the range, a single
// ThunkSection at the end of the range will do.
void ThunkCreator::createInitialThunkSections(
    ArrayRef<OutputSection *> OutputSections) {
  forEachInputSectionDescription(
      OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) {
        if (ISD->Sections.empty())
          return;
        uint32_t ISLimit;
        uint32_t PrevISLimit = ISD->Sections.front()->OutSecOff;
        uint32_t ThunkUpperBound = PrevISLimit + Target->ThunkSectionSpacing;

        for (const InputSection *IS : ISD->Sections) {
          ISLimit = IS->OutSecOff + IS->getSize();
          if (ISLimit > ThunkUpperBound) {
            addThunkSection(OS, ISD, PrevISLimit);
            ThunkUpperBound = PrevISLimit + Target->ThunkSectionSpacing;
          }
          PrevISLimit = ISLimit;
        }
        addThunkSection(OS, ISD, ISLimit);
      });
}

ThunkSection *ThunkCreator::addThunkSection(OutputSection *OS,
                                            InputSectionDescription *ISD,
                                            uint64_t Off) {
  auto *TS = make<ThunkSection>(OS, Off);
  ISD->ThunkSections.push_back(std::make_pair(TS, Pass));
  return TS;
}

std::pair<Thunk *, bool> ThunkCreator::getThunk(Symbol &Sym, RelType Type,
                                                uint64_t Src) {
  auto Res = ThunkedSymbols.insert({&Sym, std::vector<Thunk *>()});
  if (!Res.second) {
    // Check existing Thunks for Sym to see if they can be reused
    for (Thunk *ET : Res.first->second)
      if (ET->isCompatibleWith(Type) &&
          Target->inBranchRange(Type, Src, ET->ThunkSym->getVA()))
        return std::make_pair(ET, false);
  }
  // No existing compatible Thunk in range, create a new one
  Thunk *T = addThunk(Type, Sym);
  Res.first->second.push_back(T);
  return std::make_pair(T, true);
}

// Call Fn on every executable InputSection accessed via the linker script
// InputSectionDescription::Sections.
void ThunkCreator::forEachInputSectionDescription(
    ArrayRef<OutputSection *> OutputSections,
    std::function<void(OutputSection *, InputSectionDescription *)> Fn) {
  for (OutputSection *OS : OutputSections) {
    if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR))
      continue;
    for (BaseCommand *BC : OS->SectionCommands)
      if (auto *ISD = dyn_cast<InputSectionDescription>(BC))
        Fn(OS, ISD);
  }
}

// Return true if the relocation target is an in range Thunk.
// Return false if the relocation is not to a Thunk. If the relocation target
// was originally to a Thunk, but is no longer in range we revert the
// relocation back to its original non-Thunk target.
bool ThunkCreator::normalizeExistingThunk(Relocation &Rel, uint64_t Src) {
  if (Thunk *ET = Thunks.lookup(Rel.Sym)) {
    if (Target->inBranchRange(Rel.Type, Src, Rel.Sym->getVA()))
      return true;
    Rel.Sym = &ET->Destination;
    if (Rel.Sym->isInPlt())
      Rel.Expr = toPlt(Rel.Expr);
  }
  return false;
}

// Process all relocations from the InputSections that have been assigned
// to InputSectionDescriptions and redirect through Thunks if needed. The
// function should be called iteratively until it returns false.
//
// PreConditions:
// All InputSections that may need a Thunk are reachable from
// OutputSectionCommands.
//
// All OutputSections have an address and all InputSections have an offset
// within the OutputSection.
//
// The offsets between caller (relocation place) and callee
// (relocation target) will not be modified outside of createThunks().
//
// PostConditions:
// If return value is true then ThunkSections have been inserted into
// OutputSections. All relocations that needed a Thunk based on the information
// available to createThunks() on entry have been redirected to a Thunk. Note
// that adding Thunks changes offsets between caller and callee so more Thunks
// may be required.
//
// If return value is false then no more Thunks are needed, and createThunks has
// made no changes. If the target requires range extension thunks, currently
// ARM, then any future change in offset between caller and callee risks a
// relocation out of range error.
bool ThunkCreator::createThunks(ArrayRef<OutputSection *> OutputSections) {
  bool AddressesChanged = false;
  if (Pass == 0 && Target->ThunkSectionSpacing)
    createInitialThunkSections(OutputSections);
  else if (Pass == 10)
    // With Thunk Size much smaller than branch range we expect to
    // converge quickly; if we get to 10 something has gone wrong.
    fatal("thunk creation not converged");

  // Create all the Thunks and insert them into synthetic ThunkSections. The
  // ThunkSections are later inserted back into InputSectionDescriptions.
  // We separate the creation of ThunkSections from the insertion of the
  // ThunkSections as ThunkSections are not always inserted into the same
  // InputSectionDescription as the caller.
  forEachInputSectionDescription(
      OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) {
        for (InputSection *IS : ISD->Sections)
          for (Relocation &Rel : IS->Relocations) {
            uint64_t Src = OS->Addr + IS->OutSecOff + Rel.Offset;

            // If we are a relocation to an existing Thunk, check if it is
            // still in range. If not then Rel will be altered to point to its
            // original target so another Thunk can be generated.
            if (Pass > 0 && normalizeExistingThunk(Rel, Src))
              continue;

            if (!Target->needsThunk(Rel.Expr, Rel.Type, IS->File, Src,
                                    *Rel.Sym))
              continue;
            Thunk *T;
            bool IsNew;
            std::tie(T, IsNew) = getThunk(*Rel.Sym, Rel.Type, Src);
            if (IsNew) {
              AddressesChanged = true;
              // Find or create a ThunkSection for the new Thunk
              ThunkSection *TS;
              if (auto *TIS = T->getTargetInputSection())
                TS = getISThunkSec(TIS);
              else
                TS = getISDThunkSec(OS, IS, ISD, Rel.Type, Src);
              TS->addThunk(T);
              Thunks[T->ThunkSym] = T;
            }
            // Redirect relocation to Thunk, we never go via the PLT to a Thunk
            Rel.Sym = T->ThunkSym;
            Rel.Expr = fromPlt(Rel.Expr);
          }
      });
  // Merge all created synthetic ThunkSections back into OutputSection
  mergeThunks(OutputSections);
  ++Pass;
  return AddressesChanged;
}

template void elf::scanRelocations<ELF32LE>(InputSectionBase &);
template void elf::scanRelocations<ELF32BE>(InputSectionBase &);
template void elf::scanRelocations<ELF64LE>(InputSectionBase &);
template void elf::scanRelocations<ELF64BE>(InputSectionBase &);