/*-
* Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
* Copyright (c) 2016 Rubicon Communications, LLC (Netgate)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* TI Common Platform Ethernet Switch (CPSW) Driver
* Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
*
* This controller is documented in the AM335x Technical Reference
* Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
* and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
*
* It is basically a single Ethernet port (port 0) wired internally to
* a 3-port store-and-forward switch connected to two independent
* "sliver" controllers (port 1 and port 2). You can operate the
* controller in a variety of different ways by suitably configuring
* the slivers and the Address Lookup Engine (ALE) that routes packets
* between the ports.
*
* This code was developed and tested on a BeagleBone with
* an AM335x SoC.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_cpsw.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/stdarg.h>
#include <net/ethernet.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <arm/ti/ti_scm.h>
#include <arm/ti/am335x/am335x_scm.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#ifdef CPSW_ETHERSWITCH
#include <dev/etherswitch/etherswitch.h>
#include "etherswitch_if.h"
#endif
#include "if_cpswreg.h"
#include "if_cpswvar.h"
#include "miibus_if.h"
/* Device probe/attach/detach. */
static int cpsw_probe(device_t);
static int cpsw_attach(device_t);
static int cpsw_detach(device_t);
static int cpswp_probe(device_t);
static int cpswp_attach(device_t);
static int cpswp_detach(device_t);
static phandle_t cpsw_get_node(device_t, device_t);
/* Device Init/shutdown. */
static int cpsw_shutdown(device_t);
static void cpswp_init(void *);
static void cpswp_init_locked(void *);
static void cpswp_stop_locked(struct cpswp_softc *);
/* Device Suspend/Resume. */
static int cpsw_suspend(device_t);
static int cpsw_resume(device_t);
/* Ioctl. */
static int cpswp_ioctl(struct ifnet *, u_long command, caddr_t data);
static int cpswp_miibus_readreg(device_t, int phy, int reg);
static int cpswp_miibus_writereg(device_t, int phy, int reg, int value);
static void cpswp_miibus_statchg(device_t);
/* Send/Receive packets. */
static void cpsw_intr_rx(void *arg);
static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
static void cpsw_rx_enqueue(struct cpsw_softc *);
static void cpswp_start(struct ifnet *);
static void cpsw_intr_tx(void *);
static void cpswp_tx_enqueue(struct cpswp_softc *);
static int cpsw_tx_dequeue(struct cpsw_softc *);
/* Misc interrupts and watchdog. */
static void cpsw_intr_rx_thresh(void *);
static void cpsw_intr_misc(void *);
static void cpswp_tick(void *);
static void cpswp_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int cpswp_ifmedia_upd(struct ifnet *);
static void cpsw_tx_watchdog(void *);
/* ALE support */
static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t, uint32_t *);
static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t, uint32_t *);
static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t, int, uint8_t *);
static void cpsw_ale_dump_table(struct cpsw_softc *);
static int cpsw_ale_update_vlan_table(struct cpsw_softc *, int, int, int, int,
int);
static int cpswp_ale_update_addresses(struct cpswp_softc *, int);
/* Statistics and sysctls. */
static void cpsw_add_sysctls(struct cpsw_softc *);
static void cpsw_stats_collect(struct cpsw_softc *);
static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
#ifdef CPSW_ETHERSWITCH
static etherswitch_info_t *cpsw_getinfo(device_t);
static int cpsw_getport(device_t, etherswitch_port_t *);
static int cpsw_setport(device_t, etherswitch_port_t *);
static int cpsw_getconf(device_t, etherswitch_conf_t *);
static int cpsw_getvgroup(device_t, etherswitch_vlangroup_t *);
static int cpsw_setvgroup(device_t, etherswitch_vlangroup_t *);
static int cpsw_readreg(device_t, int);
static int cpsw_writereg(device_t, int, int);
static int cpsw_readphy(device_t, int, int);
static int cpsw_writephy(device_t, int, int, int);
#endif
/*
* Arbitrary limit on number of segments in an mbuf to be transmitted.
* Packets with more segments than this will be defragmented before
* they are queued.
*/
#define CPSW_TXFRAGS 16
/* Shared resources. */
static device_method_t cpsw_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, cpsw_probe),
DEVMETHOD(device_attach, cpsw_attach),
DEVMETHOD(device_detach, cpsw_detach),
DEVMETHOD(device_shutdown, cpsw_shutdown),
DEVMETHOD(device_suspend, cpsw_suspend),
DEVMETHOD(device_resume, cpsw_resume),
/* Bus interface */
DEVMETHOD(bus_add_child, device_add_child_ordered),
/* OFW methods */
DEVMETHOD(ofw_bus_get_node, cpsw_get_node),
#ifdef CPSW_ETHERSWITCH
/* etherswitch interface */
DEVMETHOD(etherswitch_getinfo, cpsw_getinfo),
DEVMETHOD(etherswitch_readreg, cpsw_readreg),
DEVMETHOD(etherswitch_writereg, cpsw_writereg),
DEVMETHOD(etherswitch_readphyreg, cpsw_readphy),
DEVMETHOD(etherswitch_writephyreg, cpsw_writephy),
DEVMETHOD(etherswitch_getport, cpsw_getport),
DEVMETHOD(etherswitch_setport, cpsw_setport),
DEVMETHOD(etherswitch_getvgroup, cpsw_getvgroup),
DEVMETHOD(etherswitch_setvgroup, cpsw_setvgroup),
DEVMETHOD(etherswitch_getconf, cpsw_getconf),
#endif
DEVMETHOD_END
};
static driver_t cpsw_driver = {
"cpswss",
cpsw_methods,
sizeof(struct cpsw_softc),
};
static devclass_t cpsw_devclass;
DRIVER_MODULE(cpswss, simplebus, cpsw_driver, cpsw_devclass, 0, 0);
/* Port/Slave resources. */
static device_method_t cpswp_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, cpswp_probe),
DEVMETHOD(device_attach, cpswp_attach),
DEVMETHOD(device_detach, cpswp_detach),
/* MII interface */
DEVMETHOD(miibus_readreg, cpswp_miibus_readreg),
DEVMETHOD(miibus_writereg, cpswp_miibus_writereg),
DEVMETHOD(miibus_statchg, cpswp_miibus_statchg),
DEVMETHOD_END
};
static driver_t cpswp_driver = {
"cpsw",
cpswp_methods,
sizeof(struct cpswp_softc),
};
static devclass_t cpswp_devclass;
#ifdef CPSW_ETHERSWITCH
DRIVER_MODULE(etherswitch, cpswss, etherswitch_driver, etherswitch_devclass, 0, 0);
MODULE_DEPEND(cpswss, etherswitch, 1, 1, 1);
#endif
DRIVER_MODULE(cpsw, cpswss, cpswp_driver, cpswp_devclass, 0, 0);
DRIVER_MODULE(miibus, cpsw, miibus_driver, miibus_devclass, 0, 0);
MODULE_DEPEND(cpsw, ether, 1, 1, 1);
MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
#ifdef CPSW_ETHERSWITCH
static struct cpsw_vlangroups cpsw_vgroups[CPSW_VLANS];
#endif
static uint32_t slave_mdio_addr[] = { 0x4a100200, 0x4a100300 };
static struct resource_spec irq_res_spec[] = {
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0 }
};
static struct {
void (*cb)(void *);
} cpsw_intr_cb[] = {
{ cpsw_intr_rx_thresh },
{ cpsw_intr_rx },
{ cpsw_intr_tx },
{ cpsw_intr_misc },
};
/* Number of entries here must match size of stats
* array in struct cpswp_softc. */
static struct cpsw_stat {
int reg;
char *oid;
} cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
{0x00, "GoodRxFrames"},
{0x04, "BroadcastRxFrames"},
{0x08, "MulticastRxFrames"},
{0x0C, "PauseRxFrames"},
{0x10, "RxCrcErrors"},
{0x14, "RxAlignErrors"},
{0x18, "OversizeRxFrames"},
{0x1c, "RxJabbers"},
{0x20, "ShortRxFrames"},
{0x24, "RxFragments"},
{0x30, "RxOctets"},
{0x34, "GoodTxFrames"},
{0x38, "BroadcastTxFrames"},
{0x3c, "MulticastTxFrames"},
{0x40, "PauseTxFrames"},
{0x44, "DeferredTxFrames"},
{0x48, "CollisionsTxFrames"},
{0x4c, "SingleCollisionTxFrames"},
{0x50, "MultipleCollisionTxFrames"},
{0x54, "ExcessiveCollisions"},
{0x58, "LateCollisions"},
{0x5c, "TxUnderrun"},
{0x60, "CarrierSenseErrors"},
{0x64, "TxOctets"},
{0x68, "RxTx64OctetFrames"},
{0x6c, "RxTx65to127OctetFrames"},
{0x70, "RxTx128to255OctetFrames"},
{0x74, "RxTx256to511OctetFrames"},
{0x78, "RxTx512to1024OctetFrames"},
{0x7c, "RxTx1024upOctetFrames"},
{0x80, "NetOctets"},
{0x84, "RxStartOfFrameOverruns"},
{0x88, "RxMiddleOfFrameOverruns"},
{0x8c, "RxDmaOverruns"}
};
/*
* Basic debug support.
*/
static void
cpsw_debugf_head(const char *funcname)
{
int t = (int)(time_second % (24 * 60 * 60));
printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
}
static void
cpsw_debugf(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
printf("\n");
}
#define CPSW_DEBUGF(_sc, a) do { \
if ((_sc)->debug) { \
cpsw_debugf_head(__func__); \
cpsw_debugf a; \
} \
} while (0)
/*
* Locking macros
*/
#define CPSW_TX_LOCK(sc) do { \
mtx_assert(&(sc)->rx.lock, MA_NOTOWNED); \
mtx_lock(&(sc)->tx.lock); \
} while (0)
#define CPSW_TX_UNLOCK(sc) mtx_unlock(&(sc)->tx.lock)
#define CPSW_TX_LOCK_ASSERT(sc) mtx_assert(&(sc)->tx.lock, MA_OWNED)
#define CPSW_RX_LOCK(sc) do { \
mtx_assert(&(sc)->tx.lock, MA_NOTOWNED); \
mtx_lock(&(sc)->rx.lock); \
} while (0)
#define CPSW_RX_UNLOCK(sc) mtx_unlock(&(sc)->rx.lock)
#define CPSW_RX_LOCK_ASSERT(sc) mtx_assert(&(sc)->rx.lock, MA_OWNED)
#define CPSW_PORT_LOCK(_sc) do { \
mtx_assert(&(_sc)->lock, MA_NOTOWNED); \
mtx_lock(&(_sc)->lock); \
} while (0)
#define CPSW_PORT_UNLOCK(_sc) mtx_unlock(&(_sc)->lock)
#define CPSW_PORT_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->lock, MA_OWNED)
/*
* Read/Write macros
*/
#define cpsw_read_4(_sc, _reg) bus_read_4((_sc)->mem_res, (_reg))
#define cpsw_write_4(_sc, _reg, _val) \
bus_write_4((_sc)->mem_res, (_reg), (_val))
#define cpsw_cpdma_bd_offset(i) (CPSW_CPPI_RAM_OFFSET + ((i)*16))
#define cpsw_cpdma_bd_paddr(sc, slot) \
BUS_SPACE_PHYSADDR(sc->mem_res, slot->bd_offset)
#define cpsw_cpdma_read_bd(sc, slot, val) \
bus_read_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
#define cpsw_cpdma_write_bd(sc, slot, val) \
bus_write_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
#define cpsw_cpdma_write_bd_next(sc, slot, next_slot) \
cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
#define cpsw_cpdma_write_bd_flags(sc, slot, val) \
bus_write_2(sc->mem_res, slot->bd_offset + 14, val)
#define cpsw_cpdma_read_bd_flags(sc, slot) \
bus_read_2(sc->mem_res, slot->bd_offset + 14)
#define cpsw_write_hdp_slot(sc, queue, slot) \
cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
#define CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
#define cpsw_read_cp(sc, queue) \
cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
#define cpsw_write_cp(sc, queue, val) \
cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
#define cpsw_write_cp_slot(sc, queue, slot) \
cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
#if 0
/* XXX temporary function versions for debugging. */
static void
cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
{
uint32_t reg = queue->hdp_offset;
uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
cpsw_write_4(sc, reg, v);
}
static void
cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
{
uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
cpsw_write_cp(sc, queue, v);
}
#endif
/*
* Expanded dump routines for verbose debugging.
*/
static void
cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
{
static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
"TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
"PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
"Port0"};
struct cpsw_cpdma_bd bd;
const char *sep;
int i;
cpsw_cpdma_read_bd(sc, slot, &bd);
printf("BD Addr : 0x%08x Next : 0x%08x\n",
cpsw_cpdma_bd_paddr(sc, slot), bd.next);
printf(" BufPtr: 0x%08x BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
printf(" BufOff: 0x%08x PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
printf(" Flags: ");
sep = "";
for (i = 0; i < 16; ++i) {
if (bd.flags & (1 << (15 - i))) {
printf("%s%s", sep, flags[i]);
sep = ",";
}
}
printf("\n");
if (slot->mbuf) {
printf(" Ether: %14D\n",
(char *)(slot->mbuf->m_data), " ");
printf(" Packet: %16D\n",
(char *)(slot->mbuf->m_data) + 14, " ");
}
}
#define CPSW_DUMP_SLOT(cs, slot) do { \
IF_DEBUG(sc) { \
cpsw_dump_slot(sc, slot); \
} \
} while (0)
static void
cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
{
struct cpsw_slot *slot;
int i = 0;
int others = 0;
STAILQ_FOREACH(slot, q, next) {
if (i > CPSW_TXFRAGS)
++others;
else
cpsw_dump_slot(sc, slot);
++i;
}
if (others)
printf(" ... and %d more.\n", others);
printf("\n");
}
#define CPSW_DUMP_QUEUE(sc, q) do { \
IF_DEBUG(sc) { \
cpsw_dump_queue(sc, q); \
} \
} while (0)
static void
cpsw_init_slots(struct cpsw_softc *sc)
{
struct cpsw_slot *slot;
int i;
STAILQ_INIT(&sc->avail);
/* Put the slot descriptors onto the global avail list. */
for (i = 0; i < nitems(sc->_slots); i++) {
slot = &sc->_slots[i];
slot->bd_offset = cpsw_cpdma_bd_offset(i);
STAILQ_INSERT_TAIL(&sc->avail, slot, next);
}
}
static int
cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
{
const int max_slots = nitems(sc->_slots);
struct cpsw_slot *slot;
int i;
if (requested < 0)
requested = max_slots;
for (i = 0; i < requested; ++i) {
slot = STAILQ_FIRST(&sc->avail);
if (slot == NULL)
return (0);
if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
device_printf(sc->dev, "failed to create dmamap\n");
return (ENOMEM);
}
STAILQ_REMOVE_HEAD(&sc->avail, next);
STAILQ_INSERT_TAIL(&queue->avail, slot, next);
++queue->avail_queue_len;
++queue->queue_slots;
}
return (0);
}
static void
cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
{
int error;
if (slot->dmamap) {
if (slot->mbuf)
bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
KASSERT(error == 0, ("Mapping still active"));
slot->dmamap = NULL;
}
if (slot->mbuf) {
m_freem(slot->mbuf);
slot->mbuf = NULL;
}
}
static void
cpsw_reset(struct cpsw_softc *sc)
{
int i;
callout_stop(&sc->watchdog.callout);
/* Reset RMII/RGMII wrapper. */
cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
;
/* Disable TX and RX interrupts for all cores. */
for (i = 0; i < 3; ++i) {
cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
}
/* Reset CPSW subsystem. */
cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
;
/* Reset Sliver port 1 and 2 */
for (i = 0; i < 2; i++) {
/* Reset */
cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
;
}
/* Reset DMA controller. */
cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
;
/* Disable TX & RX DMA */
cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
/* Clear all queues. */
for (i = 0; i < 8; i++) {
cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
}
/* Clear all interrupt Masks */
cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
}
static void
cpsw_init(struct cpsw_softc *sc)
{
struct cpsw_slot *slot;
uint32_t reg;
/* Disable the interrupt pacing. */
reg = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
reg &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
cpsw_write_4(sc, CPSW_WR_INT_CONTROL, reg);
/* Clear ALE */
cpsw_write_4(sc, CPSW_ALE_CONTROL, CPSW_ALE_CTL_CLEAR_TBL);
/* Enable ALE */
reg = CPSW_ALE_CTL_ENABLE;
if (sc->dualemac)
reg |= CPSW_ALE_CTL_VLAN_AWARE;
cpsw_write_4(sc, CPSW_ALE_CONTROL, reg);
/* Set Host Port Mapping. */
cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
/* Initialize ALE: set host port to forwarding(3). */
cpsw_write_4(sc, CPSW_ALE_PORTCTL(0),
ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
/* Enable statistics for ports 0, 1 and 2 */
cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
/* Turn off flow control. */
cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
/* Make IP hdr aligned with 4 */
cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
/* Initialize RX Buffer Descriptors */
cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), 0);
cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
/* Enable TX & RX DMA */
cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
/* Enable Interrupts for core 0 */
cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
cpsw_write_4(sc, CPSW_WR_C_TX_EN(0), 0xFF);
cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x1F);
/* Enable host Error Interrupt */
cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
/* Enable interrupts for RX and TX on Channel 0 */
cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET,
CPSW_CPDMA_RX_INT(0) | CPSW_CPDMA_RX_INT_THRESH(0));
cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_SET, 1);
/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
cpsw_write_4(sc, MDIOCONTROL, MDIOCTL_ENABLE | MDIOCTL_FAULTENB | 0xff);
/* Select MII in GMII_SEL, Internal Delay mode */
//ti_scm_reg_write_4(0x650, 0);
/* Initialize active queues. */
slot = STAILQ_FIRST(&sc->tx.active);
if (slot != NULL)
cpsw_write_hdp_slot(sc, &sc->tx, slot);
slot = STAILQ_FIRST(&sc->rx.active);
if (slot != NULL)
cpsw_write_hdp_slot(sc, &sc->rx, slot);
cpsw_rx_enqueue(sc);
cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), sc->rx.active_queue_len);
cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), CPSW_TXFRAGS);
/* Activate network interface. */
sc->rx.running = 1;
sc->tx.running = 1;
sc->watchdog.timer = 0;
callout_init(&sc->watchdog.callout, 0);
callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
}
/*
*
* Device Probe, Attach, Detach.
*
*/
static int
cpsw_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
return (ENXIO);
device_set_desc(dev, "3-port Switch Ethernet Subsystem");
return (BUS_PROBE_DEFAULT);
}
static int
cpsw_intr_attach(struct cpsw_softc *sc)
{
int i;
for (i = 0; i < CPSW_INTR_COUNT; i++) {
if (bus_setup_intr(sc->dev, sc->irq_res[i],
INTR_TYPE_NET | INTR_MPSAFE, NULL,
cpsw_intr_cb[i].cb, sc, &sc->ih_cookie[i]) != 0) {
return (-1);
}
}
return (0);
}
static void
cpsw_intr_detach(struct cpsw_softc *sc)
{
int i;
for (i = 0; i < CPSW_INTR_COUNT; i++) {
if (sc->ih_cookie[i]) {
bus_teardown_intr(sc->dev, sc->irq_res[i],
sc->ih_cookie[i]);
}
}
}
static int
cpsw_get_fdt_data(struct cpsw_softc *sc, int port)
{
char *name;
int len, phy, vlan;
pcell_t phy_id[3], vlan_id;
phandle_t child;
unsigned long mdio_child_addr;
/* Find any slave with phy_id */
phy = -1;
vlan = -1;
for (child = OF_child(sc->node); child != 0; child = OF_peer(child)) {
if (OF_getprop_alloc(child, "name", 1, (void **)&name) < 0)
continue;
if (sscanf(name, "slave@%lx", &mdio_child_addr) != 1) {
OF_prop_free(name);
continue;
}
OF_prop_free(name);
if (mdio_child_addr != slave_mdio_addr[port])
continue;
len = OF_getproplen(child, "phy_id");
if (len / sizeof(pcell_t) == 2) {
/* Get phy address from fdt */
if (OF_getencprop(child, "phy_id", phy_id, len) > 0)
phy = phy_id[1];
}
len = OF_getproplen(child, "dual_emac_res_vlan");
if (len / sizeof(pcell_t) == 1) {
/* Get phy address from fdt */
if (OF_getencprop(child, "dual_emac_res_vlan",
&vlan_id, len) > 0) {
vlan = vlan_id;
}
}
break;
}
if (phy == -1)
return (ENXIO);
sc->port[port].phy = phy;
sc->port[port].vlan = vlan;
return (0);
}
static int
cpsw_attach(device_t dev)
{
int error, i;
struct cpsw_softc *sc;
uint32_t reg;
sc = device_get_softc(dev);
sc->dev = dev;
sc->node = ofw_bus_get_node(dev);
getbinuptime(&sc->attach_uptime);
if (OF_getencprop(sc->node, "active_slave", &sc->active_slave,
sizeof(sc->active_slave)) <= 0) {
sc->active_slave = 0;
}
if (sc->active_slave > 1)
sc->active_slave = 1;
if (OF_hasprop(sc->node, "dual_emac"))
sc->dualemac = 1;
for (i = 0; i < CPSW_PORTS; i++) {
if (!sc->dualemac && i != sc->active_slave)
continue;
if (cpsw_get_fdt_data(sc, i) != 0) {
device_printf(dev,
"failed to get PHY address from FDT\n");
return (ENXIO);
}
}
/* Initialize mutexes */
mtx_init(&sc->tx.lock, device_get_nameunit(dev),
"cpsw TX lock", MTX_DEF);
mtx_init(&sc->rx.lock, device_get_nameunit(dev),
"cpsw RX lock", MTX_DEF);
/* Allocate IRQ resources */
error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
if (error) {
device_printf(dev, "could not allocate IRQ resources\n");
cpsw_detach(dev);
return (ENXIO);
}
sc->mem_rid = 0;
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&sc->mem_rid, RF_ACTIVE);
if (sc->mem_res == NULL) {
device_printf(sc->dev, "failed to allocate memory resource\n");
cpsw_detach(dev);
return (ENXIO);
}
reg = cpsw_read_4(sc, CPSW_SS_IDVER);
device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
reg & 0xFF, (reg >> 11) & 0x1F);
cpsw_add_sysctls(sc);
/* Allocate a busdma tag and DMA safe memory for mbufs. */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
MCLBYTES, CPSW_TXFRAGS, /* maxsize, nsegments */
MCLBYTES, 0, /* maxsegsz, flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&sc->mbuf_dtag); /* dmatag */
if (error) {
device_printf(dev, "bus_dma_tag_create failed\n");
cpsw_detach(dev);
return (error);
}
/* Allocate a NULL buffer for padding. */
sc->nullpad = malloc(ETHER_MIN_LEN, M_DEVBUF, M_WAITOK | M_ZERO);
cpsw_init_slots(sc);
/* Allocate slots to TX and RX queues. */
STAILQ_INIT(&sc->rx.avail);
STAILQ_INIT(&sc->rx.active);
STAILQ_INIT(&sc->tx.avail);
STAILQ_INIT(&sc->tx.active);
// For now: 128 slots to TX, rest to RX.
// XXX TODO: start with 32/64 and grow dynamically based on demand.
if (cpsw_add_slots(sc, &sc->tx, 128) ||
cpsw_add_slots(sc, &sc->rx, -1)) {
device_printf(dev, "failed to allocate dmamaps\n");
cpsw_detach(dev);
return (ENOMEM);
}
device_printf(dev, "Initial queue size TX=%d RX=%d\n",
sc->tx.queue_slots, sc->rx.queue_slots);
sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
if (cpsw_intr_attach(sc) == -1) {
device_printf(dev, "failed to setup interrupts\n");
cpsw_detach(dev);
return (ENXIO);
}
#ifdef CPSW_ETHERSWITCH
for (i = 0; i < CPSW_VLANS; i++)
cpsw_vgroups[i].vid = -1;
#endif
/* Reset the controller. */
cpsw_reset(sc);
cpsw_init(sc);
for (i = 0; i < CPSW_PORTS; i++) {
if (!sc->dualemac && i != sc->active_slave)
continue;
sc->port[i].dev = device_add_child(dev, "cpsw", i);
if (sc->port[i].dev == NULL) {
cpsw_detach(dev);
return (ENXIO);
}
}
bus_generic_probe(dev);
bus_generic_attach(dev);
return (0);
}
static int
cpsw_detach(device_t dev)
{
struct cpsw_softc *sc;
int error, i;
bus_generic_detach(dev);
sc = device_get_softc(dev);
for (i = 0; i < CPSW_PORTS; i++) {
if (sc->port[i].dev)
device_delete_child(dev, sc->port[i].dev);
}
if (device_is_attached(dev)) {
callout_stop(&sc->watchdog.callout);
callout_drain(&sc->watchdog.callout);
}
/* Stop and release all interrupts */
cpsw_intr_detach(sc);
/* Free dmamaps and mbufs */
for (i = 0; i < nitems(sc->_slots); ++i)
cpsw_free_slot(sc, &sc->_slots[i]);
/* Free null padding buffer. */
if (sc->nullpad)
free(sc->nullpad, M_DEVBUF);
/* Free DMA tag */
if (sc->mbuf_dtag) {
error = bus_dma_tag_destroy(sc->mbuf_dtag);
KASSERT(error == 0, ("Unable to destroy DMA tag"));
}
/* Free IO memory handler */
if (sc->mem_res != NULL)
bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res);
bus_release_resources(dev, irq_res_spec, sc->irq_res);
/* Destroy mutexes */
mtx_destroy(&sc->rx.lock);
mtx_destroy(&sc->tx.lock);
/* Detach the switch device, if present. */
error = bus_generic_detach(dev);
if (error != 0)
return (error);
return (device_delete_children(dev));
}
static phandle_t
cpsw_get_node(device_t bus, device_t dev)
{
/* Share controller node with port device. */
return (ofw_bus_get_node(bus));
}
static int
cpswp_probe(device_t dev)
{
if (device_get_unit(dev) > 1) {
device_printf(dev, "Only two ports are supported.\n");
return (ENXIO);
}
device_set_desc(dev, "Ethernet Switch Port");
return (BUS_PROBE_DEFAULT);
}
static int
cpswp_attach(device_t dev)
{
int error;
struct ifnet *ifp;
struct cpswp_softc *sc;
uint32_t reg;
uint8_t mac_addr[ETHER_ADDR_LEN];
sc = device_get_softc(dev);
sc->dev = dev;
sc->pdev = device_get_parent(dev);
sc->swsc = device_get_softc(sc->pdev);
sc->unit = device_get_unit(dev);
sc->phy = sc->swsc->port[sc->unit].phy;
sc->vlan = sc->swsc->port[sc->unit].vlan;
if (sc->swsc->dualemac && sc->vlan == -1)
sc->vlan = sc->unit + 1;
if (sc->unit == 0) {
sc->physel = MDIOUSERPHYSEL0;
sc->phyaccess = MDIOUSERACCESS0;
} else {
sc->physel = MDIOUSERPHYSEL1;
sc->phyaccess = MDIOUSERACCESS1;
}
mtx_init(&sc->lock, device_get_nameunit(dev), "cpsw port lock",
MTX_DEF);
/* Allocate network interface */
ifp = sc->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
cpswp_detach(dev);
return (ENXIO);
}
if_initname(ifp, device_get_name(sc->dev), sc->unit);
ifp->if_softc = sc;
ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
ifp->if_capenable = ifp->if_capabilities;
ifp->if_init = cpswp_init;
ifp->if_start = cpswp_start;
ifp->if_ioctl = cpswp_ioctl;
ifp->if_snd.ifq_drv_maxlen = sc->swsc->tx.queue_slots;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
/* Get high part of MAC address from control module (mac_id[0|1]_hi) */
ti_scm_reg_read_4(SCM_MAC_ID0_HI + sc->unit * 8, ®);
mac_addr[0] = reg & 0xFF;
mac_addr[1] = (reg >> 8) & 0xFF;
mac_addr[2] = (reg >> 16) & 0xFF;
mac_addr[3] = (reg >> 24) & 0xFF;
/* Get low part of MAC address from control module (mac_id[0|1]_lo) */
ti_scm_reg_read_4(SCM_MAC_ID0_LO + sc->unit * 8, ®);
mac_addr[4] = reg & 0xFF;
mac_addr[5] = (reg >> 8) & 0xFF;
error = mii_attach(dev, &sc->miibus, ifp, cpswp_ifmedia_upd,
cpswp_ifmedia_sts, BMSR_DEFCAPMASK, sc->phy, MII_OFFSET_ANY, 0);
if (error) {
device_printf(dev, "attaching PHYs failed\n");
cpswp_detach(dev);
return (error);
}
sc->mii = device_get_softc(sc->miibus);
/* Select PHY and enable interrupts */
cpsw_write_4(sc->swsc, sc->physel,
MDIO_PHYSEL_LINKINTENB | (sc->phy & 0x1F));
ether_ifattach(sc->ifp, mac_addr);
callout_init(&sc->mii_callout, 0);
return (0);
}
static int
cpswp_detach(device_t dev)
{
struct cpswp_softc *sc;
sc = device_get_softc(dev);
CPSW_DEBUGF(sc->swsc, (""));
if (device_is_attached(dev)) {
ether_ifdetach(sc->ifp);
CPSW_PORT_LOCK(sc);
cpswp_stop_locked(sc);
CPSW_PORT_UNLOCK(sc);
callout_drain(&sc->mii_callout);
}
bus_generic_detach(dev);
if_free(sc->ifp);
mtx_destroy(&sc->lock);
return (0);
}
/*
*
* Init/Shutdown.
*
*/
static int
cpsw_ports_down(struct cpsw_softc *sc)
{
struct cpswp_softc *psc;
struct ifnet *ifp1, *ifp2;
if (!sc->dualemac)
return (1);
psc = device_get_softc(sc->port[0].dev);
ifp1 = psc->ifp;
psc = device_get_softc(sc->port[1].dev);
ifp2 = psc->ifp;
if ((ifp1->if_flags & IFF_UP) == 0 && (ifp2->if_flags & IFF_UP) == 0)
return (1);
return (0);
}
static void
cpswp_init(void *arg)
{
struct cpswp_softc *sc = arg;
CPSW_DEBUGF(sc->swsc, (""));
CPSW_PORT_LOCK(sc);
cpswp_init_locked(arg);
CPSW_PORT_UNLOCK(sc);
}
static void
cpswp_init_locked(void *arg)
{
#ifdef CPSW_ETHERSWITCH
int i;
#endif
struct cpswp_softc *sc = arg;
struct ifnet *ifp;
uint32_t reg;
CPSW_DEBUGF(sc->swsc, (""));
CPSW_PORT_LOCK_ASSERT(sc);
ifp = sc->ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
getbinuptime(&sc->init_uptime);
if (!sc->swsc->rx.running && !sc->swsc->tx.running) {
/* Reset the controller. */
cpsw_reset(sc->swsc);
cpsw_init(sc->swsc);
}
/* Set Slave Mapping. */
cpsw_write_4(sc->swsc, CPSW_SL_RX_PRI_MAP(sc->unit), 0x76543210);
cpsw_write_4(sc->swsc, CPSW_PORT_P_TX_PRI_MAP(sc->unit + 1),
0x33221100);
cpsw_write_4(sc->swsc, CPSW_SL_RX_MAXLEN(sc->unit), 0x5f2);
/* Enable MAC RX/TX modules. */
/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
/* Huh? Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
reg |= CPSW_SL_MACTL_GMII_ENABLE;
cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
/* Initialize ALE: set port to forwarding, initialize addrs */
cpsw_write_4(sc->swsc, CPSW_ALE_PORTCTL(sc->unit + 1),
ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
cpswp_ale_update_addresses(sc, 1);
if (sc->swsc->dualemac) {
/* Set Port VID. */
cpsw_write_4(sc->swsc, CPSW_PORT_P_VLAN(sc->unit + 1),
sc->vlan & 0xfff);
cpsw_ale_update_vlan_table(sc->swsc, sc->vlan,
(1 << (sc->unit + 1)) | (1 << 0), /* Member list */
(1 << (sc->unit + 1)) | (1 << 0), /* Untagged egress */
(1 << (sc->unit + 1)) | (1 << 0), 0); /* mcast reg flood */
#ifdef CPSW_ETHERSWITCH
for (i = 0; i < CPSW_VLANS; i++) {
if (cpsw_vgroups[i].vid != -1)
continue;
cpsw_vgroups[i].vid = sc->vlan;
break;
}
#endif
}
mii_mediachg(sc->mii);
callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
static int
cpsw_shutdown(device_t dev)
{
struct cpsw_softc *sc;
struct cpswp_softc *psc;
int i;
sc = device_get_softc(dev);
CPSW_DEBUGF(sc, (""));
for (i = 0; i < CPSW_PORTS; i++) {
if (!sc->dualemac && i != sc->active_slave)
continue;
psc = device_get_softc(sc->port[i].dev);
CPSW_PORT_LOCK(psc);
cpswp_stop_locked(psc);
CPSW_PORT_UNLOCK(psc);
}
return (0);
}
static void
cpsw_rx_teardown(struct cpsw_softc *sc)
{
int i = 0;
CPSW_RX_LOCK(sc);
CPSW_DEBUGF(sc, ("starting RX teardown"));
sc->rx.teardown = 1;
cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
CPSW_RX_UNLOCK(sc);
while (sc->rx.running) {
if (++i > 10) {
device_printf(sc->dev,
"Unable to cleanly shutdown receiver\n");
return;
}
DELAY(200);
}
if (!sc->rx.running)
CPSW_DEBUGF(sc, ("finished RX teardown (%d retries)", i));
}
static void
cpsw_tx_teardown(struct cpsw_softc *sc)
{
int i = 0;
CPSW_TX_LOCK(sc);
CPSW_DEBUGF(sc, ("starting TX teardown"));
/* Start the TX queue teardown if queue is not empty. */
if (STAILQ_FIRST(&sc->tx.active) != NULL)
cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
else
sc->tx.teardown = 1;
cpsw_tx_dequeue(sc);
while (sc->tx.running && ++i < 10) {
DELAY(200);
cpsw_tx_dequeue(sc);
}
if (sc->tx.running) {
device_printf(sc->dev,
"Unable to cleanly shutdown transmitter\n");
}
CPSW_DEBUGF(sc,
("finished TX teardown (%d retries, %d idle buffers)", i,
sc->tx.active_queue_len));
CPSW_TX_UNLOCK(sc);
}
static void
cpswp_stop_locked(struct cpswp_softc *sc)
{
struct ifnet *ifp;
uint32_t reg;
ifp = sc->ifp;
CPSW_DEBUGF(sc->swsc, (""));
CPSW_PORT_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
/* Disable interface */
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
/* Stop ticker */
callout_stop(&sc->mii_callout);
/* Tear down the RX/TX queues. */
if (cpsw_ports_down(sc->swsc)) {
cpsw_rx_teardown(sc->swsc);
cpsw_tx_teardown(sc->swsc);
}
/* Stop MAC RX/TX modules. */
reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
reg &= ~CPSW_SL_MACTL_GMII_ENABLE;
cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
if (cpsw_ports_down(sc->swsc)) {
/* Capture stats before we reset controller. */
cpsw_stats_collect(sc->swsc);
cpsw_reset(sc->swsc);
cpsw_init(sc->swsc);
}
}
/*
* Suspend/Resume.
*/
static int
cpsw_suspend(device_t dev)
{
struct cpsw_softc *sc;
struct cpswp_softc *psc;
int i;
sc = device_get_softc(dev);
CPSW_DEBUGF(sc, (""));
for (i = 0; i < CPSW_PORTS; i++) {
if (!sc->dualemac && i != sc->active_slave)
continue;
psc = device_get_softc(sc->port[i].dev);
CPSW_PORT_LOCK(psc);
cpswp_stop_locked(psc);
CPSW_PORT_UNLOCK(psc);
}
return (0);
}
static int
cpsw_resume(device_t dev)
{
struct cpsw_softc *sc;
sc = device_get_softc(dev);
CPSW_DEBUGF(sc, ("UNIMPLEMENTED"));
return (0);
}
/*
*
* IOCTL
*
*/
static void
cpsw_set_promisc(struct cpswp_softc *sc, int set)
{
uint32_t reg;
/*
* Enabling promiscuous mode requires ALE_BYPASS to be enabled.
* That disables the ALE forwarding logic and causes every
* packet to be sent only to the host port. In bypass mode,
* the ALE processes host port transmit packets the same as in
* normal mode.
*/
reg = cpsw_read_4(sc->swsc, CPSW_ALE_CONTROL);
reg &= ~CPSW_ALE_CTL_BYPASS;
if (set)
reg |= CPSW_ALE_CTL_BYPASS;
cpsw_write_4(sc->swsc, CPSW_ALE_CONTROL, reg);
}
static void
cpsw_set_allmulti(struct cpswp_softc *sc, int set)
{
if (set) {
printf("All-multicast mode unimplemented\n");
}
}
static int
cpswp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct cpswp_softc *sc;
struct ifreq *ifr;
int error;
uint32_t changed;
error = 0;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
switch (command) {
case SIOCSIFCAP:
changed = ifp->if_capenable ^ ifr->ifr_reqcap;
if (changed & IFCAP_HWCSUM) {
if ((ifr->ifr_reqcap & changed) & IFCAP_HWCSUM)
ifp->if_capenable |= IFCAP_HWCSUM;
else
ifp->if_capenable &= ~IFCAP_HWCSUM;
}
error = 0;
break;
case SIOCSIFFLAGS:
CPSW_PORT_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
changed = ifp->if_flags ^ sc->if_flags;
CPSW_DEBUGF(sc->swsc,
("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)",
changed));
if (changed & IFF_PROMISC)
cpsw_set_promisc(sc,
ifp->if_flags & IFF_PROMISC);
if (changed & IFF_ALLMULTI)
cpsw_set_allmulti(sc,
ifp->if_flags & IFF_ALLMULTI);
} else {
CPSW_DEBUGF(sc->swsc,
("SIOCSIFFLAGS: starting up"));
cpswp_init_locked(sc);
}
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
CPSW_DEBUGF(sc->swsc, ("SIOCSIFFLAGS: shutting down"));
cpswp_stop_locked(sc);
}
sc->if_flags = ifp->if_flags;
CPSW_PORT_UNLOCK(sc);
break;
case SIOCADDMULTI:
cpswp_ale_update_addresses(sc, 0);
break;
case SIOCDELMULTI:
/* Ugh. DELMULTI doesn't provide the specific address
being removed, so the best we can do is remove
everything and rebuild it all. */
cpswp_ale_update_addresses(sc, 1);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
break;
default:
error = ether_ioctl(ifp, command, data);
}
return (error);
}
/*
*
* MIIBUS
*
*/
static int
cpswp_miibus_ready(struct cpsw_softc *sc, uint32_t reg)
{
uint32_t r, retries = CPSW_MIIBUS_RETRIES;
while (--retries) {
r = cpsw_read_4(sc, reg);
if ((r & MDIO_PHYACCESS_GO) == 0)
return (1);
DELAY(CPSW_MIIBUS_DELAY);
}
return (0);
}
static int
cpswp_miibus_readreg(device_t dev, int phy, int reg)
{
struct cpswp_softc *sc;
uint32_t cmd, r;
sc = device_get_softc(dev);
if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
device_printf(dev, "MDIO not ready to read\n");
return (0);
}
/* Set GO, reg, phy */
cmd = MDIO_PHYACCESS_GO | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
device_printf(dev, "MDIO timed out during read\n");
return (0);
}
r = cpsw_read_4(sc->swsc, sc->phyaccess);
if ((r & MDIO_PHYACCESS_ACK) == 0) {
device_printf(dev, "Failed to read from PHY.\n");
r = 0;
}
return (r & 0xFFFF);
}
static int
cpswp_miibus_writereg(device_t dev, int phy, int reg, int value)
{
struct cpswp_softc *sc;
uint32_t cmd;
sc = device_get_softc(dev);
if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
device_printf(dev, "MDIO not ready to write\n");
return (0);
}
/* Set GO, WRITE, reg, phy, and value */
cmd = MDIO_PHYACCESS_GO | MDIO_PHYACCESS_WRITE |
(reg & 0x1F) << 21 | (phy & 0x1F) << 16 | (value & 0xFFFF);
cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
device_printf(dev, "MDIO timed out during write\n");
return (0);
}
return (0);
}
static void
cpswp_miibus_statchg(device_t dev)
{
struct cpswp_softc *sc;
uint32_t mac_control, reg;
sc = device_get_softc(dev);
CPSW_DEBUGF(sc->swsc, (""));
reg = CPSW_SL_MACCONTROL(sc->unit);
mac_control = cpsw_read_4(sc->swsc, reg);
mac_control &= ~(CPSW_SL_MACTL_GIG | CPSW_SL_MACTL_IFCTL_A |
CPSW_SL_MACTL_IFCTL_B | CPSW_SL_MACTL_FULLDUPLEX);
switch(IFM_SUBTYPE(sc->mii->mii_media_active)) {
case IFM_1000_SX:
case IFM_1000_LX:
case IFM_1000_CX:
case IFM_1000_T:
mac_control |= CPSW_SL_MACTL_GIG;
break;
case IFM_100_TX:
mac_control |= CPSW_SL_MACTL_IFCTL_A;
break;
}
if (sc->mii->mii_media_active & IFM_FDX)
mac_control |= CPSW_SL_MACTL_FULLDUPLEX;
cpsw_write_4(sc->swsc, reg, mac_control);
}
/*
*
* Transmit/Receive Packets.
*
*/
static void
cpsw_intr_rx(void *arg)
{
struct cpsw_softc *sc;
struct ifnet *ifp;
struct mbuf *received, *next;
sc = (struct cpsw_softc *)arg;
CPSW_RX_LOCK(sc);
if (sc->rx.teardown) {
sc->rx.running = 0;
sc->rx.teardown = 0;
cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
}
received = cpsw_rx_dequeue(sc);
cpsw_rx_enqueue(sc);
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
CPSW_RX_UNLOCK(sc);
while (received != NULL) {
next = received->m_nextpkt;
received->m_nextpkt = NULL;
ifp = received->m_pkthdr.rcvif;
(*ifp->if_input)(ifp, received);
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
received = next;
}
}
static struct mbuf *
cpsw_rx_dequeue(struct cpsw_softc *sc)
{
int nsegs, port, removed;
struct cpsw_cpdma_bd bd;
struct cpsw_slot *last, *slot;
struct cpswp_softc *psc;
struct mbuf *m, *m0, *mb_head, *mb_tail;
uint16_t m0_flags;
nsegs = 0;
m0 = NULL;
last = NULL;
mb_head = NULL;
mb_tail = NULL;
removed = 0;
/* Pull completed packets off hardware RX queue. */
while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
cpsw_cpdma_read_bd(sc, slot, &bd);
/*
* Stop on packets still in use by hardware, but do not stop
* on packets with the teardown complete flag, they will be
* discarded later.
*/
if ((bd.flags & (CPDMA_BD_OWNER | CPDMA_BD_TDOWNCMPLT)) ==
CPDMA_BD_OWNER)
break;
last = slot;
++removed;
STAILQ_REMOVE_HEAD(&sc->rx.active, next);
STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
m = slot->mbuf;
slot->mbuf = NULL;
if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
CPSW_DEBUGF(sc, ("RX teardown is complete"));
m_freem(m);
sc->rx.running = 0;
sc->rx.teardown = 0;
break;
}
port = (bd.flags & CPDMA_BD_PORT_MASK) - 1;
KASSERT(port >= 0 && port <= 1,
("patcket received with invalid port: %d", port));
psc = device_get_softc(sc->port[port].dev);
/* Set up mbuf */
m->m_data += bd.bufoff;
m->m_len = bd.buflen;
if (bd.flags & CPDMA_BD_SOP) {
m->m_pkthdr.len = bd.pktlen;
m->m_pkthdr.rcvif = psc->ifp;
m->m_flags |= M_PKTHDR;
m0_flags = bd.flags;
m0 = m;
}
nsegs++;
m->m_next = NULL;
m->m_nextpkt = NULL;
if (bd.flags & CPDMA_BD_EOP && m0 != NULL) {
if (m0_flags & CPDMA_BD_PASS_CRC)
m_adj(m0, -ETHER_CRC_LEN);
m0_flags = 0;
m0 = NULL;
if (nsegs > sc->rx.longest_chain)
sc->rx.longest_chain = nsegs;
nsegs = 0;
}
if ((psc->ifp->if_capenable & IFCAP_RXCSUM) != 0) {
/* check for valid CRC by looking into pkt_err[5:4] */
if ((bd.flags &
(CPDMA_BD_SOP | CPDMA_BD_PKT_ERR_MASK)) ==
CPDMA_BD_SOP) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
m->m_pkthdr.csum_data = 0xffff;
}
}
if (STAILQ_FIRST(&sc->rx.active) != NULL &&
(bd.flags & (CPDMA_BD_EOP | CPDMA_BD_EOQ)) ==
(CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
cpsw_write_hdp_slot(sc, &sc->rx,
STAILQ_FIRST(&sc->rx.active));
sc->rx.queue_restart++;
}
/* Add mbuf to packet list to be returned. */
if (mb_tail != NULL && (bd.flags & CPDMA_BD_SOP)) {
mb_tail->m_nextpkt = m;
} else if (mb_tail != NULL) {
mb_tail->m_next = m;
} else if (mb_tail == NULL && (bd.flags & CPDMA_BD_SOP) == 0) {
if (bootverbose)
printf(
"%s: %s: discanding fragment packet w/o header\n",
__func__, psc->ifp->if_xname);
m_freem(m);
continue;
} else {
mb_head = m;
}
mb_tail = m;
}
if (removed != 0) {
cpsw_write_cp_slot(sc, &sc->rx, last);
sc->rx.queue_removes += removed;
sc->rx.avail_queue_len += removed;
sc->rx.active_queue_len -= removed;
if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
CPSW_DEBUGF(sc, ("Removed %d received packet(s) from RX queue", removed));
}
return (mb_head);
}
static void
cpsw_rx_enqueue(struct cpsw_softc *sc)
{
bus_dma_segment_t seg[1];
struct cpsw_cpdma_bd bd;
struct cpsw_slot *first_new_slot, *last_old_slot, *next, *slot;
int error, nsegs, added = 0;
/* Register new mbufs with hardware. */
first_new_slot = NULL;
last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
if (first_new_slot == NULL)
first_new_slot = slot;
if (slot->mbuf == NULL) {
slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (slot->mbuf == NULL) {
device_printf(sc->dev,
"Unable to fill RX queue\n");
break;
}
slot->mbuf->m_len =
slot->mbuf->m_pkthdr.len =
slot->mbuf->m_ext.ext_size;
}
error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
KASSERT(error == 0, ("DMA error (error=%d)", error));
if (error != 0 || nsegs != 1) {
device_printf(sc->dev,
"%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
__func__, nsegs, error);
bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
m_freem(slot->mbuf);
slot->mbuf = NULL;
break;
}
bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
/* Create and submit new rx descriptor. */
if ((next = STAILQ_NEXT(slot, next)) != NULL)
bd.next = cpsw_cpdma_bd_paddr(sc, next);
else
bd.next = 0;
bd.bufptr = seg->ds_addr;
bd.bufoff = 0;
bd.buflen = MCLBYTES - 1;
bd.pktlen = bd.buflen;
bd.flags = CPDMA_BD_OWNER;
cpsw_cpdma_write_bd(sc, slot, &bd);
++added;
STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
STAILQ_INSERT_TAIL(&sc->rx.active, slot, next);
}
if (added == 0 || first_new_slot == NULL)
return;
CPSW_DEBUGF(sc, ("Adding %d buffers to RX queue", added));
/* Link new entries to hardware RX queue. */
if (last_old_slot == NULL) {
/* Start a fresh queue. */
cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
} else {
/* Add buffers to end of current queue. */
cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
}
sc->rx.queue_adds += added;
sc->rx.avail_queue_len -= added;
sc->rx.active_queue_len += added;
cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), added);
if (sc->rx.active_queue_len > sc->rx.max_active_queue_len)
sc->rx.max_active_queue_len = sc->rx.active_queue_len;
}
static void
cpswp_start(struct ifnet *ifp)
{
struct cpswp_softc *sc;
sc = ifp->if_softc;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
sc->swsc->tx.running == 0) {
return;
}
CPSW_TX_LOCK(sc->swsc);
cpswp_tx_enqueue(sc);
cpsw_tx_dequeue(sc->swsc);
CPSW_TX_UNLOCK(sc->swsc);
}
static void
cpsw_intr_tx(void *arg)
{
struct cpsw_softc *sc;
sc = (struct cpsw_softc *)arg;
CPSW_TX_LOCK(sc);
if (cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)) == 0xfffffffc)
cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
cpsw_tx_dequeue(sc);
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 2);
CPSW_TX_UNLOCK(sc);
}
static void
cpswp_tx_enqueue(struct cpswp_softc *sc)
{
bus_dma_segment_t segs[CPSW_TXFRAGS];
struct cpsw_cpdma_bd bd;
struct cpsw_slot *first_new_slot, *last, *last_old_slot, *next, *slot;
struct mbuf *m0;
int error, nsegs, seg, added = 0, padlen;
/* Pull pending packets from IF queue and prep them for DMA. */
last = NULL;
first_new_slot = NULL;
last_old_slot = STAILQ_LAST(&sc->swsc->tx.active, cpsw_slot, next);
while ((slot = STAILQ_FIRST(&sc->swsc->tx.avail)) != NULL) {
IF_DEQUEUE(&sc->ifp->if_snd, m0);
if (m0 == NULL)
break;
slot->mbuf = m0;
padlen = ETHER_MIN_LEN - ETHER_CRC_LEN - m0->m_pkthdr.len;
if (padlen < 0)
padlen = 0;
else if (padlen > 0)
m_append(slot->mbuf, padlen, sc->swsc->nullpad);
/* Create mapping in DMA memory */
error = bus_dmamap_load_mbuf_sg(sc->swsc->mbuf_dtag,
slot->dmamap, slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
/* If the packet is too fragmented, try to simplify. */
if (error == EFBIG ||
(error == 0 && nsegs > sc->swsc->tx.avail_queue_len)) {
bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
m0 = m_defrag(slot->mbuf, M_NOWAIT);
if (m0 == NULL) {
device_printf(sc->dev,
"Can't defragment packet; dropping\n");
m_freem(slot->mbuf);
} else {
CPSW_DEBUGF(sc->swsc,
("Requeueing defragmented packet"));
IF_PREPEND(&sc->ifp->if_snd, m0);
}
slot->mbuf = NULL;
continue;
}
if (error != 0) {
device_printf(sc->dev,
"%s: Can't setup DMA (error=%d), dropping packet\n",
__func__, error);
bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
m_freem(slot->mbuf);
slot->mbuf = NULL;
break;
}
bus_dmamap_sync(sc->swsc->mbuf_dtag, slot->dmamap,
BUS_DMASYNC_PREWRITE);
CPSW_DEBUGF(sc->swsc,
("Queueing TX packet: %d segments + %d pad bytes",
nsegs, padlen));
if (first_new_slot == NULL)
first_new_slot = slot;
/* Link from the previous descriptor. */
if (last != NULL)
cpsw_cpdma_write_bd_next(sc->swsc, last, slot);
slot->ifp = sc->ifp;
/* If there is only one segment, the for() loop
* gets skipped and the single buffer gets set up
* as both SOP and EOP. */
if (nsegs > 1) {
next = STAILQ_NEXT(slot, next);
bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
} else
bd.next = 0;
/* Start by setting up the first buffer. */
bd.bufptr = segs[0].ds_addr;
bd.bufoff = 0;
bd.buflen = segs[0].ds_len;
bd.pktlen = m_length(slot->mbuf, NULL);
bd.flags = CPDMA_BD_SOP | CPDMA_BD_OWNER;
if (sc->swsc->dualemac) {
bd.flags |= CPDMA_BD_TO_PORT;
bd.flags |= ((sc->unit + 1) & CPDMA_BD_PORT_MASK);
}
for (seg = 1; seg < nsegs; ++seg) {
/* Save the previous buffer (which isn't EOP) */
cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
slot = STAILQ_FIRST(&sc->swsc->tx.avail);
/* Setup next buffer (which isn't SOP) */
if (nsegs > seg + 1) {
next = STAILQ_NEXT(slot, next);
bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
} else
bd.next = 0;
bd.bufptr = segs[seg].ds_addr;
bd.bufoff = 0;
bd.buflen = segs[seg].ds_len;
bd.pktlen = 0;
bd.flags = CPDMA_BD_OWNER;
}
/* Save the final buffer. */
bd.flags |= CPDMA_BD_EOP;
cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
last = slot;
added += nsegs;
if (nsegs > sc->swsc->tx.longest_chain)
sc->swsc->tx.longest_chain = nsegs;
BPF_MTAP(sc->ifp, m0);
}
if (first_new_slot == NULL)
return;
/* Attach the list of new buffers to the hardware TX queue. */
if (last_old_slot != NULL &&
(cpsw_cpdma_read_bd_flags(sc->swsc, last_old_slot) &
CPDMA_BD_EOQ) == 0) {
/* Add buffers to end of current queue. */
cpsw_cpdma_write_bd_next(sc->swsc, last_old_slot,
first_new_slot);
} else {
/* Start a fresh queue. */
cpsw_write_hdp_slot(sc->swsc, &sc->swsc->tx, first_new_slot);
}
sc->swsc->tx.queue_adds += added;
sc->swsc->tx.avail_queue_len -= added;
sc->swsc->tx.active_queue_len += added;
if (sc->swsc->tx.active_queue_len > sc->swsc->tx.max_active_queue_len) {
sc->swsc->tx.max_active_queue_len = sc->swsc->tx.active_queue_len;
}
CPSW_DEBUGF(sc->swsc, ("Queued %d TX packet(s)", added));
}
static int
cpsw_tx_dequeue(struct cpsw_softc *sc)
{
struct cpsw_slot *slot, *last_removed_slot = NULL;
struct cpsw_cpdma_bd bd;
uint32_t flags, removed = 0;
/* Pull completed buffers off the hardware TX queue. */
slot = STAILQ_FIRST(&sc->tx.active);
while (slot != NULL) {
flags = cpsw_cpdma_read_bd_flags(sc, slot);
/* TearDown complete is only marked on the SOP for the packet. */
if ((flags & (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) ==
(CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) {
sc->tx.teardown = 1;
}
if ((flags & (CPDMA_BD_SOP | CPDMA_BD_OWNER)) ==
(CPDMA_BD_SOP | CPDMA_BD_OWNER) && sc->tx.teardown == 0)
break; /* Hardware is still using this packet. */
bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
m_freem(slot->mbuf);
slot->mbuf = NULL;
if (slot->ifp) {
if (sc->tx.teardown == 0)
if_inc_counter(slot->ifp, IFCOUNTER_OPACKETS, 1);
else
if_inc_counter(slot->ifp, IFCOUNTER_OQDROPS, 1);
}
/* Dequeue any additional buffers used by this packet. */
while (slot != NULL && slot->mbuf == NULL) {
STAILQ_REMOVE_HEAD(&sc->tx.active, next);
STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
++removed;
last_removed_slot = slot;
slot = STAILQ_FIRST(&sc->tx.active);
}
cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
/* Restart the TX queue if necessary. */
cpsw_cpdma_read_bd(sc, last_removed_slot, &bd);
if (slot != NULL && bd.next != 0 && (bd.flags &
(CPDMA_BD_EOP | CPDMA_BD_OWNER | CPDMA_BD_EOQ)) ==
(CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
cpsw_write_hdp_slot(sc, &sc->tx, slot);
sc->tx.queue_restart++;
break;
}
}
if (removed != 0) {
sc->tx.queue_removes += removed;
sc->tx.active_queue_len -= removed;
sc->tx.avail_queue_len += removed;
if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
CPSW_DEBUGF(sc, ("TX removed %d completed packet(s)", removed));
}
if (sc->tx.teardown && STAILQ_EMPTY(&sc->tx.active)) {
CPSW_DEBUGF(sc, ("TX teardown is complete"));
sc->tx.teardown = 0;
sc->tx.running = 0;
}
return (removed);
}
/*
*
* Miscellaneous interrupts.
*
*/
static void
cpsw_intr_rx_thresh(void *arg)
{
struct cpsw_softc *sc;
struct ifnet *ifp;
struct mbuf *received, *next;
sc = (struct cpsw_softc *)arg;
CPSW_RX_LOCK(sc);
received = cpsw_rx_dequeue(sc);
cpsw_rx_enqueue(sc);
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
CPSW_RX_UNLOCK(sc);
while (received != NULL) {
next = received->m_nextpkt;
received->m_nextpkt = NULL;
ifp = received->m_pkthdr.rcvif;
(*ifp->if_input)(ifp, received);
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
received = next;
}
}
static void
cpsw_intr_misc_host_error(struct cpsw_softc *sc)
{
uint32_t intstat;
uint32_t dmastat;
int txerr, rxerr, txchan, rxchan;
printf("\n\n");
device_printf(sc->dev,
"HOST ERROR: PROGRAMMING ERROR DETECTED BY HARDWARE\n");
printf("\n\n");
intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
txerr = (dmastat >> 20) & 15;
txchan = (dmastat >> 16) & 7;
rxerr = (dmastat >> 12) & 15;
rxchan = (dmastat >> 8) & 7;
switch (txerr) {
case 0: break;
case 1: printf("SOP error on TX channel %d\n", txchan);
break;
case 2: printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
break;
case 3: printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
break;
case 4: printf("Zero Buffer Pointer on TX channel %d\n", txchan);
break;
case 5: printf("Zero Buffer Length on TX channel %d\n", txchan);
break;
case 6: printf("Packet length error on TX channel %d\n", txchan);
break;
default: printf("Unknown error on TX channel %d\n", txchan);
break;
}
if (txerr != 0) {
printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
cpsw_dump_queue(sc, &sc->tx.active);
}
switch (rxerr) {
case 0: break;
case 2: printf("Ownership bit not set on RX channel %d\n", rxchan);
break;
case 4: printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
break;
case 5: printf("Zero Buffer Length on RX channel %d\n", rxchan);
break;
case 6: printf("Buffer offset too big on RX channel %d\n", rxchan);
break;
default: printf("Unknown RX error on RX channel %d\n", rxchan);
break;
}
if (rxerr != 0) {
printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
cpsw_dump_queue(sc, &sc->rx.active);
}
printf("\nALE Table\n");
cpsw_ale_dump_table(sc);
// XXX do something useful here??
panic("CPSW HOST ERROR INTERRUPT");
// Suppress this interrupt in the future.
cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
// The watchdog will probably reset the controller
// in a little while. It will probably fail again.
}
static void
cpsw_intr_misc(void *arg)
{
struct cpsw_softc *sc = arg;
uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
if (stat & CPSW_WR_C_MISC_EVNT_PEND)
CPSW_DEBUGF(sc, ("Time sync event interrupt unimplemented"));
if (stat & CPSW_WR_C_MISC_STAT_PEND)
cpsw_stats_collect(sc);
if (stat & CPSW_WR_C_MISC_HOST_PEND)
cpsw_intr_misc_host_error(sc);
if (stat & CPSW_WR_C_MISC_MDIOLINK) {
cpsw_write_4(sc, MDIOLINKINTMASKED,
cpsw_read_4(sc, MDIOLINKINTMASKED));
}
if (stat & CPSW_WR_C_MISC_MDIOUSER) {
CPSW_DEBUGF(sc,
("MDIO operation completed interrupt unimplemented"));
}
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
}
/*
*
* Periodic Checks and Watchdog.
*
*/
static void
cpswp_tick(void *msc)
{
struct cpswp_softc *sc = msc;
/* Check for media type change */
mii_tick(sc->mii);
if (sc->media_status != sc->mii->mii_media.ifm_media) {
printf("%s: media type changed (ifm_media=%x)\n", __func__,
sc->mii->mii_media.ifm_media);
cpswp_ifmedia_upd(sc->ifp);
}
/* Schedule another timeout one second from now */
callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
}
static void
cpswp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct cpswp_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
CPSW_DEBUGF(sc->swsc, (""));
CPSW_PORT_LOCK(sc);
mii = sc->mii;
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
CPSW_PORT_UNLOCK(sc);
}
static int
cpswp_ifmedia_upd(struct ifnet *ifp)
{
struct cpswp_softc *sc;
sc = ifp->if_softc;
CPSW_DEBUGF(sc->swsc, (""));
CPSW_PORT_LOCK(sc);
mii_mediachg(sc->mii);
sc->media_status = sc->mii->mii_media.ifm_media;
CPSW_PORT_UNLOCK(sc);
return (0);
}
static void
cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
{
struct cpswp_softc *psc;
int i;
cpsw_debugf_head("CPSW watchdog");
device_printf(sc->dev, "watchdog timeout\n");
printf("CPSW_CPDMA_TX%d_HDP=0x%x\n", 0,
cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(0)));
printf("CPSW_CPDMA_TX%d_CP=0x%x\n", 0,
cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)));
cpsw_dump_queue(sc, &sc->tx.active);
for (i = 0; i < CPSW_PORTS; i++) {
if (!sc->dualemac && i != sc->active_slave)
continue;
psc = device_get_softc(sc->port[i].dev);
CPSW_PORT_LOCK(psc);
cpswp_stop_locked(psc);
CPSW_PORT_UNLOCK(psc);
}
}
static void
cpsw_tx_watchdog(void *msc)
{
struct cpsw_softc *sc;
sc = msc;
CPSW_TX_LOCK(sc);
if (sc->tx.active_queue_len == 0 || !sc->tx.running) {
sc->watchdog.timer = 0; /* Nothing to do. */
} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
sc->watchdog.timer = 0; /* Stuff done while we weren't looking. */
} else if (cpsw_tx_dequeue(sc) > 0) {
sc->watchdog.timer = 0; /* We just did something. */
} else {
/* There was something to do but it didn't get done. */
++sc->watchdog.timer;
if (sc->watchdog.timer > 5) {
sc->watchdog.timer = 0;
++sc->watchdog.resets;
cpsw_tx_watchdog_full_reset(sc);
}
}
sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
CPSW_TX_UNLOCK(sc);
/* Schedule another timeout one second from now */
callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
}
/*
*
* ALE support routines.
*
*/
static void
cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
{
cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
}
static void
cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
{
cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
}
static void
cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
{
int i;
uint32_t ale_entry[3];
/* First four entries are link address and broadcast. */
for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
cpsw_ale_read_entry(sc, i, ale_entry);
if ((ALE_TYPE(ale_entry) == ALE_TYPE_ADDR ||
ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR) &&
ALE_MCAST(ale_entry) == 1) { /* MCast link addr */
ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
cpsw_ale_write_entry(sc, i, ale_entry);
}
}
}
static int
cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, int vlan,
uint8_t *mac)
{
int free_index = -1, matching_index = -1, i;
uint32_t ale_entry[3], ale_type;
/* Find a matching entry or a free entry. */
for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
cpsw_ale_read_entry(sc, i, ale_entry);
/* Entry Type[61:60] is 0 for free entry */
if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
free_index = i;
if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
(((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
(((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
(((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
(((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
(((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
matching_index = i;
break;
}
}
if (matching_index < 0) {
if (free_index < 0)
return (ENOMEM);
i = free_index;
}
if (vlan != -1)
ale_type = ALE_TYPE_VLAN_ADDR << 28 | vlan << 16;
else
ale_type = ALE_TYPE_ADDR << 28;
/* Set MAC address */
ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
ale_entry[1] = mac[0] << 8 | mac[1];
/* Entry type[61:60] and Mcast fwd state[63:62] is fw(3). */
ale_entry[1] |= ALE_MCAST_FWD | ale_type;
/* Set portmask [68:66] */
ale_entry[2] = (portmap & 7) << 2;
cpsw_ale_write_entry(sc, i, ale_entry);
return 0;
}
static void
cpsw_ale_dump_table(struct cpsw_softc *sc) {
int i;
uint32_t ale_entry[3];
for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
cpsw_ale_read_entry(sc, i, ale_entry);
switch (ALE_TYPE(ale_entry)) {
case ALE_TYPE_VLAN:
printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
ale_entry[1], ale_entry[0]);
printf("type: %u ", ALE_TYPE(ale_entry));
printf("vlan: %u ", ALE_VLAN(ale_entry));
printf("untag: %u ", ALE_VLAN_UNTAG(ale_entry));
printf("reg flood: %u ", ALE_VLAN_REGFLOOD(ale_entry));
printf("unreg flood: %u ", ALE_VLAN_UNREGFLOOD(ale_entry));
printf("members: %u ", ALE_VLAN_MEMBERS(ale_entry));
printf("\n");
break;
case ALE_TYPE_ADDR:
case ALE_TYPE_VLAN_ADDR:
printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
ale_entry[1], ale_entry[0]);
printf("type: %u ", ALE_TYPE(ale_entry));
printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
(ale_entry[1] >> 8) & 0xFF,
(ale_entry[1] >> 0) & 0xFF,
(ale_entry[0] >>24) & 0xFF,
(ale_entry[0] >>16) & 0xFF,
(ale_entry[0] >> 8) & 0xFF,
(ale_entry[0] >> 0) & 0xFF);
printf(ALE_MCAST(ale_entry) ? "mcast " : "ucast ");
if (ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR)
printf("vlan: %u ", ALE_VLAN(ale_entry));
printf("port: %u ", ALE_PORTS(ale_entry));
printf("\n");
break;
}
}
printf("\n");
}
static int
cpswp_ale_update_addresses(struct cpswp_softc *sc, int purge)
{
uint8_t *mac;
uint32_t ale_entry[3], ale_type, portmask;
struct ifmultiaddr *ifma;
if (sc->swsc->dualemac) {
ale_type = ALE_TYPE_VLAN_ADDR << 28 | sc->vlan << 16;
portmask = 1 << (sc->unit + 1) | 1 << 0;
} else {
ale_type = ALE_TYPE_ADDR << 28;
portmask = 7;
}
/*
* Route incoming packets for our MAC address to Port 0 (host).
* For simplicity, keep this entry at table index 0 for port 1 and
* at index 2 for port 2 in the ALE.
*/
if_addr_rlock(sc->ifp);
mac = LLADDR((struct sockaddr_dl *)sc->ifp->if_addr->ifa_addr);
ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
ale_entry[1] = ale_type | mac[0] << 8 | mac[1]; /* addr entry + mac */
ale_entry[2] = 0; /* port = 0 */
cpsw_ale_write_entry(sc->swsc, 0 + 2 * sc->unit, ale_entry);
/* Set outgoing MAC Address for slave port. */
cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_HI(sc->unit + 1),
mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_LO(sc->unit + 1),
mac[5] << 8 | mac[4]);
if_addr_runlock(sc->ifp);
/* Keep the broadcast address at table entry 1 (or 3). */
ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
/* ALE_MCAST_FWD, Addr type, upper 16 bits of Mac */
ale_entry[1] = ALE_MCAST_FWD | ale_type | 0xffff;
ale_entry[2] = portmask << 2;
cpsw_ale_write_entry(sc->swsc, 1 + 2 * sc->unit, ale_entry);
/* SIOCDELMULTI doesn't specify the particular address
being removed, so we have to remove all and rebuild. */
if (purge)
cpsw_ale_remove_all_mc_entries(sc->swsc);
/* Set other multicast addrs desired. */
if_maddr_rlock(sc->ifp);
TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
cpsw_ale_mc_entry_set(sc->swsc, portmask, sc->vlan,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
}
if_maddr_runlock(sc->ifp);
return (0);
}
static int
cpsw_ale_update_vlan_table(struct cpsw_softc *sc, int vlan, int ports,
int untag, int mcregflood, int mcunregflood)
{
int free_index, i, matching_index;
uint32_t ale_entry[3];
free_index = matching_index = -1;
/* Find a matching entry or a free entry. */
for (i = 5; i < CPSW_MAX_ALE_ENTRIES; i++) {
cpsw_ale_read_entry(sc, i, ale_entry);
/* Entry Type[61:60] is 0 for free entry */
if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
free_index = i;
if (ALE_VLAN(ale_entry) == vlan) {
matching_index = i;
break;
}
}
if (matching_index < 0) {
if (free_index < 0)
return (-1);
i = free_index;
}
ale_entry[0] = (untag & 7) << 24 | (mcregflood & 7) << 16 |
(mcunregflood & 7) << 8 | (ports & 7);
ale_entry[1] = ALE_TYPE_VLAN << 28 | vlan << 16;
ale_entry[2] = 0;
cpsw_ale_write_entry(sc, i, ale_entry);
return (0);
}
/*
*
* Statistics and Sysctls.
*
*/
#if 0
static void
cpsw_stats_dump(struct cpsw_softc *sc)
{
int i;
uint32_t r;
for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
cpsw_stat_sysctls[i].reg);
CPSW_DEBUGF(sc, ("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
(intmax_t)sc->shadow_stats[i], r,
(intmax_t)sc->shadow_stats[i] + r));
}
}
#endif
static void
cpsw_stats_collect(struct cpsw_softc *sc)
{
int i;
uint32_t r;
CPSW_DEBUGF(sc, ("Controller shadow statistics updated."));
for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
cpsw_stat_sysctls[i].reg);
sc->shadow_stats[i] += r;
cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg,
r);
}
}
static int
cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
{
struct cpsw_softc *sc;
struct cpsw_stat *stat;
uint64_t result;
sc = (struct cpsw_softc *)arg1;
stat = &cpsw_stat_sysctls[oidp->oid_number];
result = sc->shadow_stats[oidp->oid_number];
result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
return (sysctl_handle_64(oidp, &result, 0, req));
}
static int
cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
{
struct cpsw_softc *sc;
struct bintime t;
unsigned result;
sc = (struct cpsw_softc *)arg1;
getbinuptime(&t);
bintime_sub(&t, &sc->attach_uptime);
result = t.sec;
return (sysctl_handle_int(oidp, &result, 0, req));
}
static int
cpsw_intr_coalesce(SYSCTL_HANDLER_ARGS)
{
int error;
struct cpsw_softc *sc;
uint32_t ctrl, intr_per_ms;
sc = (struct cpsw_softc *)arg1;
error = sysctl_handle_int(oidp, &sc->coal_us, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
ctrl = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
ctrl &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
if (sc->coal_us == 0) {
/* Disable the interrupt pace hardware. */
cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), 0);
cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), 0);
return (0);
}
if (sc->coal_us > CPSW_WR_C_IMAX_US_MAX)
sc->coal_us = CPSW_WR_C_IMAX_US_MAX;
if (sc->coal_us < CPSW_WR_C_IMAX_US_MIN)
sc->coal_us = CPSW_WR_C_IMAX_US_MIN;
intr_per_ms = 1000 / sc->coal_us;
/* Just to make sure... */
if (intr_per_ms > CPSW_WR_C_IMAX_MAX)
intr_per_ms = CPSW_WR_C_IMAX_MAX;
if (intr_per_ms < CPSW_WR_C_IMAX_MIN)
intr_per_ms = CPSW_WR_C_IMAX_MIN;
/* Set the prescale to produce 4us pulses from the 125 Mhz clock. */
ctrl |= (125 * 4) & CPSW_WR_INT_PRESCALE_MASK;
/* Enable the interrupt pace hardware. */
cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), intr_per_ms);
cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), intr_per_ms);
ctrl |= CPSW_WR_INT_C0_RX_PULSE | CPSW_WR_INT_C0_TX_PULSE;
cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
return (0);
}
static int
cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
{
struct cpsw_softc *swsc;
struct cpswp_softc *sc;
struct bintime t;
unsigned result;
swsc = arg1;
sc = device_get_softc(swsc->port[arg2].dev);
if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
getbinuptime(&t);
bintime_sub(&t, &sc->init_uptime);
result = t.sec;
} else
result = 0;
return (sysctl_handle_int(oidp, &result, 0, req));
}
static void
cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
struct cpsw_queue *queue)
{
struct sysctl_oid_list *parent;
parent = SYSCTL_CHILDREN(node);
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
CTLFLAG_RD, &queue->queue_slots, 0,
"Total buffers currently assigned to this queue");
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
CTLFLAG_RD, &queue->active_queue_len, 0,
"Buffers currently registered with hardware controller");
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
CTLFLAG_RD, &queue->max_active_queue_len, 0,
"Max value of activeBuffers since last driver reset");
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
CTLFLAG_RD, &queue->avail_queue_len, 0,
"Buffers allocated to this queue but not currently "
"registered with hardware controller");
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
CTLFLAG_RD, &queue->max_avail_queue_len, 0,
"Max value of availBuffers since last driver reset");
SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
CTLFLAG_RD, &queue->queue_adds, 0,
"Total buffers added to queue");
SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
CTLFLAG_RD, &queue->queue_removes, 0,
"Total buffers removed from queue");
SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "queueRestart",
CTLFLAG_RD, &queue->queue_restart, 0,
"Total times the queue has been restarted");
SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
CTLFLAG_RD, &queue->longest_chain, 0,
"Max buffers used for a single packet");
}
static void
cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
struct cpsw_softc *sc)
{
struct sysctl_oid_list *parent;
parent = SYSCTL_CHILDREN(node);
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
CTLFLAG_RD, &sc->watchdog.resets, 0,
"Total number of watchdog resets");
}
static void
cpsw_add_sysctls(struct cpsw_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid *stats_node, *queue_node, *node;
struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
struct sysctl_oid_list *ports_parent, *port_parent;
char port[16];
int i;
ctx = device_get_sysctl_ctx(sc->dev);
parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "debug",
CTLFLAG_RW, &sc->debug, 0, "Enable switch debug messages");
SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_attached, "IU",
"Time since driver attach");
SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "intr_coalesce_us",
CTLTYPE_UINT | CTLFLAG_RW, sc, 0, cpsw_intr_coalesce, "IU",
"minimum time between interrupts");
node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "ports",
CTLFLAG_RD, NULL, "CPSW Ports Statistics");
ports_parent = SYSCTL_CHILDREN(node);
for (i = 0; i < CPSW_PORTS; i++) {
if (!sc->dualemac && i != sc->active_slave)
continue;
port[0] = '0' + i;
port[1] = '\0';
node = SYSCTL_ADD_NODE(ctx, ports_parent, OID_AUTO,
port, CTLFLAG_RD, NULL, "CPSW Port Statistics");
port_parent = SYSCTL_CHILDREN(node);
SYSCTL_ADD_PROC(ctx, port_parent, OID_AUTO, "uptime",
CTLTYPE_UINT | CTLFLAG_RD, sc, i,
cpsw_stat_uptime, "IU", "Seconds since driver init");
}
stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
CTLFLAG_RD, NULL, "CPSW Statistics");
stats_parent = SYSCTL_CHILDREN(stats_node);
for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
SYSCTL_ADD_PROC(ctx, stats_parent, i,
cpsw_stat_sysctls[i].oid,
CTLTYPE_U64 | CTLFLAG_RD, sc, 0,
cpsw_stats_sysctl, "IU",
cpsw_stat_sysctls[i].oid);
}
queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
CTLFLAG_RD, NULL, "CPSW Queue Statistics");
queue_parent = SYSCTL_CHILDREN(queue_node);
node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
CTLFLAG_RD, NULL, "TX Queue Statistics");
cpsw_add_queue_sysctls(ctx, node, &sc->tx);
node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
CTLFLAG_RD, NULL, "RX Queue Statistics");
cpsw_add_queue_sysctls(ctx, node, &sc->rx);
node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
CTLFLAG_RD, NULL, "Watchdog Statistics");
cpsw_add_watchdog_sysctls(ctx, node, sc);
}
#ifdef CPSW_ETHERSWITCH
static etherswitch_info_t etherswitch_info = {
.es_nports = CPSW_PORTS + 1,
.es_nvlangroups = CPSW_VLANS,
.es_name = "TI Common Platform Ethernet Switch (CPSW)",
.es_vlan_caps = ETHERSWITCH_VLAN_DOT1Q,
};
static etherswitch_info_t *
cpsw_getinfo(device_t dev)
{
return (ðerswitch_info);
}
static int
cpsw_getport(device_t dev, etherswitch_port_t *p)
{
int err;
struct cpsw_softc *sc;
struct cpswp_softc *psc;
struct ifmediareq *ifmr;
uint32_t reg;
if (p->es_port < 0 || p->es_port > CPSW_PORTS)
return (ENXIO);
err = 0;
sc = device_get_softc(dev);
if (p->es_port == CPSW_CPU_PORT) {
p->es_flags |= ETHERSWITCH_PORT_CPU;
ifmr = &p->es_ifmr;
ifmr->ifm_current = ifmr->ifm_active =
IFM_ETHER | IFM_1000_T | IFM_FDX;
ifmr->ifm_mask = 0;
ifmr->ifm_status = IFM_ACTIVE | IFM_AVALID;
ifmr->ifm_count = 0;
} else {
psc = device_get_softc(sc->port[p->es_port - 1].dev);
err = ifmedia_ioctl(psc->ifp, &p->es_ifr,
&psc->mii->mii_media, SIOCGIFMEDIA);
}
reg = cpsw_read_4(sc, CPSW_PORT_P_VLAN(p->es_port));
p->es_pvid = reg & ETHERSWITCH_VID_MASK;
reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
if (reg & ALE_PORTCTL_DROP_UNTAGGED)
p->es_flags |= ETHERSWITCH_PORT_DROPUNTAGGED;
if (reg & ALE_PORTCTL_INGRESS)
p->es_flags |= ETHERSWITCH_PORT_INGRESS;
return (err);
}
static int
cpsw_setport(device_t dev, etherswitch_port_t *p)
{
struct cpsw_softc *sc;
struct cpswp_softc *psc;
struct ifmedia *ifm;
uint32_t reg;
if (p->es_port < 0 || p->es_port > CPSW_PORTS)
return (ENXIO);
sc = device_get_softc(dev);
if (p->es_pvid != 0) {
cpsw_write_4(sc, CPSW_PORT_P_VLAN(p->es_port),
p->es_pvid & ETHERSWITCH_VID_MASK);
}
reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
if (p->es_flags & ETHERSWITCH_PORT_DROPUNTAGGED)
reg |= ALE_PORTCTL_DROP_UNTAGGED;
else
reg &= ~ALE_PORTCTL_DROP_UNTAGGED;
if (p->es_flags & ETHERSWITCH_PORT_INGRESS)
reg |= ALE_PORTCTL_INGRESS;
else
reg &= ~ALE_PORTCTL_INGRESS;
cpsw_write_4(sc, CPSW_ALE_PORTCTL(p->es_port), reg);
/* CPU port does not allow media settings. */
if (p->es_port == CPSW_CPU_PORT)
return (0);
psc = device_get_softc(sc->port[p->es_port - 1].dev);
ifm = &psc->mii->mii_media;
return (ifmedia_ioctl(psc->ifp, &p->es_ifr, ifm, SIOCSIFMEDIA));
}
static int
cpsw_getconf(device_t dev, etherswitch_conf_t *conf)
{
/* Return the VLAN mode. */
conf->cmd = ETHERSWITCH_CONF_VLAN_MODE;
conf->vlan_mode = ETHERSWITCH_VLAN_DOT1Q;
return (0);
}
static int
cpsw_getvgroup(device_t dev, etherswitch_vlangroup_t *vg)
{
int i, vid;
uint32_t ale_entry[3];
struct cpsw_softc *sc;
sc = device_get_softc(dev);
if (vg->es_vlangroup >= CPSW_VLANS)
return (EINVAL);
vg->es_vid = 0;
vid = cpsw_vgroups[vg->es_vlangroup].vid;
if (vid == -1)
return (0);
for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
cpsw_ale_read_entry(sc, i, ale_entry);
if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
continue;
if (vid != ALE_VLAN(ale_entry))
continue;
vg->es_fid = 0;
vg->es_vid = ALE_VLAN(ale_entry) | ETHERSWITCH_VID_VALID;
vg->es_member_ports = ALE_VLAN_MEMBERS(ale_entry);
vg->es_untagged_ports = ALE_VLAN_UNTAG(ale_entry);
}
return (0);
}
static void
cpsw_remove_vlan(struct cpsw_softc *sc, int vlan)
{
int i;
uint32_t ale_entry[3];
for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
cpsw_ale_read_entry(sc, i, ale_entry);
if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
continue;
if (vlan != ALE_VLAN(ale_entry))
continue;
ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
cpsw_ale_write_entry(sc, i, ale_entry);
break;
}
}
static int
cpsw_setvgroup(device_t dev, etherswitch_vlangroup_t *vg)
{
int i;
struct cpsw_softc *sc;
sc = device_get_softc(dev);
for (i = 0; i < CPSW_VLANS; i++) {
/* Is this Vlan ID in use by another vlangroup ? */
if (vg->es_vlangroup != i && cpsw_vgroups[i].vid == vg->es_vid)
return (EINVAL);
}
if (vg->es_vid == 0) {
if (cpsw_vgroups[vg->es_vlangroup].vid == -1)
return (0);
cpsw_remove_vlan(sc, cpsw_vgroups[vg->es_vlangroup].vid);
cpsw_vgroups[vg->es_vlangroup].vid = -1;
vg->es_untagged_ports = 0;
vg->es_member_ports = 0;
vg->es_vid = 0;
return (0);
}
vg->es_vid &= ETHERSWITCH_VID_MASK;
vg->es_member_ports &= CPSW_PORTS_MASK;
vg->es_untagged_ports &= CPSW_PORTS_MASK;
if (cpsw_vgroups[vg->es_vlangroup].vid != -1 &&
cpsw_vgroups[vg->es_vlangroup].vid != vg->es_vid)
return (EINVAL);
cpsw_vgroups[vg->es_vlangroup].vid = vg->es_vid;
cpsw_ale_update_vlan_table(sc, vg->es_vid, vg->es_member_ports,
vg->es_untagged_ports, vg->es_member_ports, 0);
return (0);
}
static int
cpsw_readreg(device_t dev, int addr)
{
/* Not supported. */
return (0);
}
static int
cpsw_writereg(device_t dev, int addr, int value)
{
/* Not supported. */
return (0);
}
static int
cpsw_readphy(device_t dev, int phy, int reg)
{
/* Not supported. */
return (0);
}
static int
cpsw_writephy(device_t dev, int phy, int reg, int data)
{
/* Not supported. */
return (0);
}
#endif