/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2012 Oleksandr Tymoshenko <gonzo@freebsd.org>
* All rights reserved.
*
* Based on dev/usb/input/ukbd.c
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/rman.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/kdb.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/intr.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <sys/ioccom.h>
#include <sys/filio.h>
#include <sys/tty.h>
#include <sys/kbio.h>
#include <dev/kbd/kbdreg.h>
#include <machine/bus.h>
#include <dev/kbd/kbdtables.h>
#define KMI_LOCK() mtx_lock(&Giant)
#define KMI_UNLOCK() mtx_unlock(&Giant)
#ifdef INVARIANTS
/*
* Assert that the lock is held in all contexts
* where the code can be executed.
*/
#define KMI_LOCK_ASSERT() mtx_assert(&Giant, MA_OWNED)
/*
* Assert that the lock is held in the contexts
* where it really has to be so.
*/
#define KMI_CTX_LOCK_ASSERT() \
do { \
if (!kdb_active && panicstr == NULL) \
mtx_assert(&Giant, MA_OWNED); \
} while (0)
#else
#define KMI_LOCK_ASSERT() (void)0
#define KMI_CTX_LOCK_ASSERT() (void)0
#endif
#define KMICR 0x00
#define KMICR_TYPE_NONPS2 (1 << 5)
#define KMICR_RXINTREN (1 << 4)
#define KMICR_TXINTREN (1 << 3)
#define KMICR_EN (1 << 2)
#define KMICR_FKMID (1 << 1)
#define KMICR_FKMIC (1 << 0)
#define KMISTAT 0x04
#define KMISTAT_TXEMPTY (1 << 6)
#define KMISTAT_TXBUSY (1 << 5)
#define KMISTAT_RXFULL (1 << 4)
#define KMISTAT_RXBUSY (1 << 3)
#define KMISTAT_RXPARITY (1 << 2)
#define KMISTAT_KMIC (1 << 1)
#define KMISTAT_KMID (1 << 0)
#define KMIDATA 0x08
#define KMICLKDIV 0x0C
#define KMIIR 0x10
#define KMIIR_TXINTR (1 << 1)
#define KMIIR_RXINTR (1 << 0)
#define KMI_DRIVER_NAME "kmi"
#define KMI_NFKEY (sizeof(fkey_tab)/sizeof(fkey_tab[0])) /* units */
#define SET_SCANCODE_SET 0xf0
struct kmi_softc {
device_t sc_dev;
keyboard_t sc_kbd;
keymap_t sc_keymap;
accentmap_t sc_accmap;
fkeytab_t sc_fkeymap[KMI_NFKEY];
struct resource* sc_mem_res;
struct resource* sc_irq_res;
void* sc_intr_hl;
int sc_mode; /* input mode (K_XLATE,K_RAW,K_CODE) */
int sc_state; /* shift/lock key state */
int sc_accents; /* accent key index (> 0) */
uint32_t sc_flags; /* flags */
#define KMI_FLAG_COMPOSE 0x00000001
#define KMI_FLAG_POLLING 0x00000002
struct thread *sc_poll_thread;
};
/* Read/Write macros for Timer used as timecounter */
#define pl050_kmi_read_4(sc, reg) \
bus_read_4((sc)->sc_mem_res, (reg))
#define pl050_kmi_write_4(sc, reg, val) \
bus_write_4((sc)->sc_mem_res, (reg), (val))
/* prototypes */
static void kmi_set_leds(struct kmi_softc *, uint8_t);
static int kmi_set_typematic(keyboard_t *, int);
static uint32_t kmi_read_char(keyboard_t *, int);
static void kmi_clear_state(keyboard_t *);
static int kmi_ioctl(keyboard_t *, u_long, caddr_t);
static int kmi_enable(keyboard_t *);
static int kmi_disable(keyboard_t *);
static int kmi_attached = 0;
/* early keyboard probe, not supported */
static int
kmi_configure(int flags)
{
return (0);
}
/* detect a keyboard, not used */
static int
kmi_probe(int unit, void *arg, int flags)
{
return (ENXIO);
}
/* reset and initialize the device, not used */
static int
kmi_init(int unit, keyboard_t **kbdp, void *arg, int flags)
{
return (ENXIO);
}
/* test the interface to the device, not used */
static int
kmi_test_if(keyboard_t *kbd)
{
return (0);
}
/* finish using this keyboard, not used */
static int
kmi_term(keyboard_t *kbd)
{
return (ENXIO);
}
/* keyboard interrupt routine, not used */
static int
kmi_intr(keyboard_t *kbd, void *arg)
{
return (0);
}
/* lock the access to the keyboard, not used */
static int
kmi_lock(keyboard_t *kbd, int lock)
{
return (1);
}
/*
* Enable the access to the device; until this function is called,
* the client cannot read from the keyboard.
*/
static int
kmi_enable(keyboard_t *kbd)
{
KMI_LOCK();
KBD_ACTIVATE(kbd);
KMI_UNLOCK();
return (0);
}
/* disallow the access to the device */
static int
kmi_disable(keyboard_t *kbd)
{
KMI_LOCK();
KBD_DEACTIVATE(kbd);
KMI_UNLOCK();
return (0);
}
/* check if data is waiting */
static int
kmi_check(keyboard_t *kbd)
{
struct kmi_softc *sc = kbd->kb_data;
uint32_t reg;
KMI_CTX_LOCK_ASSERT();
if (!KBD_IS_ACTIVE(kbd))
return (0);
reg = pl050_kmi_read_4(sc, KMIIR);
return (reg & KMIIR_RXINTR);
}
/* check if char is waiting */
static int
kmi_check_char_locked(keyboard_t *kbd)
{
KMI_CTX_LOCK_ASSERT();
if (!KBD_IS_ACTIVE(kbd))
return (0);
return (kmi_check(kbd));
}
static int
kmi_check_char(keyboard_t *kbd)
{
int result;
KMI_LOCK();
result = kmi_check_char_locked(kbd);
KMI_UNLOCK();
return (result);
}
/* read one byte from the keyboard if it's allowed */
/* Currently unused. */
static int
kmi_read(keyboard_t *kbd, int wait)
{
KMI_CTX_LOCK_ASSERT();
if (!KBD_IS_ACTIVE(kbd))
return (-1);
++(kbd->kb_count);
printf("Implement ME: %s\n", __func__);
return (0);
}
/* read char from the keyboard */
static uint32_t
kmi_read_char_locked(keyboard_t *kbd, int wait)
{
struct kmi_softc *sc = kbd->kb_data;
uint32_t reg, data;
KMI_CTX_LOCK_ASSERT();
if (!KBD_IS_ACTIVE(kbd))
return (NOKEY);
reg = pl050_kmi_read_4(sc, KMIIR);
if (reg & KMIIR_RXINTR) {
data = pl050_kmi_read_4(sc, KMIDATA);
return (data);
}
++kbd->kb_count;
return (NOKEY);
}
/* Currently wait is always false. */
static uint32_t
kmi_read_char(keyboard_t *kbd, int wait)
{
uint32_t keycode;
KMI_LOCK();
keycode = kmi_read_char_locked(kbd, wait);
KMI_UNLOCK();
return (keycode);
}
/* some useful control functions */
static int
kmi_ioctl_locked(keyboard_t *kbd, u_long cmd, caddr_t arg)
{
struct kmi_softc *sc = kbd->kb_data;
int i;
#if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \
defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
int ival;
#endif
KMI_LOCK_ASSERT();
switch (cmd) {
case KDGKBMODE: /* get keyboard mode */
*(int *)arg = sc->sc_mode;
break;
#if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \
defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
case _IO('K', 7):
ival = IOCPARM_IVAL(arg);
arg = (caddr_t)&ival;
/* FALLTHROUGH */
#endif
case KDSKBMODE: /* set keyboard mode */
switch (*(int *)arg) {
case K_XLATE:
if (sc->sc_mode != K_XLATE) {
/* make lock key state and LED state match */
sc->sc_state &= ~LOCK_MASK;
sc->sc_state |= KBD_LED_VAL(kbd);
}
/* FALLTHROUGH */
case K_RAW:
case K_CODE:
if (sc->sc_mode != *(int *)arg) {
if ((sc->sc_flags & KMI_FLAG_POLLING) == 0)
kmi_clear_state(kbd);
sc->sc_mode = *(int *)arg;
}
break;
default:
return (EINVAL);
}
break;
case KDGETLED: /* get keyboard LED */
*(int *)arg = KBD_LED_VAL(kbd);
break;
#if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \
defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
case _IO('K', 66):
ival = IOCPARM_IVAL(arg);
arg = (caddr_t)&ival;
/* FALLTHROUGH */
#endif
case KDSETLED: /* set keyboard LED */
/* NOTE: lock key state in "sc_state" won't be changed */
if (*(int *)arg & ~LOCK_MASK)
return (EINVAL);
i = *(int *)arg;
/* replace CAPS LED with ALTGR LED for ALTGR keyboards */
if (sc->sc_mode == K_XLATE &&
kbd->kb_keymap->n_keys > ALTGR_OFFSET) {
if (i & ALKED)
i |= CLKED;
else
i &= ~CLKED;
}
if (KBD_HAS_DEVICE(kbd))
kmi_set_leds(sc, i);
KBD_LED_VAL(kbd) = *(int *)arg;
break;
case KDGKBSTATE: /* get lock key state */
*(int *)arg = sc->sc_state & LOCK_MASK;
break;
#if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \
defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
case _IO('K', 20):
ival = IOCPARM_IVAL(arg);
arg = (caddr_t)&ival;
/* FALLTHROUGH */
#endif
case KDSKBSTATE: /* set lock key state */
if (*(int *)arg & ~LOCK_MASK) {
return (EINVAL);
}
sc->sc_state &= ~LOCK_MASK;
sc->sc_state |= *(int *)arg;
/* set LEDs and quit */
return (kmi_ioctl(kbd, KDSETLED, arg));
case KDSETREPEAT: /* set keyboard repeat rate (new
* interface) */
if (!KBD_HAS_DEVICE(kbd)) {
return (0);
}
if (((int *)arg)[1] < 0) {
return (EINVAL);
}
if (((int *)arg)[0] < 0) {
return (EINVAL);
}
if (((int *)arg)[0] < 200) /* fastest possible value */
kbd->kb_delay1 = 200;
else
kbd->kb_delay1 = ((int *)arg)[0];
kbd->kb_delay2 = ((int *)arg)[1];
return (0);
#if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \
defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
case _IO('K', 67):
ival = IOCPARM_IVAL(arg);
arg = (caddr_t)&ival;
/* FALLTHROUGH */
#endif
case KDSETRAD: /* set keyboard repeat rate (old
* interface) */
return (kmi_set_typematic(kbd, *(int *)arg));
case PIO_KEYMAP: /* set keyboard translation table */
case OPIO_KEYMAP: /* set keyboard translation table
* (compat) */
case PIO_KEYMAPENT: /* set keyboard translation table
* entry */
case PIO_DEADKEYMAP: /* set accent key translation table */
sc->sc_accents = 0;
/* FALLTHROUGH */
default:
return (genkbd_commonioctl(kbd, cmd, arg));
}
return (0);
}
static int
kmi_ioctl(keyboard_t *kbd, u_long cmd, caddr_t arg)
{
int result;
/*
* XXX KDGKBSTATE, KDSKBSTATE and KDSETLED can be called from any
* context where printf(9) can be called, which among other things
* includes interrupt filters and threads with any kinds of locks
* already held. For this reason it would be dangerous to acquire
* the Giant here unconditionally. On the other hand we have to
* have it to handle the ioctl.
* So we make our best effort to auto-detect whether we can grab
* the Giant or not. Blame syscons(4) for this.
*/
switch (cmd) {
case KDGKBSTATE:
case KDSKBSTATE:
case KDSETLED:
if (!mtx_owned(&Giant) && !SCHEDULER_STOPPED())
return (EDEADLK); /* best I could come up with */
/* FALLTHROUGH */
default:
KMI_LOCK();
result = kmi_ioctl_locked(kbd, cmd, arg);
KMI_UNLOCK();
return (result);
}
}
/* clear the internal state of the keyboard */
static void
kmi_clear_state(keyboard_t *kbd)
{
struct kmi_softc *sc = kbd->kb_data;
KMI_CTX_LOCK_ASSERT();
sc->sc_flags &= ~(KMI_FLAG_COMPOSE | KMI_FLAG_POLLING);
sc->sc_state &= LOCK_MASK; /* preserve locking key state */
sc->sc_accents = 0;
}
/* save the internal state, not used */
static int
kmi_get_state(keyboard_t *kbd, void *buf, size_t len)
{
return (len == 0) ? 1 : -1;
}
/* set the internal state, not used */
static int
kmi_set_state(keyboard_t *kbd, void *buf, size_t len)
{
return (EINVAL);
}
static int
kmi_poll(keyboard_t *kbd, int on)
{
struct kmi_softc *sc = kbd->kb_data;
KMI_LOCK();
if (on) {
sc->sc_flags |= KMI_FLAG_POLLING;
sc->sc_poll_thread = curthread;
} else {
sc->sc_flags &= ~KMI_FLAG_POLLING;
}
KMI_UNLOCK();
return (0);
}
/* local functions */
static void
kmi_set_leds(struct kmi_softc *sc, uint8_t leds)
{
KMI_LOCK_ASSERT();
/* start transfer, if not already started */
printf("Implement me: %s\n", __func__);
}
static int
kmi_set_typematic(keyboard_t *kbd, int code)
{
static const int delays[] = {250, 500, 750, 1000};
static const int rates[] = {34, 38, 42, 46, 50, 55, 59, 63,
68, 76, 84, 92, 100, 110, 118, 126,
136, 152, 168, 184, 200, 220, 236, 252,
272, 304, 336, 368, 400, 440, 472, 504};
if (code & ~0x7f) {
return (EINVAL);
}
kbd->kb_delay1 = delays[(code >> 5) & 3];
kbd->kb_delay2 = rates[code & 0x1f];
return (0);
}
static keyboard_switch_t kmisw = {
.probe = &kmi_probe,
.init = &kmi_init,
.term = &kmi_term,
.intr = &kmi_intr,
.test_if = &kmi_test_if,
.enable = &kmi_enable,
.disable = &kmi_disable,
.read = &kmi_read,
.check = &kmi_check,
.read_char = &kmi_read_char,
.check_char = &kmi_check_char,
.ioctl = &kmi_ioctl,
.lock = &kmi_lock,
.clear_state = &kmi_clear_state,
.get_state = &kmi_get_state,
.set_state = &kmi_set_state,
.get_fkeystr = &genkbd_get_fkeystr,
.poll = &kmi_poll,
.diag = &genkbd_diag,
};
KEYBOARD_DRIVER(kmi, kmisw, kmi_configure);
static void
pl050_kmi_intr(void *arg)
{
struct kmi_softc *sc = arg;
uint32_t c;
KMI_CTX_LOCK_ASSERT();
if ((sc->sc_flags & KMI_FLAG_POLLING) != 0)
return;
if (KBD_IS_ACTIVE(&sc->sc_kbd) &&
KBD_IS_BUSY(&sc->sc_kbd)) {
/* let the callback function process the input */
(sc->sc_kbd.kb_callback.kc_func) (&sc->sc_kbd, KBDIO_KEYINPUT,
sc->sc_kbd.kb_callback.kc_arg);
} else {
/* read and discard the input, no one is waiting for it */
do {
c = kmi_read_char_locked(&sc->sc_kbd, 0);
} while (c != NOKEY);
}
}
static int
pl050_kmi_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
/*
* PL050 is plain PS2 port that pushes bytes to/from computer
* VersatilePB has two such ports and QEMU simulates keyboard
* connected to port #0 and mouse connected to port #1. This
* information can't be obtained from device tree so we just
* hardcode this knowledge here. We attach keyboard driver to
* port #0 and ignore port #1
*/
if (kmi_attached)
return (ENXIO);
if (ofw_bus_is_compatible(dev, "arm,pl050")) {
device_set_desc(dev, "PL050 Keyboard/Mouse Interface");
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static int
pl050_kmi_attach(device_t dev)
{
struct kmi_softc *sc = device_get_softc(dev);
keyboard_t *kbd;
int rid;
int i;
uint32_t ack;
sc->sc_dev = dev;
kbd = &sc->sc_kbd;
rid = 0;
sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE);
if (sc->sc_mem_res == NULL) {
device_printf(dev, "could not allocate memory resource\n");
return (ENXIO);
}
/* Request the IRQ resources */
sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE);
if (sc->sc_irq_res == NULL) {
device_printf(dev, "Error: could not allocate irq resources\n");
return (ENXIO);
}
/* Setup and enable the timer */
if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_CLK,
NULL, pl050_kmi_intr, sc,
&sc->sc_intr_hl) != 0) {
bus_release_resource(dev, SYS_RES_IRQ, rid,
sc->sc_irq_res);
device_printf(dev, "Unable to setup the clock irq handler.\n");
return (ENXIO);
}
/* TODO: clock & divisor */
pl050_kmi_write_4(sc, KMICR, KMICR_EN);
pl050_kmi_write_4(sc, KMIDATA, SET_SCANCODE_SET);
/* read out ACK */
ack = pl050_kmi_read_4(sc, KMIDATA);
/* Set Scan Code set 1 (XT) */
pl050_kmi_write_4(sc, KMIDATA, 1);
/* read out ACK */
ack = pl050_kmi_read_4(sc, KMIDATA);
pl050_kmi_write_4(sc, KMICR, KMICR_EN | KMICR_RXINTREN);
kbd_init_struct(kbd, KMI_DRIVER_NAME, KB_OTHER,
device_get_unit(dev), 0, 0, 0);
kbd->kb_data = (void *)sc;
sc->sc_keymap = key_map;
sc->sc_accmap = accent_map;
for (i = 0; i < KMI_NFKEY; i++) {
sc->sc_fkeymap[i] = fkey_tab[i];
}
kbd_set_maps(kbd, &sc->sc_keymap, &sc->sc_accmap,
sc->sc_fkeymap, KMI_NFKEY);
KBD_FOUND_DEVICE(kbd);
kmi_clear_state(kbd);
KBD_PROBE_DONE(kbd);
KBD_INIT_DONE(kbd);
if (kbd_register(kbd) < 0) {
goto detach;
}
KBD_CONFIG_DONE(kbd);
#ifdef KBD_INSTALL_CDEV
if (kbd_attach(kbd)) {
goto detach;
}
#endif
if (bootverbose) {
genkbd_diag(kbd, bootverbose);
}
kmi_attached = 1;
return (0);
detach:
return (ENXIO);
}
static device_method_t pl050_kmi_methods[] = {
DEVMETHOD(device_probe, pl050_kmi_probe),
DEVMETHOD(device_attach, pl050_kmi_attach),
{ 0, 0 }
};
static driver_t pl050_kmi_driver = {
"kmi",
pl050_kmi_methods,
sizeof(struct kmi_softc),
};
static devclass_t pl050_kmi_devclass;
DRIVER_MODULE(pl050_kmi, simplebus, pl050_kmi_driver, pl050_kmi_devclass, 0, 0);