/*
* Copyright 2012-2015 Samy Al Bahra.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <ck_cc.h>
#include <ck_hs.h>
#include <ck_limits.h>
#include <ck_md.h>
#include <ck_pr.h>
#include <ck_stdint.h>
#include <ck_stdbool.h>
#include <ck_string.h>
#include "ck_internal.h"
#ifndef CK_HS_PROBE_L1_SHIFT
#define CK_HS_PROBE_L1_SHIFT 3ULL
#endif /* CK_HS_PROBE_L1_SHIFT */
#define CK_HS_PROBE_L1 (1 << CK_HS_PROBE_L1_SHIFT)
#define CK_HS_PROBE_L1_MASK (CK_HS_PROBE_L1 - 1)
#ifndef CK_HS_PROBE_L1_DEFAULT
#define CK_HS_PROBE_L1_DEFAULT CK_MD_CACHELINE
#endif
#define CK_HS_VMA_MASK ((uintptr_t)((1ULL << CK_MD_VMA_BITS) - 1))
#define CK_HS_VMA(x) \
((void *)((uintptr_t)(x) & CK_HS_VMA_MASK))
#define CK_HS_EMPTY NULL
#define CK_HS_TOMBSTONE ((void *)~(uintptr_t)0)
#define CK_HS_G (2)
#define CK_HS_G_MASK (CK_HS_G - 1)
#if defined(CK_F_PR_LOAD_8) && defined(CK_F_PR_STORE_8)
#define CK_HS_WORD uint8_t
#define CK_HS_WORD_MAX UINT8_MAX
#define CK_HS_STORE(x, y) ck_pr_store_8(x, y)
#define CK_HS_LOAD(x) ck_pr_load_8(x)
#elif defined(CK_F_PR_LOAD_16) && defined(CK_F_PR_STORE_16)
#define CK_HS_WORD uint16_t
#define CK_HS_WORD_MAX UINT16_MAX
#define CK_HS_STORE(x, y) ck_pr_store_16(x, y)
#define CK_HS_LOAD(x) ck_pr_load_16(x)
#elif defined(CK_F_PR_LOAD_32) && defined(CK_F_PR_STORE_32)
#define CK_HS_WORD uint32_t
#define CK_HS_WORD_MAX UINT32_MAX
#define CK_HS_STORE(x, y) ck_pr_store_32(x, y)
#define CK_HS_LOAD(x) ck_pr_load_32(x)
#else
#error "ck_hs is not supported on your platform."
#endif
enum ck_hs_probe_behavior {
CK_HS_PROBE = 0, /* Default behavior. */
CK_HS_PROBE_TOMBSTONE, /* Short-circuit on tombstone. */
CK_HS_PROBE_INSERT /* Short-circuit on probe bound if tombstone found. */
};
struct ck_hs_map {
unsigned int generation[CK_HS_G];
unsigned int probe_maximum;
unsigned long mask;
unsigned long step;
unsigned int probe_limit;
unsigned int tombstones;
unsigned long n_entries;
unsigned long capacity;
unsigned long size;
CK_HS_WORD *probe_bound;
const void **entries;
};
static inline void
ck_hs_map_signal(struct ck_hs_map *map, unsigned long h)
{
h &= CK_HS_G_MASK;
ck_pr_store_uint(&map->generation[h],
map->generation[h] + 1);
ck_pr_fence_store();
return;
}
static bool
_ck_hs_next(struct ck_hs *hs, struct ck_hs_map *map, struct ck_hs_iterator *i, void **key)
{
void *value;
if (i->offset >= map->capacity)
return false;
do {
value = CK_CC_DECONST_PTR(map->entries[i->offset]);
if (value != CK_HS_EMPTY && value != CK_HS_TOMBSTONE) {
#ifdef CK_HS_PP
if (hs->mode & CK_HS_MODE_OBJECT)
value = CK_HS_VMA(value);
#else
(void)hs; /* Avoid unused parameter warning. */
#endif
i->offset++;
*key = value;
return true;
}
} while (++i->offset < map->capacity);
return false;
}
void
ck_hs_iterator_init(struct ck_hs_iterator *iterator)
{
iterator->cursor = NULL;
iterator->offset = 0;
iterator->map = NULL;
return;
}
bool
ck_hs_next(struct ck_hs *hs, struct ck_hs_iterator *i, void **key)
{
return _ck_hs_next(hs, hs->map, i, key);
}
bool
ck_hs_next_spmc(struct ck_hs *hs, struct ck_hs_iterator *i, void **key)
{
struct ck_hs_map *m = i->map;
if (m == NULL) {
m = i->map = ck_pr_load_ptr(&hs->map);
}
return _ck_hs_next(hs, m, i, key);
}
void
ck_hs_stat(struct ck_hs *hs, struct ck_hs_stat *st)
{
struct ck_hs_map *map = hs->map;
st->n_entries = map->n_entries;
st->tombstones = map->tombstones;
st->probe_maximum = map->probe_maximum;
return;
}
unsigned long
ck_hs_count(struct ck_hs *hs)
{
return hs->map->n_entries;
}
static void
ck_hs_map_destroy(struct ck_malloc *m, struct ck_hs_map *map, bool defer)
{
m->free(map, map->size, defer);
return;
}
void
ck_hs_destroy(struct ck_hs *hs)
{
ck_hs_map_destroy(hs->m, hs->map, false);
return;
}
static struct ck_hs_map *
ck_hs_map_create(struct ck_hs *hs, unsigned long entries)
{
struct ck_hs_map *map;
unsigned long size, n_entries, prefix, limit;
n_entries = ck_internal_power_2(entries);
if (n_entries < CK_HS_PROBE_L1)
n_entries = CK_HS_PROBE_L1;
size = sizeof(struct ck_hs_map) + (sizeof(void *) * n_entries + CK_MD_CACHELINE - 1);
if (hs->mode & CK_HS_MODE_DELETE) {
prefix = sizeof(CK_HS_WORD) * n_entries;
size += prefix;
} else {
prefix = 0;
}
map = hs->m->malloc(size);
if (map == NULL)
return NULL;
map->size = size;
/* We should probably use a more intelligent heuristic for default probe length. */
limit = ck_internal_max(n_entries >> (CK_HS_PROBE_L1_SHIFT + 2), CK_HS_PROBE_L1_DEFAULT);
if (limit > UINT_MAX)
limit = UINT_MAX;
map->probe_limit = (unsigned int)limit;
map->probe_maximum = 0;
map->capacity = n_entries;
map->step = ck_cc_ffsl(n_entries);
map->mask = n_entries - 1;
map->n_entries = 0;
/* Align map allocation to cache line. */
map->entries = (void *)(((uintptr_t)&map[1] + prefix +
CK_MD_CACHELINE - 1) & ~(CK_MD_CACHELINE - 1));
memset(map->entries, 0, sizeof(void *) * n_entries);
memset(map->generation, 0, sizeof map->generation);
if (hs->mode & CK_HS_MODE_DELETE) {
map->probe_bound = (CK_HS_WORD *)&map[1];
memset(map->probe_bound, 0, prefix);
} else {
map->probe_bound = NULL;
}
/* Commit entries purge with respect to map publication. */
ck_pr_fence_store();
return map;
}
bool
ck_hs_reset_size(struct ck_hs *hs, unsigned long capacity)
{
struct ck_hs_map *map, *previous;
previous = hs->map;
map = ck_hs_map_create(hs, capacity);
if (map == NULL)
return false;
ck_pr_store_ptr(&hs->map, map);
ck_hs_map_destroy(hs->m, previous, true);
return true;
}
bool
ck_hs_reset(struct ck_hs *hs)
{
struct ck_hs_map *previous;
previous = hs->map;
return ck_hs_reset_size(hs, previous->capacity);
}
static inline unsigned long
ck_hs_map_probe_next(struct ck_hs_map *map,
unsigned long offset,
unsigned long h,
unsigned long level,
unsigned long probes)
{
unsigned long r, stride;
r = (h >> map->step) >> level;
stride = (r & ~CK_HS_PROBE_L1_MASK) << 1 | (r & CK_HS_PROBE_L1_MASK);
return (offset + (probes >> CK_HS_PROBE_L1_SHIFT) +
(stride | CK_HS_PROBE_L1)) & map->mask;
}
static inline void
ck_hs_map_bound_set(struct ck_hs_map *m,
unsigned long h,
unsigned long n_probes)
{
unsigned long offset = h & m->mask;
if (n_probes > m->probe_maximum)
ck_pr_store_uint(&m->probe_maximum, n_probes);
if (m->probe_bound != NULL && m->probe_bound[offset] < n_probes) {
if (n_probes > CK_HS_WORD_MAX)
n_probes = CK_HS_WORD_MAX;
CK_HS_STORE(&m->probe_bound[offset], n_probes);
ck_pr_fence_store();
}
return;
}
static inline unsigned int
ck_hs_map_bound_get(struct ck_hs_map *m, unsigned long h)
{
unsigned long offset = h & m->mask;
unsigned int r = CK_HS_WORD_MAX;
if (m->probe_bound != NULL) {
r = CK_HS_LOAD(&m->probe_bound[offset]);
if (r == CK_HS_WORD_MAX)
r = ck_pr_load_uint(&m->probe_maximum);
} else {
r = ck_pr_load_uint(&m->probe_maximum);
}
return r;
}
bool
ck_hs_grow(struct ck_hs *hs,
unsigned long capacity)
{
struct ck_hs_map *map, *update;
unsigned long k, i, j, offset, probes;
const void *previous, **bucket;
restart:
map = hs->map;
if (map->capacity > capacity)
return false;
update = ck_hs_map_create(hs, capacity);
if (update == NULL)
return false;
for (k = 0; k < map->capacity; k++) {
unsigned long h;
previous = map->entries[k];
if (previous == CK_HS_EMPTY || previous == CK_HS_TOMBSTONE)
continue;
#ifdef CK_HS_PP
if (hs->mode & CK_HS_MODE_OBJECT)
previous = CK_HS_VMA(previous);
#endif
h = hs->hf(previous, hs->seed);
offset = h & update->mask;
i = probes = 0;
for (;;) {
bucket = (const void **)((uintptr_t)&update->entries[offset] & ~(CK_MD_CACHELINE - 1));
for (j = 0; j < CK_HS_PROBE_L1; j++) {
const void **cursor = bucket + ((j + offset) & (CK_HS_PROBE_L1 - 1));
if (probes++ == update->probe_limit)
break;
if (CK_CC_LIKELY(*cursor == CK_HS_EMPTY)) {
*cursor = map->entries[k];
update->n_entries++;
ck_hs_map_bound_set(update, h, probes);
break;
}
}
if (j < CK_HS_PROBE_L1)
break;
offset = ck_hs_map_probe_next(update, offset, h, i++, probes);
}
if (probes > update->probe_limit) {
/*
* We have hit the probe limit, map needs to be even larger.
*/
ck_hs_map_destroy(hs->m, update, false);
capacity <<= 1;
goto restart;
}
}
ck_pr_fence_store();
ck_pr_store_ptr(&hs->map, update);
ck_hs_map_destroy(hs->m, map, true);
return true;
}
static void
ck_hs_map_postinsert(struct ck_hs *hs, struct ck_hs_map *map)
{
map->n_entries++;
if ((map->n_entries << 1) > map->capacity)
ck_hs_grow(hs, map->capacity << 1);
return;
}
bool
ck_hs_rebuild(struct ck_hs *hs)
{
return ck_hs_grow(hs, hs->map->capacity);
}
static const void **
ck_hs_map_probe(struct ck_hs *hs,
struct ck_hs_map *map,
unsigned long *n_probes,
const void ***priority,
unsigned long h,
const void *key,
const void **object,
unsigned long probe_limit,
enum ck_hs_probe_behavior behavior)
{
const void **bucket, **cursor, *k, *compare;
const void **pr = NULL;
unsigned long offset, j, i, probes, opl;
#ifdef CK_HS_PP
/* If we are storing object pointers, then we may leverage pointer packing. */
unsigned long hv = 0;
if (hs->mode & CK_HS_MODE_OBJECT) {
hv = (h >> 25) & CK_HS_KEY_MASK;
compare = CK_HS_VMA(key);
} else {
compare = key;
}
#else
compare = key;
#endif
offset = h & map->mask;
*object = NULL;
i = probes = 0;
opl = probe_limit;
if (behavior == CK_HS_PROBE_INSERT)
probe_limit = ck_hs_map_bound_get(map, h);
for (;;) {
bucket = (const void **)((uintptr_t)&map->entries[offset] & ~(CK_MD_CACHELINE - 1));
for (j = 0; j < CK_HS_PROBE_L1; j++) {
cursor = bucket + ((j + offset) & (CK_HS_PROBE_L1 - 1));
if (probes++ == probe_limit) {
if (probe_limit == opl || pr != NULL) {
k = CK_HS_EMPTY;
goto leave;
}
/*
* If no eligible slot has been found yet, continue probe
* sequence with original probe limit.
*/
probe_limit = opl;
}
k = ck_pr_load_ptr(cursor);
if (k == CK_HS_EMPTY)
goto leave;
if (k == CK_HS_TOMBSTONE) {
if (pr == NULL) {
pr = cursor;
*n_probes = probes;
if (behavior == CK_HS_PROBE_TOMBSTONE) {
k = CK_HS_EMPTY;
goto leave;
}
}
continue;
}
#ifdef CK_HS_PP
if (hs->mode & CK_HS_MODE_OBJECT) {
if (((uintptr_t)k >> CK_MD_VMA_BITS) != hv)
continue;
k = CK_HS_VMA(k);
}
#endif
if (k == compare)
goto leave;
if (hs->compare == NULL)
continue;
if (hs->compare(k, key) == true)
goto leave;
}
offset = ck_hs_map_probe_next(map, offset, h, i++, probes);
}
leave:
if (probes > probe_limit) {
cursor = NULL;
} else {
*object = k;
}
if (pr == NULL)
*n_probes = probes;
*priority = pr;
return cursor;
}
static inline const void *
ck_hs_marshal(unsigned int mode, const void *key, unsigned long h)
{
#ifdef CK_HS_PP
const void *insert;
if (mode & CK_HS_MODE_OBJECT) {
insert = (void *)((uintptr_t)CK_HS_VMA(key) |
((h >> 25) << CK_MD_VMA_BITS));
} else {
insert = key;
}
return insert;
#else
(void)mode;
(void)h;
return key;
#endif
}
bool
ck_hs_gc(struct ck_hs *hs, unsigned long cycles, unsigned long seed)
{
unsigned long size = 0;
unsigned long i;
struct ck_hs_map *map = hs->map;
unsigned int maximum;
CK_HS_WORD *bounds = NULL;
if (map->n_entries == 0) {
ck_pr_store_uint(&map->probe_maximum, 0);
if (map->probe_bound != NULL)
memset(map->probe_bound, 0, sizeof(CK_HS_WORD) * map->capacity);
return true;
}
if (cycles == 0) {
maximum = 0;
if (map->probe_bound != NULL) {
size = sizeof(CK_HS_WORD) * map->capacity;
bounds = hs->m->malloc(size);
if (bounds == NULL)
return false;
memset(bounds, 0, size);
}
} else {
maximum = map->probe_maximum;
}
for (i = 0; i < map->capacity; i++) {
const void **first, *object, **slot, *entry;
unsigned long n_probes, offset, h;
entry = map->entries[(i + seed) & map->mask];
if (entry == CK_HS_EMPTY || entry == CK_HS_TOMBSTONE)
continue;
#ifdef CK_HS_PP
if (hs->mode & CK_HS_MODE_OBJECT)
entry = CK_HS_VMA(entry);
#endif
h = hs->hf(entry, hs->seed);
offset = h & map->mask;
slot = ck_hs_map_probe(hs, map, &n_probes, &first, h, entry, &object,
ck_hs_map_bound_get(map, h), CK_HS_PROBE);
if (first != NULL) {
const void *insert = ck_hs_marshal(hs->mode, entry, h);
ck_pr_store_ptr(first, insert);
ck_hs_map_signal(map, h);
ck_pr_store_ptr(slot, CK_HS_TOMBSTONE);
}
if (cycles == 0) {
if (n_probes > maximum)
maximum = n_probes;
if (n_probes > CK_HS_WORD_MAX)
n_probes = CK_HS_WORD_MAX;
if (bounds != NULL && n_probes > bounds[offset])
bounds[offset] = n_probes;
} else if (--cycles == 0)
break;
}
/*
* The following only apply to garbage collection involving
* a full scan of all entries.
*/
if (maximum != map->probe_maximum)
ck_pr_store_uint(&map->probe_maximum, maximum);
if (bounds != NULL) {
for (i = 0; i < map->capacity; i++)
CK_HS_STORE(&map->probe_bound[i], bounds[i]);
hs->m->free(bounds, size, false);
}
return true;
}
bool
ck_hs_fas(struct ck_hs *hs,
unsigned long h,
const void *key,
void **previous)
{
const void **slot, **first, *object, *insert;
struct ck_hs_map *map = hs->map;
unsigned long n_probes;
*previous = NULL;
slot = ck_hs_map_probe(hs, map, &n_probes, &first, h, key, &object,
ck_hs_map_bound_get(map, h), CK_HS_PROBE);
/* Replacement semantics presume existence. */
if (object == NULL)
return false;
insert = ck_hs_marshal(hs->mode, key, h);
if (first != NULL) {
ck_pr_store_ptr(first, insert);
ck_hs_map_signal(map, h);
ck_pr_store_ptr(slot, CK_HS_TOMBSTONE);
} else {
ck_pr_store_ptr(slot, insert);
}
*previous = CK_CC_DECONST_PTR(object);
return true;
}
/*
* An apply function takes two arguments. The first argument is a pointer to a
* pre-existing object. The second argument is a pointer to the fifth argument
* passed to ck_hs_apply. If a non-NULL pointer is passed to the first argument
* and the return value of the apply function is NULL, then the pre-existing
* value is deleted. If the return pointer is the same as the one passed to the
* apply function then no changes are made to the hash table. If the first
* argument is non-NULL and the return pointer is different than that passed to
* the apply function, then the pre-existing value is replaced. For
* replacement, it is required that the value itself is identical to the
* previous value.
*/
bool
ck_hs_apply(struct ck_hs *hs,
unsigned long h,
const void *key,
ck_hs_apply_fn_t *fn,
void *cl)
{
const void **slot, **first, *object, *delta, *insert;
unsigned long n_probes;
struct ck_hs_map *map;
restart:
map = hs->map;
slot = ck_hs_map_probe(hs, map, &n_probes, &first, h, key, &object, map->probe_limit, CK_HS_PROBE_INSERT);
if (slot == NULL && first == NULL) {
if (ck_hs_grow(hs, map->capacity << 1) == false)
return false;
goto restart;
}
delta = fn(CK_CC_DECONST_PTR(object), cl);
if (delta == NULL) {
/*
* The apply function has requested deletion. If the object doesn't exist,
* then exit early.
*/
if (CK_CC_UNLIKELY(object == NULL))
return true;
/* Otherwise, mark slot as deleted. */
ck_pr_store_ptr(slot, CK_HS_TOMBSTONE);
map->n_entries--;
map->tombstones++;
return true;
}
/* The apply function has not requested hash set modification so exit early. */
if (delta == object)
return true;
/* A modification or insertion has been requested. */
ck_hs_map_bound_set(map, h, n_probes);
insert = ck_hs_marshal(hs->mode, delta, h);
if (first != NULL) {
/*
* This follows the same semantics as ck_hs_set, please refer to that
* function for documentation.
*/
ck_pr_store_ptr(first, insert);
if (object != NULL) {
ck_hs_map_signal(map, h);
ck_pr_store_ptr(slot, CK_HS_TOMBSTONE);
}
} else {
/*
* If we are storing into same slot, then atomic store is sufficient
* for replacement.
*/
ck_pr_store_ptr(slot, insert);
}
if (object == NULL)
ck_hs_map_postinsert(hs, map);
return true;
}
bool
ck_hs_set(struct ck_hs *hs,
unsigned long h,
const void *key,
void **previous)
{
const void **slot, **first, *object, *insert;
unsigned long n_probes;
struct ck_hs_map *map;
*previous = NULL;
restart:
map = hs->map;
slot = ck_hs_map_probe(hs, map, &n_probes, &first, h, key, &object, map->probe_limit, CK_HS_PROBE_INSERT);
if (slot == NULL && first == NULL) {
if (ck_hs_grow(hs, map->capacity << 1) == false)
return false;
goto restart;
}
ck_hs_map_bound_set(map, h, n_probes);
insert = ck_hs_marshal(hs->mode, key, h);
if (first != NULL) {
/* If an earlier bucket was found, then store entry there. */
ck_pr_store_ptr(first, insert);
/*
* If a duplicate key was found, then delete it after
* signaling concurrent probes to restart. Optionally,
* it is possible to install tombstone after grace
* period if we can guarantee earlier position of
* duplicate key.
*/
if (object != NULL) {
ck_hs_map_signal(map, h);
ck_pr_store_ptr(slot, CK_HS_TOMBSTONE);
}
} else {
/*
* If we are storing into same slot, then atomic store is sufficient
* for replacement.
*/
ck_pr_store_ptr(slot, insert);
}
if (object == NULL)
ck_hs_map_postinsert(hs, map);
*previous = CK_CC_DECONST_PTR(object);
return true;
}
CK_CC_INLINE static bool
ck_hs_put_internal(struct ck_hs *hs,
unsigned long h,
const void *key,
enum ck_hs_probe_behavior behavior)
{
const void **slot, **first, *object, *insert;
unsigned long n_probes;
struct ck_hs_map *map;
restart:
map = hs->map;
slot = ck_hs_map_probe(hs, map, &n_probes, &first, h, key, &object,
map->probe_limit, behavior);
if (slot == NULL && first == NULL) {
if (ck_hs_grow(hs, map->capacity << 1) == false)
return false;
goto restart;
}
/* Fail operation if a match was found. */
if (object != NULL)
return false;
ck_hs_map_bound_set(map, h, n_probes);
insert = ck_hs_marshal(hs->mode, key, h);
if (first != NULL) {
/* Insert key into first bucket in probe sequence. */
ck_pr_store_ptr(first, insert);
} else {
/* An empty slot was found. */
ck_pr_store_ptr(slot, insert);
}
ck_hs_map_postinsert(hs, map);
return true;
}
bool
ck_hs_put(struct ck_hs *hs,
unsigned long h,
const void *key)
{
return ck_hs_put_internal(hs, h, key, CK_HS_PROBE_INSERT);
}
bool
ck_hs_put_unique(struct ck_hs *hs,
unsigned long h,
const void *key)
{
return ck_hs_put_internal(hs, h, key, CK_HS_PROBE_TOMBSTONE);
}
void *
ck_hs_get(struct ck_hs *hs,
unsigned long h,
const void *key)
{
const void **first, *object;
struct ck_hs_map *map;
unsigned long n_probes;
unsigned int g, g_p, probe;
unsigned int *generation;
do {
map = ck_pr_load_ptr(&hs->map);
generation = &map->generation[h & CK_HS_G_MASK];
g = ck_pr_load_uint(generation);
probe = ck_hs_map_bound_get(map, h);
ck_pr_fence_load();
ck_hs_map_probe(hs, map, &n_probes, &first, h, key, &object, probe, CK_HS_PROBE);
ck_pr_fence_load();
g_p = ck_pr_load_uint(generation);
} while (g != g_p);
return CK_CC_DECONST_PTR(object);
}
void *
ck_hs_remove(struct ck_hs *hs,
unsigned long h,
const void *key)
{
const void **slot, **first, *object;
struct ck_hs_map *map = hs->map;
unsigned long n_probes;
slot = ck_hs_map_probe(hs, map, &n_probes, &first, h, key, &object,
ck_hs_map_bound_get(map, h), CK_HS_PROBE);
if (object == NULL)
return NULL;
ck_pr_store_ptr(slot, CK_HS_TOMBSTONE);
map->n_entries--;
map->tombstones++;
return CK_CC_DECONST_PTR(object);
}
bool
ck_hs_move(struct ck_hs *hs,
struct ck_hs *source,
ck_hs_hash_cb_t *hf,
ck_hs_compare_cb_t *compare,
struct ck_malloc *m)
{
if (m == NULL || m->malloc == NULL || m->free == NULL || hf == NULL)
return false;
hs->mode = source->mode;
hs->seed = source->seed;
hs->map = source->map;
hs->m = m;
hs->hf = hf;
hs->compare = compare;
return true;
}
bool
ck_hs_init(struct ck_hs *hs,
unsigned int mode,
ck_hs_hash_cb_t *hf,
ck_hs_compare_cb_t *compare,
struct ck_malloc *m,
unsigned long n_entries,
unsigned long seed)
{
if (m == NULL || m->malloc == NULL || m->free == NULL || hf == NULL)
return false;
hs->m = m;
hs->mode = mode;
hs->seed = seed;
hs->hf = hf;
hs->compare = compare;
hs->map = ck_hs_map_create(hs, n_entries);
return hs->map != NULL;
}