Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
/* Copyright (c) 2008-2011 Freescale Semiconductor, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of Freescale Semiconductor nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 *
 * ALTERNATIVELY, this software may be distributed under the terms of the
 * GNU General Public License ("GPL") as published by the Free Software
 * Foundation, either version 2 of that License or (at your option) any
 * later version.
 *
 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

 /**************************************************************************//**
 @File          ncsw_ext.h

 @Description   General NetCommSw Standard Definitions
*//***************************************************************************/

#ifndef __NCSW_EXT_H
#define __NCSW_EXT_H

#include "memcpy_ext.h"


#define WRITE_BLOCK                 IOMemSet32
#define COPY_BLOCK                  Mem2IOCpy32

#define PTR_TO_UINT(_ptr)           ((uintptr_t)(_ptr))
#define UINT_TO_PTR(_val)           ((void*)(uintptr_t)(_val))

#define PTR_MOVE(_ptr, _offset)     (void*)((uint8_t*)(_ptr) + (_offset))


#define WRITE_UINT8_UINT24(arg, data08, data24) WRITE_UINT32(arg,((uint32_t)(data08)<<24)|((uint32_t)(data24)&0x00FFFFFF))
#define WRITE_UINT24_UINT8(arg, data24, data08) WRITE_UINT32(arg,((uint32_t)(data24)<< 8)|((uint32_t)(data08)&0x000000FF))

/* Little-Endian access macros */

#define WRITE_UINT16_LE(arg, data) \
        WRITE_UINT16((arg), SwapUint16(data))

#define WRITE_UINT32_LE(arg, data) \
        WRITE_UINT32((arg), SwapUint32(data))

#define WRITE_UINT64_LE(arg, data) \
        WRITE_UINT64((arg), SwapUint64(data))

#define GET_UINT16_LE(arg) \
        SwapUint16(GET_UINT16(arg))

#define GET_UINT32_LE(arg) \
        SwapUint32(GET_UINT32(arg))

#define GET_UINT64_LE(arg) \
        SwapUint64(GET_UINT64(arg))

/* Write and Read again macros */
#define WRITE_UINT_SYNC(size, arg, data)    \
    do {                                    \
        WRITE_UINT##size((arg), (data));    \
        CORE_MemoryBarrier();               \
    } while (0)

#define WRITE_UINT8_SYNC(arg, data)     WRITE_UINT_SYNC(8, (arg), (data))

#define WRITE_UINT16_SYNC(arg, data)    WRITE_UINT_SYNC(16, (arg), (data))
#define WRITE_UINT32_SYNC(arg, data)    WRITE_UINT_SYNC(32, (arg), (data))

#define MAKE_UINT64(high32, low32)      (((uint64_t)high32 << 32) | (low32))


/*----------------------*/
/* Miscellaneous macros */
/*----------------------*/

#define UNUSED(X) (X=X)

#define KILOBYTE            0x400UL                 /* 1024 */
#define MEGABYTE            (KILOBYTE * KILOBYTE)   /* 1024*1024 */
#define GIGABYTE            (KILOBYTE * MEGABYTE)   /* 1024*1024*1024 */

#undef  NO_IRQ
#define NO_IRQ              (-1)
#define NCSW_MASTER_ID      (0)

/* Macro for checking if a number is a power of 2 */
#define POWER_OF_2(n)   (!((n) & ((n)-1)))

/* Macro for calculating log of base 2 */
#define LOG2(num, log2Num)      \
    do                          \
    {                           \
        uint64_t tmp = (num);   \
        log2Num = 0;            \
        while (tmp > 1)         \
        {                       \
            log2Num++;          \
            tmp >>= 1;          \
        }                       \
    } while (0)

#define NEXT_POWER_OF_2(_num, _nextPow) \
do                                      \
{                                       \
    if (POWER_OF_2(_num))               \
        _nextPow = (_num);              \
    else                                \
    {                                   \
        uint64_t tmp = (_num);          \
        _nextPow = 1;                   \
        while (tmp)                     \
        {                               \
            _nextPow <<= 1;             \
            tmp >>= 1;                  \
        }                               \
    }                                   \
} while (0)

/* Ceiling division - not the fastest way, but safer in terms of overflow */
#define DIV_CEIL(x,y)   (((x)/(y)) + ((((((x)/(y)))*(y)) == (x)) ? 0 : 1))

/* Round up a number to be a multiple of a second number */
#define ROUND_UP(x,y)   ((((x) + (y) - 1) / (y)) * (y))

/* Timing macro for converting usec units to number of ticks.   */
/* (number of usec *  clock_Hz) / 1,000,000) - since            */
/* clk is in MHz units, no division needed.                     */
#define USEC_TO_CLK(usec,clk)       ((usec) * (clk))
#define CYCLES_TO_USEC(cycles,clk)  ((cycles) / (clk))

/* Timing macros for converting between nsec units and number of clocks. */
#define NSEC_TO_CLK(nsec,clk)       DIV_CEIL(((nsec) * (clk)), 1000)
#define CYCLES_TO_NSEC(cycles,clk)  (((cycles) * 1000) / (clk))

/* Timing macros for converting between psec units and number of clocks. */
#define PSEC_TO_CLK(psec,clk)       DIV_CEIL(((psec) * (clk)), 1000000)
#define CYCLES_TO_PSEC(cycles,clk)  (((cycles) * 1000000) / (clk))

/* Min, Max macros */
#define NCSW_MIN(a,b)    ((a) < (b) ? (a) : (b))
#define NCSW_MAX(a,b)    ((a) > (b) ? (a) : (b))
#define IN_RANGE(min,val,max) ((min)<=(val) && (val)<=(max))

#define ABS(a)  ((a<0)?(a*-1):a)

#if !(defined(ARRAY_SIZE))
#define ARRAY_SIZE(arr)   (sizeof(arr) / sizeof((arr)[0]))
#endif /* !defined(ARRAY_SIZE) */


/* possible alignments */
#define HALF_WORD_ALIGNMENT     2
#define WORD_ALIGNMENT          4
#define DOUBLE_WORD_ALIGNMENT   8
#define BURST_ALIGNMENT         32

#define HALF_WORD_ALIGNED       0x00000001
#define WORD_ALIGNED            0x00000003
#define DOUBLE_WORD_ALIGNED     0x00000007
#define BURST_ALIGNED           0x0000001f
#ifndef IS_ALIGNED
#define IS_ALIGNED(n,align)     (!((uint32_t)(n) & (align - 1)))
#endif /* IS_ALIGNED */


#define LAST_BUF        1
#define FIRST_BUF       2
#define SINGLE_BUF      (LAST_BUF | FIRST_BUF)
#define MIDDLE_BUF      4

#define ARRAY_END       -1

#define ILLEGAL_BASE    (~0)

#define BUF_POSITION(first, last)   state[(!!(last))<<1 | !!(first)]
#define DECLARE_POSITION static uint8_t state[4] = { (uint8_t)MIDDLE_BUF, (uint8_t)FIRST_BUF, (uint8_t)LAST_BUF, (uint8_t)SINGLE_BUF };


/**************************************************************************//**
 @Description   Timers operation mode
*//***************************************************************************/
typedef enum e_TimerMode
{
    e_TIMER_MODE_INVALID = 0,
    e_TIMER_MODE_FREE_RUN,    /**< Free run - counter continues to increase
                                   after reaching the reference value. */
    e_TIMER_MODE_PERIODIC,    /**< Periodic - counter restarts counting from 0
                                   after reaching the reference value. */
    e_TIMER_MODE_SINGLE       /**< Single (one-shot) - counter stops counting
                                   after reaching the reference value. */
} e_TimerMode;


/**************************************************************************//**
 @Description   Enumeration (bit flags) of communication modes (Transmit,
                receive or both).
*//***************************************************************************/
typedef enum e_CommMode
{
    e_COMM_MODE_NONE        = 0,    /**< No transmit/receive communication */
    e_COMM_MODE_RX          = 1,    /**< Only receive communication */
    e_COMM_MODE_TX          = 2,    /**< Only transmit communication */
    e_COMM_MODE_RX_AND_TX   = 3     /**< Both transmit and receive communication */
} e_CommMode;

/**************************************************************************//**
 @Description   General Diagnostic Mode
*//***************************************************************************/
typedef enum e_DiagMode
{
    e_DIAG_MODE_NONE = 0,       /**< Normal operation; no diagnostic mode */
    e_DIAG_MODE_CTRL_LOOPBACK,  /**< Loopback in the controller */
    e_DIAG_MODE_CHIP_LOOPBACK,  /**< Loopback in the chip but not in the
                                     controller; e.g. IO-pins, SerDes, etc. */
    e_DIAG_MODE_PHY_LOOPBACK,   /**< Loopback in the external PHY */
    e_DIAG_MODE_EXT_LOOPBACK,   /**< Loopback in the external line (beyond the PHY) */
    e_DIAG_MODE_CTRL_ECHO,      /**< Echo incoming data by the controller */
    e_DIAG_MODE_PHY_ECHO        /**< Echo incoming data by the PHY */
} e_DiagMode;

/**************************************************************************//**
 @Description   Possible RxStore callback responses.
*//***************************************************************************/
typedef enum e_RxStoreResponse
{
      e_RX_STORE_RESPONSE_PAUSE     /**< Pause invoking callback with received data;
                                         in polling mode, start again invoking callback
                                         only next time user invokes the receive routine;
                                         in interrupt mode, start again invoking callback
                                         only next time a receive event triggers an interrupt;
                                         in all cases, received data that are pending are not
                                         lost, rather, their processing is temporarily deferred;
                                         in all cases, received data are processed in the order
                                         in which they were received. */
    , e_RX_STORE_RESPONSE_CONTINUE  /**< Continue invoking callback with received data. */
} e_RxStoreResponse;


/**************************************************************************//**
 @Description   General Handle
*//***************************************************************************/
typedef void *      t_Handle;   /**< handle, used as object's descriptor */

/**************************************************************************//**
 @Description   MUTEX type
*//***************************************************************************/
typedef uint32_t    t_Mutex;

/**************************************************************************//**
 @Description   Error Code.

                The high word of the error code is the code of the software
                module (driver). The low word is the error type (e_ErrorType).
                To get the values from the error code, use GET_ERROR_TYPE()
                and GET_ERROR_MODULE().
*//***************************************************************************/
typedef uint32_t    t_Error;

/**************************************************************************//**
 @Description   General prototype of interrupt service routine (ISR).

 @Param[in]     handle - Optional handle of the module handling the interrupt.

 @Return        None
 *//***************************************************************************/
typedef void (t_Isr)(t_Handle handle);

/**************************************************************************//**
 @Anchor        mem_attr

 @Collection    Memory Attributes

                Various attributes of memory partitions. These values may be
                or'ed together to create a mask of all memory attributes.
 @{
*//***************************************************************************/
#define MEMORY_ATTR_CACHEABLE           0x00000001
                                        /**< Memory is cacheable */
#define MEMORY_ATTR_QE_2ND_BUS_ACCESS   0x00000002
                                        /**< Memory can be accessed by QUICC Engine
                                             through its secondary bus interface */

/* @} */


/**************************************************************************//**
 @Function      t_GetBufFunction

 @Description   User callback function called by driver to get data buffer.

                User provides this function. Driver invokes it.

 @Param[in]     h_BufferPool        - A handle to buffer pool manager
 @Param[out]    p_BufContextHandle  - Returns the user's private context that
                                      should be associated with the buffer

 @Return        Pointer to data buffer, NULL if error
 *//***************************************************************************/
typedef uint8_t * (t_GetBufFunction)(t_Handle   h_BufferPool,
                                     t_Handle   *p_BufContextHandle);

/**************************************************************************//**
 @Function      t_PutBufFunction

 @Description   User callback function called by driver to return data buffer.

                User provides this function. Driver invokes it.

 @Param[in]     h_BufferPool    - A handle to buffer pool manager
 @Param[in]     p_Buffer        - A pointer to buffer to return
 @Param[in]     h_BufContext    - The user's private context associated with
                                  the returned buffer

 @Return        E_OK on success; Error code otherwise
 *//***************************************************************************/
typedef t_Error (t_PutBufFunction)(t_Handle h_BufferPool,
                                   uint8_t  *p_Buffer,
                                   t_Handle h_BufContext);

/**************************************************************************//**
 @Function      t_PhysToVirt

 @Description   Translates a physical address to the matching virtual address.

 @Param[in]     addr - The physical address to translate.

 @Return        Virtual address.
*//***************************************************************************/
typedef void * t_PhysToVirt(physAddress_t addr);

/**************************************************************************//**
 @Function      t_VirtToPhys

 @Description   Translates a virtual address to the matching physical address.

 @Param[in]     addr - The virtual address to translate.

 @Return        Physical address.
*//***************************************************************************/
typedef physAddress_t t_VirtToPhys(void *addr);

/**************************************************************************//**
 @Description   Buffer Pool Information Structure.
*//***************************************************************************/
typedef struct t_BufferPoolInfo
{
    t_Handle            h_BufferPool;   /**< A handle to the buffer pool manager */
    t_GetBufFunction    *f_GetBuf;      /**< User callback to get a free buffer */
    t_PutBufFunction    *f_PutBuf;      /**< User callback to return a buffer */
    uint16_t            bufferSize;     /**< Buffer size (in bytes) */

    t_PhysToVirt        *f_PhysToVirt;  /**< User callback to translate pool buffers
                                             physical addresses to virtual addresses  */
    t_VirtToPhys        *f_VirtToPhys;  /**< User callback to translate pool buffers
                                             virtual addresses to physical addresses */
} t_BufferPoolInfo;


/**************************************************************************//**
 @Description   User callback function called by driver when transmit completed.

                User provides this function. Driver invokes it.

 @Param[in]     h_App           - Application's handle, as was provided to the
                                  driver by the user
 @Param[in]     queueId         - Transmit queue ID
 @Param[in]     p_Data          - Pointer to the data buffer
 @Param[in]     h_BufContext    - The user's private context associated with
                                  the given data buffer
 @Param[in]     status          - Transmit status and errors
 @Param[in]     flags           - Driver-dependent information
 *//***************************************************************************/
typedef void (t_TxConfFunction)(t_Handle    h_App,
                                uint32_t    queueId,
                                uint8_t     *p_Data,
                                t_Handle    h_BufContext,
                                uint16_t    status,
                                uint32_t    flags);

/**************************************************************************//**
 @Description   User callback function called by driver with receive data.

                User provides this function. Driver invokes it.

 @Param[in]     h_App           - Application's handle, as was provided to the
                                  driver by the user
 @Param[in]     queueId         - Receive queue ID
 @Param[in]     p_Data          - Pointer to the buffer with received data
 @Param[in]     h_BufContext    - The user's private context associated with
                                  the given data buffer
 @Param[in]     length          - Length of received data
 @Param[in]     status          - Receive status and errors
 @Param[in]     position        - Position of buffer in frame
 @Param[in]     flags           - Driver-dependent information

 @Retval        e_RX_STORE_RESPONSE_CONTINUE - order the driver to continue Rx
                                               operation for all ready data.
 @Retval        e_RX_STORE_RESPONSE_PAUSE    - order the driver to stop Rx operation.
 *//***************************************************************************/
typedef e_RxStoreResponse (t_RxStoreFunction)(t_Handle  h_App,
                                              uint32_t  queueId,
                                              uint8_t   *p_Data,
                                              t_Handle  h_BufContext,
                                              uint32_t  length,
                                              uint16_t  status,
                                              uint8_t   position,
                                              uint32_t  flags);


#endif /* __NCSW_EXT_H */