Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

/*-
 * Copyright (c) 2003 Izumi Tsutsui.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *	$NetBSD: mc146818.c,v 1.16 2008/05/14 13:29:28 tsutsui Exp $
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

/*
 * mc146818 and compatible time of day chip subroutines
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/clock.h>
#include <sys/lock.h>
#include <sys/mutex.h>

#include <machine/bus.h>

#include <dev/mc146818/mc146818reg.h>
#include <dev/mc146818/mc146818var.h>

#include "clock_if.h"

static u_int	mc146818_def_getcent(device_t);
static void	mc146818_def_setcent(device_t, u_int);

int
mc146818_attach(device_t dev)
{
	struct mc146818_softc *sc;

	sc = device_get_softc(dev);

	if (mtx_initialized(&sc->sc_mtx) == 0) {
		device_printf(dev, "%s: mutex not initialized\n", __func__);
		return (ENXIO);
	}

	if (sc->sc_mcread == NULL)
		sc->sc_mcread = mc146818_def_read;
	if (sc->sc_mcwrite == NULL)
		sc->sc_mcwrite = mc146818_def_write;

	if (sc->sc_flag & MC146818_NO_CENT_ADJUST) {
		/*
		 * Note that setting MC146818_NO_CENT_ADJUST means that
		 * the century has to be stored in NVRAM somewhere.
		 */
		if (sc->sc_getcent == NULL)
			sc->sc_getcent = mc146818_def_getcent;
		if (sc->sc_setcent == NULL)
			sc->sc_setcent = mc146818_def_setcent;
	}

	mtx_lock_spin(&sc->sc_mtx);
	if (((*sc->sc_mcread)(dev, MC_REGD) & MC_REGD_VRT) == 0) {
		mtx_unlock_spin(&sc->sc_mtx);
		device_printf(dev, "%s: battery low\n", __func__);
		return (ENXIO);
	}

	sc->sc_rega = MC_BASE_32_KHz;
	(*sc->sc_mcwrite)(dev, MC_REGA, sc->sc_rega);

	sc->sc_regb = 0;
	sc->sc_regb |= (sc->sc_flag & MC146818_BCD) ? 0 : MC_REGB_BINARY;
	sc->sc_regb |= (sc->sc_flag & MC146818_12HR) ? 0 : MC_REGB_24HR;
	(*sc->sc_mcwrite)(dev, MC_REGB, sc->sc_regb);
	mtx_unlock_spin(&sc->sc_mtx);

	clock_register(dev, 1000000);	/* 1 second resolution */

	return (0);
}

/*
 * Get time of day and convert it to a struct timespec.
 * Return 0 on success, an error number otherwise.
 */
int
mc146818_gettime(device_t dev, struct timespec *ts)
{
	struct mc146818_softc *sc;
	struct clocktime ct;
	int timeout, cent, year;

	sc = device_get_softc(dev);

	timeout = 1000000;	/* XXX how long should we wait? */

	/*
	 * If MC_REGA_UIP is 0 we have at least 244us before the next
	 * update.  If it's 1 an update is imminent.
	 */
	for (;;) {
		mtx_lock_spin(&sc->sc_mtx);
		if (((*sc->sc_mcread)(dev, MC_REGA) & MC_REGA_UIP) == 0)
			break;
		mtx_unlock_spin(&sc->sc_mtx);
		if (--timeout < 0) {
			device_printf(dev, "%s: timeout\n", __func__);
			return (EBUSY);
		}
	}

#define	FROMREG(x)	((sc->sc_flag & MC146818_BCD) ? FROMBCD(x) : (x))

	ct.nsec = 0;
	ct.sec = FROMREG((*sc->sc_mcread)(dev, MC_SEC));
	ct.min = FROMREG((*sc->sc_mcread)(dev, MC_MIN));
	ct.hour = FROMREG((*sc->sc_mcread)(dev, MC_HOUR));
	/* Map dow from 1 - 7 to 0 - 6. */
	ct.dow = FROMREG((*sc->sc_mcread)(dev, MC_DOW)) - 1;
	ct.day = FROMREG((*sc->sc_mcread)(dev, MC_DOM));
	ct.mon = FROMREG((*sc->sc_mcread)(dev, MC_MONTH));
	year = FROMREG((*sc->sc_mcread)(dev, MC_YEAR));
	year += sc->sc_year0;
	if (sc->sc_flag & MC146818_NO_CENT_ADJUST) {
		cent = (*sc->sc_getcent)(dev);
		year += cent * 100;
	} else if (year < POSIX_BASE_YEAR)
		year += 100;
	mtx_unlock_spin(&sc->sc_mtx);

	ct.year = year;

	return (clock_ct_to_ts(&ct, ts));
}

#ifdef notyet
int
mc146818_getsecs(device_t dev, int *secp)
{
	struct mc146818_softc *sc;
	int sec, timeout;

	sc = device_get_softc(dev);

	timeout = 1000000;	/* XXX how long should we wait? */

	for (;;) {
		mtx_lock_spin(&sc->sc_mtx);
		if (((*sc->sc_mcread)(dev, MC_REGA) & MC_REGA_UIP) == 0) {
			sec = FROMREG((*sc->sc_mcread)(dev, MC_SEC));
			mtx_unlock_spin(&sc->sc_mtx);
			break;
		}
		mtx_unlock_spin(&sc->sc_mtx);
		if (--timeout == 0) {
			device_printf(dev, "%s: timeout\n", __func__);
			return (EBUSY);
		}
	}

#undef FROMREG

	*secp = sec;
	return (0);
}
#endif

/*
 * Set the time of day clock based on the value of the struct timespec arg.
 * Return 0 on success, an error number otherwise.
 */
int
mc146818_settime(device_t dev, struct timespec *ts)
{
	struct mc146818_softc *sc;
	struct clocktime ct;
	int cent, year;

	sc = device_get_softc(dev);

	/* Accuracy is only one second. */
	if (ts->tv_nsec >= 500000000)
		ts->tv_sec++;
	ts->tv_nsec = 0;
	clock_ts_to_ct(ts, &ct);

	mtx_lock_spin(&sc->sc_mtx);
	/* Disable RTC updates and interrupts (if enabled). */
	(*sc->sc_mcwrite)(dev, MC_REGB,
	    ((sc->sc_regb & (MC_REGB_BINARY | MC_REGB_24HR)) | MC_REGB_SET));

#define	TOREG(x)	((sc->sc_flag & MC146818_BCD) ? TOBCD(x) : (x))

	(*sc->sc_mcwrite)(dev, MC_SEC, TOREG(ct.sec));
	(*sc->sc_mcwrite)(dev, MC_MIN, TOREG(ct.min));
	(*sc->sc_mcwrite)(dev, MC_HOUR, TOREG(ct.hour));
	/* Map dow from 0 - 6 to 1 - 7. */
	(*sc->sc_mcwrite)(dev, MC_DOW, TOREG(ct.dow + 1));
	(*sc->sc_mcwrite)(dev, MC_DOM, TOREG(ct.day));
	(*sc->sc_mcwrite)(dev, MC_MONTH, TOREG(ct.mon));

	year = ct.year - sc->sc_year0;
	if (sc->sc_flag & MC146818_NO_CENT_ADJUST) {
		cent = year / 100;
		(*sc->sc_setcent)(dev, cent);
		year -= cent * 100;
	} else if (year > 99)
		year -= 100;
	(*sc->sc_mcwrite)(dev, MC_YEAR, TOREG(year));

	/* Reenable RTC updates and interrupts. */
	(*sc->sc_mcwrite)(dev, MC_REGB, sc->sc_regb);
	mtx_unlock_spin(&sc->sc_mtx);

#undef TOREG

	return (0);
}

#define	MC_ADDR	0
#define	MC_DATA	1

u_int
mc146818_def_read(device_t dev, u_int reg)
{
	struct mc146818_softc *sc;

	sc = device_get_softc(dev);
	bus_space_write_1(sc->sc_bst, sc->sc_bsh, MC_ADDR, reg);
	return (bus_space_read_1(sc->sc_bst, sc->sc_bsh, MC_DATA));
}

void
mc146818_def_write(device_t dev, u_int reg, u_int val)
{
	struct mc146818_softc *sc;

	sc = device_get_softc(dev);
	bus_space_write_1(sc->sc_bst, sc->sc_bsh, MC_ADDR, reg);
	bus_space_write_1(sc->sc_bst, sc->sc_bsh, MC_DATA, val);
}

#undef MC_ADDR
#undef MC_DATA

/*
 * Looks like it's common even across platforms to store the century at
 * 0x32 in the NVRAM of the mc146818.
 */
#define	MC_CENT	0x32

static u_int
mc146818_def_getcent(device_t dev)
{
	struct mc146818_softc *sc;

	sc = device_get_softc(dev);
	return ((*sc->sc_mcread)(dev, MC_CENT));
}

static void
mc146818_def_setcent(device_t dev, u_int cent)
{
	struct mc146818_softc *sc;

	sc = device_get_softc(dev);
	(*sc->sc_mcwrite)(dev, MC_CENT, cent);
}

#undef MC_CENT