Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
/*-
 * Copyright (c) 2003 Marcel Moolenaar
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/cons.h>
#include <sys/fcntl.h>
#include <sys/interrupt.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/reboot.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <machine/stdarg.h>

#include <dev/uart/uart.h>
#include <dev/uart/uart_bus.h>
#include <dev/uart/uart_cpu.h>
#include <dev/uart/uart_ppstypes.h>

#include "uart_if.h"

devclass_t uart_devclass;
const char uart_driver_name[] = "uart";

SLIST_HEAD(uart_devinfo_list, uart_devinfo) uart_sysdevs =
    SLIST_HEAD_INITIALIZER(uart_sysdevs);

static MALLOC_DEFINE(M_UART, "UART", "UART driver");

#ifndef	UART_POLL_FREQ
#define	UART_POLL_FREQ		50
#endif
static int uart_poll_freq = UART_POLL_FREQ;
SYSCTL_INT(_debug, OID_AUTO, uart_poll_freq, CTLFLAG_RDTUN, &uart_poll_freq,
    0, "UART poll frequency");

static int uart_force_poll;
SYSCTL_INT(_debug, OID_AUTO, uart_force_poll, CTLFLAG_RDTUN, &uart_force_poll,
    0, "Force UART polling");

static inline int
uart_pps_mode_valid(int pps_mode)
{
	int opt;

	switch(pps_mode & UART_PPS_SIGNAL_MASK) {
	case UART_PPS_DISABLED:
	case UART_PPS_CTS:
	case UART_PPS_DCD:
		break;
	default:
		return (false);
	}

	opt = pps_mode & UART_PPS_OPTION_MASK;
	if ((opt & ~(UART_PPS_INVERT_PULSE | UART_PPS_NARROW_PULSE)) != 0)
		return (false);

	return (true);
}

static void
uart_pps_print_mode(struct uart_softc *sc)
{

	device_printf(sc->sc_dev, "PPS capture mode: ");
	switch(sc->sc_pps_mode) {
	case UART_PPS_DISABLED:
		printf("disabled");
	case UART_PPS_CTS:
		printf("CTS");
	case UART_PPS_DCD:
		printf("DCD");
	default:
		printf("invalid");
	}
	if (sc->sc_pps_mode & UART_PPS_INVERT_PULSE)
		printf("-Inverted");
	if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE)
		printf("-NarrowPulse");
	printf("\n");
}

static int
uart_pps_mode_sysctl(SYSCTL_HANDLER_ARGS)
{
	struct uart_softc *sc;
	int err, tmp;

	sc = arg1;
	tmp = sc->sc_pps_mode;
	err = sysctl_handle_int(oidp, &tmp, 0, req);
	if (err != 0 || req->newptr == NULL)
		return (err);
	if (!uart_pps_mode_valid(tmp))
		return (EINVAL);
	sc->sc_pps_mode = tmp;
	return(0);
}

static void
uart_pps_process(struct uart_softc *sc, int ser_sig)
{
	sbintime_t now;
	int is_assert, pps_sig;

	/* Which signal is configured as PPS?  Early out if none. */
	switch(sc->sc_pps_mode & UART_PPS_SIGNAL_MASK) {
	case UART_PPS_CTS:
		pps_sig = SER_CTS;
		break;
	case UART_PPS_DCD:
		pps_sig = SER_DCD;
		break;
	default:
		return;
	}

	/* Early out if there is no change in the signal configured as PPS. */
	if ((ser_sig & SER_DELTA(pps_sig)) == 0)
		return;

	/*
	 * In narrow-pulse mode we need to synthesize both capture and clear
	 * events from a single "delta occurred" indication from the uart
	 * hardware because the pulse width is too narrow to reliably detect
	 * both edges.  However, when the pulse width is close to our interrupt
	 * processing latency we might intermittantly catch both edges.  To
	 * guard against generating spurious events when that happens, we use a
	 * separate timer to ensure at least half a second elapses before we
	 * generate another event.
	 */
	pps_capture(&sc->sc_pps);
	if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
		now = getsbinuptime();
		if (now > sc->sc_pps_captime + 500 * SBT_1MS) {
			sc->sc_pps_captime = now;
			pps_event(&sc->sc_pps, PPS_CAPTUREASSERT);
			pps_event(&sc->sc_pps, PPS_CAPTURECLEAR);
		}
	} else  {
		is_assert = ser_sig & pps_sig;
		if (sc->sc_pps_mode & UART_PPS_INVERT_PULSE)
			is_assert = !is_assert;
		pps_event(&sc->sc_pps, is_assert ? PPS_CAPTUREASSERT :
		    PPS_CAPTURECLEAR);
	}
}

static void
uart_pps_init(struct uart_softc *sc)
{
	struct sysctl_ctx_list *ctx;
	struct sysctl_oid *tree;

	ctx = device_get_sysctl_ctx(sc->sc_dev);
	tree = device_get_sysctl_tree(sc->sc_dev);

	/*
	 * The historical default for pps capture mode is either DCD or CTS,
	 * depending on the UART_PPS_ON_CTS kernel option.  Start with that,
	 * then try to fetch the tunable that overrides the mode for all uart
	 * devices, then try to fetch the sysctl-tunable that overrides the mode
	 * for one specific device.
	 */
#ifdef UART_PPS_ON_CTS
	sc->sc_pps_mode = UART_PPS_CTS;
#else
	sc->sc_pps_mode = UART_PPS_DCD;
#endif
	TUNABLE_INT_FETCH("hw.uart.pps_mode", &sc->sc_pps_mode);
	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "pps_mode",
	    CTLTYPE_INT | CTLFLAG_RWTUN, sc, 0, uart_pps_mode_sysctl, "I",
	    "pulse mode: 0/1/2=disabled/CTS/DCD; "
	    "add 0x10 to invert, 0x20 for narrow pulse");

	if (!uart_pps_mode_valid(sc->sc_pps_mode)) {
		device_printf(sc->sc_dev, 
		    "Invalid pps_mode 0x%02x configured; disabling PPS capture\n",
		    sc->sc_pps_mode);
		sc->sc_pps_mode = UART_PPS_DISABLED;
	} else if (bootverbose) {
		uart_pps_print_mode(sc);
	}

	sc->sc_pps.ppscap = PPS_CAPTUREBOTH;
	sc->sc_pps.driver_mtx = uart_tty_getlock(sc);
	sc->sc_pps.driver_abi = PPS_ABI_VERSION;
	pps_init_abi(&sc->sc_pps);
}

void
uart_add_sysdev(struct uart_devinfo *di)
{
	SLIST_INSERT_HEAD(&uart_sysdevs, di, next);
}

const char *
uart_getname(struct uart_class *uc)
{
	return ((uc != NULL) ? uc->name : NULL);
}

struct uart_ops *
uart_getops(struct uart_class *uc)
{
	return ((uc != NULL) ? uc->uc_ops : NULL);
}

int
uart_getrange(struct uart_class *uc)
{
	return ((uc != NULL) ? uc->uc_range : 0);
}

u_int
uart_getregshift(struct uart_class *uc)
{
	return ((uc != NULL) ? uc->uc_rshift : 0);
}

/*
 * Schedule a soft interrupt. We do this on the 0 to !0 transition
 * of the TTY pending interrupt status.
 */
void
uart_sched_softih(struct uart_softc *sc, uint32_t ipend)
{
	uint32_t new, old;

	do {
		old = sc->sc_ttypend;
		new = old | ipend;
	} while (!atomic_cmpset_32(&sc->sc_ttypend, old, new));

	if ((old & SER_INT_MASK) == 0)
		swi_sched(sc->sc_softih, 0);
}

/*
 * A break condition has been detected. We treat the break condition as
 * a special case that should not happen during normal operation. When
 * the break condition is to be passed to higher levels in the form of
 * a NUL character, we really want the break to be in the right place in
 * the input stream. The overhead to achieve that is not in relation to
 * the exceptional nature of the break condition, so we permit ourselves
 * to be sloppy.
 */
static __inline int
uart_intr_break(void *arg)
{
	struct uart_softc *sc = arg;

#if defined(KDB)
	if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) {
		if (kdb_break())
			return (0);
	}
#endif
	if (sc->sc_opened)
		uart_sched_softih(sc, SER_INT_BREAK);
	return (0);
}

/*
 * Handle a receiver overrun situation. We lost at least 1 byte in the
 * input stream and it's our job to contain the situation. We grab as
 * much of the data we can, but otherwise flush the receiver FIFO to
 * create some breathing room. The net effect is that we avoid the
 * overrun condition to happen for the next X characters, where X is
 * related to the FIFO size at the cost of losing data right away.
 * So, instead of having multiple overrun interrupts in close proximity
 * to each other and possibly pessimizing UART interrupt latency for
 * other UARTs in a multiport configuration, we create a longer segment
 * of missing characters by freeing up the FIFO.
 * Each overrun condition is marked in the input buffer by a token. The
 * token represents the loss of at least one, but possible more bytes in
 * the input stream.
 */
static __inline int
uart_intr_overrun(void *arg)
{
	struct uart_softc *sc = arg;

	if (sc->sc_opened) {
		UART_RECEIVE(sc);
		if (uart_rx_put(sc, UART_STAT_OVERRUN))
			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
		uart_sched_softih(sc, SER_INT_RXREADY);
	}
	UART_FLUSH(sc, UART_FLUSH_RECEIVER);
	return (0);
}

/*
 * Received data ready.
 */
static __inline int
uart_intr_rxready(void *arg)
{
	struct uart_softc *sc = arg;
	int rxp;

	rxp = sc->sc_rxput;
	UART_RECEIVE(sc);
#if defined(KDB)
	if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) {
		while (rxp != sc->sc_rxput) {
			kdb_alt_break(sc->sc_rxbuf[rxp++], &sc->sc_altbrk);
			if (rxp == sc->sc_rxbufsz)
				rxp = 0;
		}
	}
#endif
	if (sc->sc_opened)
		uart_sched_softih(sc, SER_INT_RXREADY);
	else
		sc->sc_rxput = sc->sc_rxget;	/* Ignore received data. */
	return (1);
}

/*
 * Line or modem status change (OOB signalling).
 * We pass the signals to the software interrupt handler for further
 * processing. Note that we merge the delta bits, but set the state
 * bits. This is to avoid losing state transitions due to having more
 * than 1 hardware interrupt between software interrupts.
 */
static __inline int
uart_intr_sigchg(void *arg)
{
	struct uart_softc *sc = arg;
	int new, old, sig;

	sig = UART_GETSIG(sc);

	/*
	 * Time pulse counting support, invoked whenever the PPS parameters are
	 * currently set to capture either edge of the signal.
	 */
	if (sc->sc_pps.ppsparam.mode & PPS_CAPTUREBOTH) {
		uart_pps_process(sc, sig);
	}

	/*
	 * Keep track of signal changes, even when the device is not
	 * opened. This allows us to inform upper layers about a
	 * possible loss of DCD and thus the existence of a (possibly)
	 * different connection when we have DCD back, during the time
	 * that the device was closed.
	 */
	do {
		old = sc->sc_ttypend;
		new = old & ~SER_MASK_STATE;
		new |= sig & SER_INT_SIGMASK;
	} while (!atomic_cmpset_32(&sc->sc_ttypend, old, new));

	if (sc->sc_opened)
		uart_sched_softih(sc, SER_INT_SIGCHG);
	return (1);
}

/*
 * The transmitter can accept more data.
 */
static __inline int
uart_intr_txidle(void *arg)
{
	struct uart_softc *sc = arg;

	if (sc->sc_txbusy) {
		sc->sc_txbusy = 0;
		uart_sched_softih(sc, SER_INT_TXIDLE);
	}
	return (0);
}

static int
uart_intr(void *arg)
{
	struct uart_softc *sc = arg;
	int cnt, ipend, testintr;

	if (sc->sc_leaving)
		return (FILTER_STRAY);

	cnt = 0;
	testintr = sc->sc_testintr;
	while ((!testintr || cnt < 20) && (ipend = UART_IPEND(sc)) != 0) {
		cnt++;
		if (ipend & SER_INT_OVERRUN)
			uart_intr_overrun(sc);
		if (ipend & SER_INT_BREAK)
			uart_intr_break(sc);
		if (ipend & SER_INT_RXREADY)
			uart_intr_rxready(sc);
		if (ipend & SER_INT_SIGCHG)
			uart_intr_sigchg(sc);
		if (ipend & SER_INT_TXIDLE)
			uart_intr_txidle(sc);
	}

	if (sc->sc_polled) {
		callout_reset(&sc->sc_timer, hz / uart_poll_freq,
		    (timeout_t *)uart_intr, sc);
	}

	return ((cnt == 0) ? FILTER_STRAY :
	    ((testintr && cnt == 20) ? FILTER_SCHEDULE_THREAD :
	    FILTER_HANDLED));
}

serdev_intr_t *
uart_bus_ihand(device_t dev, int ipend)
{

	switch (ipend) {
	case SER_INT_BREAK:
		return (uart_intr_break);
	case SER_INT_OVERRUN:
		return (uart_intr_overrun);
	case SER_INT_RXREADY:
		return (uart_intr_rxready);
	case SER_INT_SIGCHG:
		return (uart_intr_sigchg);
	case SER_INT_TXIDLE:
		return (uart_intr_txidle);
	}
	return (NULL);
}

int
uart_bus_ipend(device_t dev)
{
	struct uart_softc *sc;

	sc = device_get_softc(dev);
	return (UART_IPEND(sc));
}

int
uart_bus_sysdev(device_t dev)
{
	struct uart_softc *sc;

	sc = device_get_softc(dev);
	return ((sc->sc_sysdev != NULL) ? 1 : 0);
}

int
uart_bus_probe(device_t dev, int regshft, int rclk, int rid, int chan)
{
	struct uart_softc *sc;
	struct uart_devinfo *sysdev;
	int error;

	sc = device_get_softc(dev);

	/*
	 * All uart_class references are weak. Check that the needed
	 * class has been compiled-in. Fail if not.
	 */
	if (sc->sc_class == NULL)
		return (ENXIO);

	/*
	 * Initialize the instance. Note that the instance (=softc) does
	 * not necessarily match the hardware specific softc. We can't do
	 * anything about it now, because we may not attach to the device.
	 * Hardware drivers cannot use any of the class specific fields
	 * while probing.
	 */
	kobj_init((kobj_t)sc, (kobj_class_t)sc->sc_class);
	sc->sc_dev = dev;
	if (device_get_desc(dev) == NULL)
		device_set_desc(dev, uart_getname(sc->sc_class));

	/*
	 * Allocate the register resource. We assume that all UARTs have
	 * a single register window in either I/O port space or memory
	 * mapped I/O space. Any UART that needs multiple windows will
	 * consequently not be supported by this driver as-is. We try I/O
	 * port space first because that's the common case.
	 */
	sc->sc_rrid = rid;
	sc->sc_rtype = SYS_RES_IOPORT;
	sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype, &sc->sc_rrid,
	    RF_ACTIVE);
	if (sc->sc_rres == NULL) {
		sc->sc_rrid = rid;
		sc->sc_rtype = SYS_RES_MEMORY;
		sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype,
		    &sc->sc_rrid, RF_ACTIVE);
		if (sc->sc_rres == NULL)
			return (ENXIO);
	}

	/*
	 * Fill in the bus access structure and compare this device with
	 * a possible console device and/or a debug port. We set the flags
	 * in the softc so that the hardware dependent probe can adjust
	 * accordingly. In general, you don't want to permanently disrupt
	 * console I/O.
	 */
	sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres);
	sc->sc_bas.bst = rman_get_bustag(sc->sc_rres);
	sc->sc_bas.chan = chan;
	sc->sc_bas.regshft = regshft;
	sc->sc_bas.rclk = (rclk == 0) ? sc->sc_class->uc_rclk : rclk;

	SLIST_FOREACH(sysdev, &uart_sysdevs, next) {
		if (chan == sysdev->bas.chan &&
		    uart_cpu_eqres(&sc->sc_bas, &sysdev->bas)) {
			/* XXX check if ops matches class. */
			sc->sc_sysdev = sysdev;
			sysdev->bas.rclk = sc->sc_bas.rclk;
		}
	}

	error = UART_PROBE(sc);
	bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
	return ((error) ? error : BUS_PROBE_DEFAULT);
}

int
uart_bus_attach(device_t dev)
{
	struct uart_softc *sc, *sc0;
	const char *sep;
	int error, filt;

	/*
	 * The sc_class field defines the type of UART we're going to work
	 * with and thus the size of the softc. Replace the generic softc
	 * with one that matches the UART now that we're certain we handle
	 * the device.
	 */
	sc0 = device_get_softc(dev);
	if (sc0->sc_class->size > sizeof(*sc)) {
		sc = malloc(sc0->sc_class->size, M_UART, M_WAITOK|M_ZERO);
		bcopy(sc0, sc, sizeof(*sc));
		device_set_softc(dev, sc);
	} else
		sc = sc0;

	/*
	 * Now that we know the softc for this device, connect the back
	 * pointer from the sysdev for this device, if any
	 */
	if (sc->sc_sysdev != NULL)
		sc->sc_sysdev->sc = sc;

	/*
	 * Protect ourselves against interrupts while we're not completely
	 * finished attaching and initializing. We don't expect interrupts
	 * until after UART_ATTACH(), though.
	 */
	sc->sc_leaving = 1;

	mtx_init(&sc->sc_hwmtx_s, "uart_hwmtx", NULL, MTX_SPIN);
	if (sc->sc_hwmtx == NULL)
		sc->sc_hwmtx = &sc->sc_hwmtx_s;

	/*
	 * Re-allocate. We expect that the softc contains the information
	 * collected by uart_bus_probe() intact.
	 */
	sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype, &sc->sc_rrid,
	    RF_ACTIVE);
	if (sc->sc_rres == NULL) {
		mtx_destroy(&sc->sc_hwmtx_s);
		return (ENXIO);
	}
	sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres);
	sc->sc_bas.bst = rman_get_bustag(sc->sc_rres);

	/*
	 * Ensure there is room for at least three full FIFOs of data in the
	 * receive buffer (handles the case of low-level drivers with huge
	 * FIFOs), and also ensure that there is no less than the historical
	 * size of 384 bytes (handles the typical small-FIFO case).
	 */
	sc->sc_rxbufsz = MAX(384, sc->sc_rxfifosz * 3);
	sc->sc_rxbuf = malloc(sc->sc_rxbufsz * sizeof(*sc->sc_rxbuf),
	    M_UART, M_WAITOK);
	sc->sc_txbuf = malloc(sc->sc_txfifosz * sizeof(*sc->sc_txbuf),
	    M_UART, M_WAITOK);

	error = UART_ATTACH(sc);
	if (error)
		goto fail;

	if (sc->sc_hwiflow || sc->sc_hwoflow) {
		sep = "";
		device_print_prettyname(dev);
		if (sc->sc_hwiflow) {
			printf("%sRTS iflow", sep);
			sep = ", ";
		}
		if (sc->sc_hwoflow) {
			printf("%sCTS oflow", sep);
			sep = ", ";
		}
		printf("\n");
	}

	if (sc->sc_sysdev != NULL) {
		if (sc->sc_sysdev->baudrate == 0) {
			if (UART_IOCTL(sc, UART_IOCTL_BAUD,
			    (intptr_t)&sc->sc_sysdev->baudrate) != 0)
				sc->sc_sysdev->baudrate = -1;
		}
		switch (sc->sc_sysdev->type) {
		case UART_DEV_CONSOLE:
			device_printf(dev, "console");
			break;
		case UART_DEV_DBGPORT:
			device_printf(dev, "debug port");
			break;
		case UART_DEV_KEYBOARD:
			device_printf(dev, "keyboard");
			break;
		default:
			device_printf(dev, "unknown system device");
			break;
		}
		printf(" (%d,%c,%d,%d)\n", sc->sc_sysdev->baudrate,
		    "noems"[sc->sc_sysdev->parity], sc->sc_sysdev->databits,
		    sc->sc_sysdev->stopbits);
	}

	sc->sc_leaving = 0;
	sc->sc_testintr = 1;
	filt = uart_intr(sc);
	sc->sc_testintr = 0;

	/*
	 * Don't use interrupts if we couldn't clear any pending interrupt
	 * conditions. We may have broken H/W and polling is probably the
	 * safest thing to do.
	 */
	if (filt != FILTER_SCHEDULE_THREAD && !uart_force_poll) {
		sc->sc_irid = 0;
		sc->sc_ires = bus_alloc_resource_any(dev, SYS_RES_IRQ,
		    &sc->sc_irid, RF_ACTIVE | RF_SHAREABLE);
	}
	if (sc->sc_ires != NULL) {
		error = bus_setup_intr(dev, sc->sc_ires, INTR_TYPE_TTY,
		    uart_intr, NULL, sc, &sc->sc_icookie);
		sc->sc_fastintr = (error == 0) ? 1 : 0;

		if (!sc->sc_fastintr)
			error = bus_setup_intr(dev, sc->sc_ires,
			    INTR_TYPE_TTY | INTR_MPSAFE, NULL,
			    (driver_intr_t *)uart_intr, sc, &sc->sc_icookie);

		if (error) {
			device_printf(dev, "could not activate interrupt\n");
			bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
			    sc->sc_ires);
			sc->sc_ires = NULL;
		}
	}
	if (sc->sc_ires == NULL) {
		/* No interrupt resource. Force polled mode. */
		sc->sc_polled = 1;
		callout_init(&sc->sc_timer, 1);
		callout_reset(&sc->sc_timer, hz / uart_poll_freq,
		    (timeout_t *)uart_intr, sc);
	}

	if (bootverbose && (sc->sc_fastintr || sc->sc_polled)) {
		sep = "";
		device_print_prettyname(dev);
		if (sc->sc_fastintr) {
			printf("%sfast interrupt", sep);
			sep = ", ";
		}
		if (sc->sc_polled) {
			printf("%spolled mode (%dHz)", sep, uart_poll_freq);
			sep = ", ";
		}
		printf("\n");
	}

	if (sc->sc_sysdev != NULL && sc->sc_sysdev->attach != NULL) {
		if ((error = sc->sc_sysdev->attach(sc)) != 0)
			goto fail;
	} else {
		if ((error = uart_tty_attach(sc)) != 0)
			goto fail;
		uart_pps_init(sc);
	}

	if (sc->sc_sysdev != NULL)
		sc->sc_sysdev->hwmtx = sc->sc_hwmtx;

	return (0);

 fail:
	free(sc->sc_txbuf, M_UART);
	free(sc->sc_rxbuf, M_UART);

	if (sc->sc_ires != NULL) {
		bus_teardown_intr(dev, sc->sc_ires, sc->sc_icookie);
		bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
		    sc->sc_ires);
	}
	bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);

	mtx_destroy(&sc->sc_hwmtx_s);

	return (error);
}

int
uart_bus_detach(device_t dev)
{
	struct uart_softc *sc;

	sc = device_get_softc(dev);

	sc->sc_leaving = 1;

	if (sc->sc_sysdev != NULL)
		sc->sc_sysdev->hwmtx = NULL;

	UART_DETACH(sc);

	if (sc->sc_sysdev != NULL && sc->sc_sysdev->detach != NULL)
		(*sc->sc_sysdev->detach)(sc);
	else
		uart_tty_detach(sc);

	free(sc->sc_txbuf, M_UART);
	free(sc->sc_rxbuf, M_UART);

	if (sc->sc_ires != NULL) {
		bus_teardown_intr(dev, sc->sc_ires, sc->sc_icookie);
		bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
		    sc->sc_ires);
	}
	bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);

	mtx_destroy(&sc->sc_hwmtx_s);

	if (sc->sc_class->size > sizeof(*sc)) {
		device_set_softc(dev, NULL);
		free(sc, M_UART);
	} else
		device_set_softc(dev, NULL);

	return (0);
}

int
uart_bus_resume(device_t dev)
{
	struct uart_softc *sc;

	sc = device_get_softc(dev);
	return (UART_ATTACH(sc));
}

void
uart_grab(struct uart_devinfo *di)
{

	if (di->sc)
		UART_GRAB(di->sc);
}

void
uart_ungrab(struct uart_devinfo *di)
{

	if (di->sc)
		UART_UNGRAB(di->sc);
}