Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
/*-
 * Copyright (c) 2014 Andrey V. Elsukov <ae@FreeBSD.org>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/bio.h>
#include <sys/disklabel.h>
#include <sys/endian.h>
#include <sys/gpt.h>
#include <sys/kernel.h>
#include <sys/kobj.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/queue.h>
#include <sys/sbuf.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <geom/geom.h>
#include <geom/geom_int.h>
#include <geom/part/g_part.h>

#include "g_part_if.h"

FEATURE(geom_part_bsd64, "GEOM partitioning class for 64-bit BSD disklabels");

/* XXX: move this to sys/disklabel64.h */
#define	DISKMAGIC64     ((uint32_t)0xc4464c59)
#define	MAXPARTITIONS64	16
#define	RESPARTITIONS64	32

struct disklabel64 {
	char	  d_reserved0[512];	/* reserved or unused */
	u_int32_t d_magic;		/* the magic number */
	u_int32_t d_crc;		/* crc32() d_magic through last part */
	u_int32_t d_align;		/* partition alignment requirement */
	u_int32_t d_npartitions;	/* number of partitions */
	struct uuid d_stor_uuid;	/* unique uuid for label */

	u_int64_t d_total_size;		/* total size incl everything (bytes) */
	u_int64_t d_bbase;		/* boot area base offset (bytes) */
					/* boot area is pbase - bbase */
	u_int64_t d_pbase;		/* first allocatable offset (bytes) */
	u_int64_t d_pstop;		/* last allocatable offset+1 (bytes) */
	u_int64_t d_abase;		/* location of backup copy if not 0 */

	u_char	  d_packname[64];
	u_char    d_reserved[64];

	/*
	 * Note: offsets are relative to the base of the slice, NOT to
	 * d_pbase.  Unlike 32 bit disklabels the on-disk format for
	 * a 64 bit disklabel remains slice-relative.
	 *
	 * An uninitialized partition has a p_boffset and p_bsize of 0.
	 *
	 * If p_fstype is not supported for a live partition it is set
	 * to FS_OTHER.  This is typically the case when the filesystem
	 * is identified by its uuid.
	 */
	struct partition64 {		/* the partition table */
		u_int64_t p_boffset;	/* slice relative offset, in bytes */
		u_int64_t p_bsize;	/* size of partition, in bytes */
		u_int8_t  p_fstype;
		u_int8_t  p_unused01;	/* reserved, must be 0 */
		u_int8_t  p_unused02;	/* reserved, must be 0 */
		u_int8_t  p_unused03;	/* reserved, must be 0 */
		u_int32_t p_unused04;	/* reserved, must be 0 */
		u_int32_t p_unused05;	/* reserved, must be 0 */
		u_int32_t p_unused06;	/* reserved, must be 0 */
		struct uuid p_type_uuid;/* mount type as UUID */
		struct uuid p_stor_uuid;/* unique uuid for storage */
	} d_partitions[MAXPARTITIONS64];/* actually may be more */
};

struct g_part_bsd64_table {
	struct g_part_table	base;

	uint32_t		d_align;
	uint64_t		d_bbase;
	uint64_t		d_abase;
	struct uuid		d_stor_uuid;
	char			d_reserved0[512];
	u_char			d_packname[64];
	u_char			d_reserved[64];
};

struct g_part_bsd64_entry {
	struct g_part_entry	base;

	uint8_t			fstype;
	struct uuid		type_uuid;
	struct uuid		stor_uuid;
};

static int g_part_bsd64_add(struct g_part_table *, struct g_part_entry *,
    struct g_part_parms *);
static int g_part_bsd64_bootcode(struct g_part_table *, struct g_part_parms *);
static int g_part_bsd64_create(struct g_part_table *, struct g_part_parms *);
static int g_part_bsd64_destroy(struct g_part_table *, struct g_part_parms *);
static void g_part_bsd64_dumpconf(struct g_part_table *, struct g_part_entry *,
    struct sbuf *, const char *);
static int g_part_bsd64_dumpto(struct g_part_table *, struct g_part_entry *);
static int g_part_bsd64_modify(struct g_part_table *, struct g_part_entry *,
    struct g_part_parms *);
static const char *g_part_bsd64_name(struct g_part_table *, struct g_part_entry *,
    char *, size_t);
static int g_part_bsd64_probe(struct g_part_table *, struct g_consumer *);
static int g_part_bsd64_read(struct g_part_table *, struct g_consumer *);
static const char *g_part_bsd64_type(struct g_part_table *, struct g_part_entry *,
    char *, size_t);
static int g_part_bsd64_write(struct g_part_table *, struct g_consumer *);
static int g_part_bsd64_resize(struct g_part_table *, struct g_part_entry *,
    struct g_part_parms *);

static kobj_method_t g_part_bsd64_methods[] = {
	KOBJMETHOD(g_part_add,		g_part_bsd64_add),
	KOBJMETHOD(g_part_bootcode,	g_part_bsd64_bootcode),
	KOBJMETHOD(g_part_create,	g_part_bsd64_create),
	KOBJMETHOD(g_part_destroy,	g_part_bsd64_destroy),
	KOBJMETHOD(g_part_dumpconf,	g_part_bsd64_dumpconf),
	KOBJMETHOD(g_part_dumpto,	g_part_bsd64_dumpto),
	KOBJMETHOD(g_part_modify,	g_part_bsd64_modify),
	KOBJMETHOD(g_part_resize,	g_part_bsd64_resize),
	KOBJMETHOD(g_part_name,		g_part_bsd64_name),
	KOBJMETHOD(g_part_probe,	g_part_bsd64_probe),
	KOBJMETHOD(g_part_read,		g_part_bsd64_read),
	KOBJMETHOD(g_part_type,		g_part_bsd64_type),
	KOBJMETHOD(g_part_write,	g_part_bsd64_write),
	{ 0, 0 }
};

static struct g_part_scheme g_part_bsd64_scheme = {
	"BSD64",
	g_part_bsd64_methods,
	sizeof(struct g_part_bsd64_table),
	.gps_entrysz = sizeof(struct g_part_bsd64_entry),
	.gps_minent = MAXPARTITIONS64,
	.gps_maxent = MAXPARTITIONS64
};
G_PART_SCHEME_DECLARE(g_part_bsd64);
MODULE_VERSION(geom_part_bsd64, 0);

#define	EQUUID(a, b)	(memcmp(a, b, sizeof(struct uuid)) == 0)
static struct uuid bsd64_uuid_unused = GPT_ENT_TYPE_UNUSED;
static struct uuid bsd64_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
static struct uuid bsd64_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
static struct uuid bsd64_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
static struct uuid bsd64_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
static struct uuid bsd64_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
static struct uuid bsd64_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
static struct uuid bsd64_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
static struct uuid bsd64_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
static struct uuid bsd64_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
static struct uuid bsd64_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
static struct uuid bsd64_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
static struct uuid bsd64_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
static struct uuid bsd64_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;

struct bsd64_uuid_alias {
	struct uuid *uuid;
	uint8_t fstype;
	int alias;
};
static struct bsd64_uuid_alias dfbsd_alias_match[] = {
	{ &bsd64_uuid_dfbsd_swap, FS_SWAP, G_PART_ALIAS_DFBSD_SWAP },
	{ &bsd64_uuid_dfbsd_ufs1, FS_BSDFFS, G_PART_ALIAS_DFBSD_UFS },
	{ &bsd64_uuid_dfbsd_vinum, FS_VINUM, G_PART_ALIAS_DFBSD_VINUM },
	{ &bsd64_uuid_dfbsd_ccd, FS_CCD, G_PART_ALIAS_DFBSD_CCD },
	{ &bsd64_uuid_dfbsd_legacy, FS_OTHER, G_PART_ALIAS_DFBSD_LEGACY },
	{ &bsd64_uuid_dfbsd_hammer, FS_HAMMER, G_PART_ALIAS_DFBSD_HAMMER },
	{ &bsd64_uuid_dfbsd_hammer2, FS_HAMMER2, G_PART_ALIAS_DFBSD_HAMMER2 },
	{ NULL, 0, 0}
};
static struct bsd64_uuid_alias fbsd_alias_match[] = {
	{ &bsd64_uuid_freebsd_boot, FS_OTHER, G_PART_ALIAS_FREEBSD_BOOT },
	{ &bsd64_uuid_freebsd_swap, FS_OTHER, G_PART_ALIAS_FREEBSD_SWAP },
	{ &bsd64_uuid_freebsd_ufs, FS_OTHER, G_PART_ALIAS_FREEBSD_UFS },
	{ &bsd64_uuid_freebsd_zfs, FS_OTHER, G_PART_ALIAS_FREEBSD_ZFS },
	{ &bsd64_uuid_freebsd_vinum, FS_OTHER, G_PART_ALIAS_FREEBSD_VINUM },
	{ &bsd64_uuid_freebsd_nandfs, FS_OTHER, G_PART_ALIAS_FREEBSD_NANDFS },
	{ NULL, 0, 0}
};

static int
bsd64_parse_type(const char *type, struct g_part_bsd64_entry *entry)
{
	struct uuid tmp;
	const struct bsd64_uuid_alias *uap;
	const char *alias;
	char *p;
	long lt;
	int error;

	if (type[0] == '!') {
		if (type[1] == '\0')
			return (EINVAL);
		lt = strtol(type + 1, &p, 0);
		/* The type specified as number */
		if (*p == '\0') {
			if (lt <= 0 || lt > 255)
				return (EINVAL);
			entry->fstype = lt;
			entry->type_uuid = bsd64_uuid_unused;
			return (0);
		}
		/* The type specified as uuid */
		error = parse_uuid(type + 1, &tmp);
		if (error != 0)
			return (error);
		if (EQUUID(&tmp, &bsd64_uuid_unused))
			return (EINVAL);
		for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++) {
			if (EQUUID(&tmp, uap->uuid)) {
				/* Prefer fstype for known uuids */
				entry->type_uuid = bsd64_uuid_unused;
				entry->fstype = uap->fstype;
				return (0);
			}
		}
		entry->type_uuid = tmp;
		entry->fstype = FS_OTHER;
		return (0);
	}
	/* The type specified as symbolic alias name */
	for (uap = &fbsd_alias_match[0]; uap->uuid != NULL; uap++) {
		alias = g_part_alias_name(uap->alias);
		if (!strcasecmp(type, alias)) {
			entry->type_uuid = *uap->uuid;
			entry->fstype = uap->fstype;
			return (0);
		}
	}
	for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++) {
		alias = g_part_alias_name(uap->alias);
		if (!strcasecmp(type, alias)) {
			entry->type_uuid = bsd64_uuid_unused;
			entry->fstype = uap->fstype;
			return (0);
		}
	}
	return (EINVAL);
}

static int
g_part_bsd64_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
    struct g_part_parms *gpp)
{
	struct g_part_bsd64_entry *entry;

	if (gpp->gpp_parms & G_PART_PARM_LABEL)
		return (EINVAL);

	entry = (struct g_part_bsd64_entry *)baseentry;
	if (bsd64_parse_type(gpp->gpp_type, entry) != 0)
		return (EINVAL);
	kern_uuidgen(&entry->stor_uuid, 1);
	return (0);
}

static int
g_part_bsd64_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
{

	return (EOPNOTSUPP);
}

#define	PALIGN_SIZE	(1024 * 1024)
#define	PALIGN_MASK	(PALIGN_SIZE - 1)
#define	BLKSIZE		(4 * 1024)
#define	BOOTSIZE	(32 * 1024)
#define	DALIGN_SIZE	(32 * 1024)
static int
g_part_bsd64_create(struct g_part_table *basetable, struct g_part_parms *gpp)
{
	struct g_part_bsd64_table *table;
	struct g_part_entry *baseentry;
	struct g_provider *pp;
	uint64_t blkmask, pbase;
	uint32_t blksize, ressize;

	pp = gpp->gpp_provider;
	if (pp->mediasize < 2* PALIGN_SIZE)
		return (ENOSPC);

	/*
	 * Use at least 4KB block size. Blksize is stored in the d_align.
	 * XXX: Actually it is used just for calculate d_bbase and used
	 * for better alignment in bsdlabel64(8).
	 */
	blksize = pp->sectorsize < BLKSIZE ? BLKSIZE: pp->sectorsize;
	blkmask = blksize - 1;
	/* Reserve enough space for RESPARTITIONS64 partitions. */
	ressize = offsetof(struct disklabel64, d_partitions[RESPARTITIONS64]);
	ressize = (ressize + blkmask) & ~blkmask;
	/*
	 * Reserve enough space for bootcode and align first allocatable
	 * offset to PALIGN_SIZE.
	 * XXX: Currently DragonFlyBSD has 32KB bootcode, but the size could
	 * be bigger, because it is possible change it (it is equal pbase-bbase)
	 * in the bsdlabel64(8).
	 */
	pbase = ressize + ((BOOTSIZE + blkmask) & ~blkmask);
	pbase = (pbase + PALIGN_MASK) & ~PALIGN_MASK;
	/*
	 * Take physical offset into account and make first allocatable
	 * offset 32KB aligned to the start of the physical disk.
	 * XXX: Actually there are no such restrictions, this is how
	 * DragonFlyBSD behaves.
	 */
	pbase += DALIGN_SIZE - pp->stripeoffset % DALIGN_SIZE;

	table = (struct g_part_bsd64_table *)basetable;
	table->d_align = blksize;
	table->d_bbase = ressize / pp->sectorsize;
	table->d_abase = ((pp->mediasize - ressize) &
	    ~blkmask) / pp->sectorsize;
	kern_uuidgen(&table->d_stor_uuid, 1);
	basetable->gpt_first = pbase / pp->sectorsize;
	basetable->gpt_last = table->d_abase - 1; /* XXX */
	/*
	 * Create 'c' partition and make it internal, so user will not be
	 * able use it.
	 */
	baseentry = g_part_new_entry(basetable, RAW_PART + 1, 0, 0);
	baseentry->gpe_internal = 1;
	return (0);
}

static int
g_part_bsd64_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
{
	struct g_provider *pp;

	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
	if (pp->sectorsize > offsetof(struct disklabel64, d_magic))
		basetable->gpt_smhead |= 1;
	else
		basetable->gpt_smhead |= 3;
	return (0);
}

static void
g_part_bsd64_dumpconf(struct g_part_table *basetable,
    struct g_part_entry *baseentry, struct sbuf *sb, const char *indent)
{
	struct g_part_bsd64_table *table;
	struct g_part_bsd64_entry *entry;
	char buf[sizeof(table->d_packname)];

	entry = (struct g_part_bsd64_entry *)baseentry;
	if (indent == NULL) {
		/* conftxt: libdisk compatibility */
		sbuf_printf(sb, " xs BSD64 xt %u", entry->fstype);
	} else if (entry != NULL) {
		/* confxml: partition entry information */
		sbuf_printf(sb, "%s<rawtype>%u</rawtype>\n", indent,
		    entry->fstype);
		if (!EQUUID(&bsd64_uuid_unused, &entry->type_uuid)) {
			sbuf_printf(sb, "%s<type_uuid>", indent);
			sbuf_printf_uuid(sb, &entry->type_uuid);
			sbuf_printf(sb, "</type_uuid>\n");
		}
		sbuf_printf(sb, "%s<stor_uuid>", indent);
		sbuf_printf_uuid(sb, &entry->stor_uuid);
		sbuf_printf(sb, "</stor_uuid>\n");
	} else {
		/* confxml: scheme information */
		table = (struct g_part_bsd64_table *)basetable;
		sbuf_printf(sb, "%s<bootbase>%ju</bootbase>\n", indent,
		    (uintmax_t)table->d_bbase);
		if (table->d_abase)
			sbuf_printf(sb, "%s<backupbase>%ju</backupbase>\n",
			    indent, (uintmax_t)table->d_abase);
		sbuf_printf(sb, "%s<stor_uuid>", indent);
		sbuf_printf_uuid(sb, &table->d_stor_uuid);
		sbuf_printf(sb, "</stor_uuid>\n");
		sbuf_printf(sb, "%s<label>", indent);
		strncpy(buf, table->d_packname, sizeof(buf) - 1);
		buf[sizeof(buf) - 1] = '\0';
		g_conf_printf_escaped(sb, "%s", buf);
		sbuf_printf(sb, "</label>\n");
	}
}

static int
g_part_bsd64_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
{
	struct g_part_bsd64_entry *entry;

	/* Allow dumping to a swap partition. */
	entry = (struct g_part_bsd64_entry *)baseentry;
	if (entry->fstype == FS_SWAP ||
	    EQUUID(&entry->type_uuid, &bsd64_uuid_dfbsd_swap) ||
	    EQUUID(&entry->type_uuid, &bsd64_uuid_freebsd_swap))
		return (1);
	return (0);
}

static int
g_part_bsd64_modify(struct g_part_table *basetable,
    struct g_part_entry *baseentry, struct g_part_parms *gpp)
{
	struct g_part_bsd64_entry *entry;

	if (gpp->gpp_parms & G_PART_PARM_LABEL)
		return (EINVAL);

	entry = (struct g_part_bsd64_entry *)baseentry;
	if (gpp->gpp_parms & G_PART_PARM_TYPE)
		return (bsd64_parse_type(gpp->gpp_type, entry));
	return (0);
}

static int
g_part_bsd64_resize(struct g_part_table *basetable,
    struct g_part_entry *baseentry, struct g_part_parms *gpp)
{
	struct g_part_bsd64_table *table;
	struct g_provider *pp;

	if (baseentry == NULL) {
		pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
		table = (struct g_part_bsd64_table *)basetable;
		table->d_abase =
		    rounddown2(pp->mediasize - table->d_bbase * pp->sectorsize,
		        table->d_align) / pp->sectorsize;
		basetable->gpt_last = table->d_abase - 1;
		return (0);
	}
	baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
	return (0);
}

static const char *
g_part_bsd64_name(struct g_part_table *table, struct g_part_entry *baseentry,
    char *buf, size_t bufsz)
{

	snprintf(buf, bufsz, "%c", 'a' + baseentry->gpe_index - 1);
	return (buf);
}

static int
g_part_bsd64_probe(struct g_part_table *table, struct g_consumer *cp)
{
	struct g_provider *pp;
	uint32_t v;
	int error;
	u_char *buf;

	pp = cp->provider;
	if (pp->mediasize < 2 * PALIGN_SIZE)
		return (ENOSPC);
	v = rounddown2(pp->sectorsize + offsetof(struct disklabel64, d_magic),
		       pp->sectorsize);
	buf = g_read_data(cp, 0, v, &error);
	if (buf == NULL)
		return (error);
	v = le32dec(buf + offsetof(struct disklabel64, d_magic));
	g_free(buf);
	return (v == DISKMAGIC64 ? G_PART_PROBE_PRI_HIGH: ENXIO);
}

static int
g_part_bsd64_read(struct g_part_table *basetable, struct g_consumer *cp)
{
	struct g_part_bsd64_table *table;
	struct g_part_bsd64_entry *entry;
	struct g_part_entry *baseentry;
	struct g_provider *pp;
	struct disklabel64 *dlp;
	uint64_t v64, sz;
	uint32_t v32;
	int error, index;
	u_char *buf;

	pp = cp->provider;
	table = (struct g_part_bsd64_table *)basetable;
	v32 = roundup2(sizeof(struct disklabel64), pp->sectorsize);
	buf = g_read_data(cp, 0, v32, &error);
	if (buf == NULL)
		return (error);

	dlp = (struct disklabel64 *)buf;
	basetable->gpt_entries = le32toh(dlp->d_npartitions);
	if (basetable->gpt_entries > MAXPARTITIONS64 ||
	    basetable->gpt_entries < 1)
		goto invalid_label;
	v32 = le32toh(dlp->d_crc);
	dlp->d_crc = 0;
	if (crc32(&dlp->d_magic, offsetof(struct disklabel64,
	    d_partitions[basetable->gpt_entries]) -
	    offsetof(struct disklabel64, d_magic)) != v32)
		goto invalid_label;
	table->d_align = le32toh(dlp->d_align);
	if (table->d_align == 0 || (table->d_align & (pp->sectorsize - 1)))
		goto invalid_label;
	if (le64toh(dlp->d_total_size) > pp->mediasize)
		goto invalid_label;
	v64 = le64toh(dlp->d_pbase);
	if (v64 % pp->sectorsize)
		goto invalid_label;
	basetable->gpt_first = v64 / pp->sectorsize;
	v64 = le64toh(dlp->d_pstop);
	if (v64 % pp->sectorsize)
		goto invalid_label;
	basetable->gpt_last = v64 / pp->sectorsize;
	basetable->gpt_isleaf = 1;
	v64 = le64toh(dlp->d_bbase);
	if (v64 % pp->sectorsize)
		goto invalid_label;
	table->d_bbase = v64 / pp->sectorsize;
	v64 = le64toh(dlp->d_abase);
	if (v64 % pp->sectorsize)
		goto invalid_label;
	table->d_abase = v64 / pp->sectorsize;
	le_uuid_dec(&dlp->d_stor_uuid, &table->d_stor_uuid);
	for (index = basetable->gpt_entries - 1; index >= 0; index--) {
		if (index == RAW_PART) {
			/* Skip 'c' partition. */
			baseentry = g_part_new_entry(basetable,
			    index + 1, 0, 0);
			baseentry->gpe_internal = 1;
			continue;
		}
		v64 = le64toh(dlp->d_partitions[index].p_boffset);
		sz = le64toh(dlp->d_partitions[index].p_bsize);
		if (sz == 0 && v64 == 0)
			continue;
		if (sz == 0 || (v64 % pp->sectorsize) || (sz % pp->sectorsize))
			goto invalid_label;
		baseentry = g_part_new_entry(basetable, index + 1,
		    v64 / pp->sectorsize, (v64 + sz) / pp->sectorsize - 1);
		entry = (struct g_part_bsd64_entry *)baseentry;
		le_uuid_dec(&dlp->d_partitions[index].p_type_uuid,
		    &entry->type_uuid);
		le_uuid_dec(&dlp->d_partitions[index].p_stor_uuid,
		    &entry->stor_uuid);
		entry->fstype = dlp->d_partitions[index].p_fstype;
	}
	bcopy(dlp->d_reserved0, table->d_reserved0,
	    sizeof(table->d_reserved0));
	bcopy(dlp->d_packname, table->d_packname, sizeof(table->d_packname));
	bcopy(dlp->d_reserved, table->d_reserved, sizeof(table->d_reserved));
	g_free(buf);
	return (0);

invalid_label:
	g_free(buf);
	return (EINVAL);
}

static const char *
g_part_bsd64_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
    char *buf, size_t bufsz)
{
	struct g_part_bsd64_entry *entry;
	struct bsd64_uuid_alias *uap;

	entry = (struct g_part_bsd64_entry *)baseentry;
	if (entry->fstype != FS_OTHER) {
		for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++)
			if (uap->fstype == entry->fstype)
				return (g_part_alias_name(uap->alias));
	} else {
		for (uap = &fbsd_alias_match[0]; uap->uuid != NULL; uap++)
			if (EQUUID(uap->uuid, &entry->type_uuid))
				return (g_part_alias_name(uap->alias));
		for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++)
			if (EQUUID(uap->uuid, &entry->type_uuid))
				return (g_part_alias_name(uap->alias));
	}
	if (EQUUID(&bsd64_uuid_unused, &entry->type_uuid))
		snprintf(buf, bufsz, "!%d", entry->fstype);
	else {
		buf[0] = '!';
		snprintf_uuid(buf + 1, bufsz - 1, &entry->type_uuid);
	}
	return (buf);
}

static int
g_part_bsd64_write(struct g_part_table *basetable, struct g_consumer *cp)
{
	struct g_provider *pp;
	struct g_part_entry *baseentry;
	struct g_part_bsd64_entry *entry;
	struct g_part_bsd64_table *table;
	struct disklabel64 *dlp;
	uint32_t v, sz;
	int error, index;

	pp = cp->provider;
	table = (struct g_part_bsd64_table *)basetable;
	sz = roundup2(sizeof(struct disklabel64), pp->sectorsize);
	dlp = g_malloc(sz, M_WAITOK | M_ZERO);

	memcpy(dlp->d_reserved0, table->d_reserved0,
	    sizeof(table->d_reserved0));
	memcpy(dlp->d_packname, table->d_packname, sizeof(table->d_packname));
	memcpy(dlp->d_reserved, table->d_reserved, sizeof(table->d_reserved));
	le32enc(&dlp->d_magic, DISKMAGIC64);
	le32enc(&dlp->d_align, table->d_align);
	le32enc(&dlp->d_npartitions, basetable->gpt_entries);
	le_uuid_enc(&dlp->d_stor_uuid, &table->d_stor_uuid);
	le64enc(&dlp->d_total_size, pp->mediasize);
	le64enc(&dlp->d_bbase, table->d_bbase * pp->sectorsize);
	le64enc(&dlp->d_pbase, basetable->gpt_first * pp->sectorsize);
	le64enc(&dlp->d_pstop, basetable->gpt_last * pp->sectorsize);
	le64enc(&dlp->d_abase, table->d_abase * pp->sectorsize);

	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
		if (baseentry->gpe_deleted)
			continue;
		index = baseentry->gpe_index - 1;
		entry = (struct g_part_bsd64_entry *)baseentry;
		if (index == RAW_PART)
			continue;
		le64enc(&dlp->d_partitions[index].p_boffset,
		    baseentry->gpe_start * pp->sectorsize);
		le64enc(&dlp->d_partitions[index].p_bsize, pp->sectorsize *
		    (baseentry->gpe_end - baseentry->gpe_start + 1));
		dlp->d_partitions[index].p_fstype = entry->fstype;
		le_uuid_enc(&dlp->d_partitions[index].p_type_uuid,
		    &entry->type_uuid);
		le_uuid_enc(&dlp->d_partitions[index].p_stor_uuid,
		    &entry->stor_uuid);
	}
	/* Calculate checksum. */
	v = offsetof(struct disklabel64,
	    d_partitions[basetable->gpt_entries]) -
	    offsetof(struct disklabel64, d_magic);
	le32enc(&dlp->d_crc, crc32(&dlp->d_magic, v));
	error = g_write_data(cp, 0, dlp, sz);
	g_free(dlp);
	return (error);
}