Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
/*
 * top - a top users display for Unix
 *
 * SYNOPSIS:  For FreeBSD-2.x and later
 *
 * DESCRIPTION:
 * Originally written for BSD4.4 system by Christos Zoulas.
 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
 *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
 *
 * This is the machine-dependent module for FreeBSD 2.2
 * Works for:
 *	FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
 *
 * LIBS: -lkvm
 *
 * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
 *          Steven Wallace  <swallace@freebsd.org>
 *          Wolfram Schneider <wosch@FreeBSD.org>
 *          Thomas Moestl <tmoestl@gmx.net>
 *
 * $FreeBSD$
 */

#include <sys/param.h>
#include <sys/errno.h>
#include <sys/file.h>
#include <sys/proc.h>
#include <sys/resource.h>
#include <sys/rtprio.h>
#include <sys/signal.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/user.h>
#include <sys/vmmeter.h>

#include <err.h>
#include <kvm.h>
#include <math.h>
#include <nlist.h>
#include <paths.h>
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#include <vis.h>

#include "top.h"
#include "machine.h"
#include "screen.h"
#include "utils.h"
#include "layout.h"

#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
#define	SMPUNAMELEN	13
#define	UPUNAMELEN	15

extern struct process_select ps;
extern char* printable(char *);
static int smpmode;
enum displaymodes displaymode;
#ifdef TOP_USERNAME_LEN
static int namelength = TOP_USERNAME_LEN;
#else
static int namelength = 8;
#endif
/* TOP_JID_LEN based on max of 999999 */
#define TOP_JID_LEN 7
#define TOP_SWAP_LEN 6
static int jidlength;
static int swaplength;
static int cmdlengthdelta;

/* Prototypes for top internals */
void quit(int);

/* get_process_info passes back a handle.  This is what it looks like: */

struct handle {
	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
	int remaining;			/* number of pointers remaining */
};

/* declarations for load_avg */
#include "loadavg.h"

/* define what weighted cpu is.  */
#define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
			 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))

/* what we consider to be process size: */
#define PROCSIZE(pp) ((pp)->ki_size / 1024)

#define RU(pp)	(&(pp)->ki_rusage)
#define RUTOT(pp) \
	(RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt)

#define	PCTCPU(pp) (pcpu[pp - pbase])

/* definitions for indices in the nlist array */

/*
 *  These definitions control the format of the per-process area
 */

static char io_header[] =
    "  PID%*s %-*.*s   VCSW  IVCSW   READ  WRITE  FAULT  TOTAL PERCENT COMMAND";

#define io_Proc_format \
    "%5d%*s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"

static char smp_header_thr[] =
    "  PID%*s %-*.*s  THR PRI NICE   SIZE    RES%*s STATE   C   TIME %7s COMMAND";
static char smp_header[] =
    "  PID%*s %-*.*s "   "PRI NICE   SIZE    RES%*s STATE   C   TIME %7s COMMAND";

#define smp_Proc_format \
    "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s %2d%7s %6.2f%% %.*s"

static char up_header_thr[] =
    "  PID%*s %-*.*s  THR PRI NICE   SIZE    RES%*s STATE    TIME %7s COMMAND";
static char up_header[] =
    "  PID%*s %-*.*s "   "PRI NICE   SIZE    RES%*s STATE    TIME %7s COMMAND";

#define up_Proc_format \
    "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s%.0d%7s %6.2f%% %.*s"


/* process state names for the "STATE" column of the display */
/* the extra nulls in the string "run" are for adding a slash and
   the processor number when needed */

char *state_abbrev[] = {
	"", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
};


static kvm_t *kd;

/* values that we stash away in _init and use in later routines */

static double logcpu;

/* these are retrieved from the kernel in _init */

static load_avg  ccpu;

/* these are used in the get_ functions */

static int lastpid;

/* these are for calculating cpu state percentages */

static long cp_time[CPUSTATES];
static long cp_old[CPUSTATES];
static long cp_diff[CPUSTATES];

/* these are for detailing the process states */

int process_states[8];
char *procstatenames[] = {
	"", " starting, ", " running, ", " sleeping, ", " stopped, ",
	" zombie, ", " waiting, ", " lock, ",
	NULL
};

/* these are for detailing the cpu states */

int cpu_states[CPUSTATES];
char *cpustatenames[] = {
	"user", "nice", "system", "interrupt", "idle", NULL
};

/* these are for detailing the memory statistics */

int memory_stats[7];
char *memorynames[] = {
	"K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ",
	"K Free", NULL
};

int arc_stats[7];
char *arcnames[] = {
	"K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other",
	NULL
};

int carc_stats[4];
char *carcnames[] = {
	"K Compressed, ", "K Uncompressed, ", ":1 Ratio, ",
	NULL
};

int swap_stats[7];
char *swapnames[] = {
	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
	NULL
};


/* these are for keeping track of the proc array */

static int nproc;
static int onproc = -1;
static int pref_len;
static struct kinfo_proc *pbase;
static struct kinfo_proc **pref;
static struct kinfo_proc *previous_procs;
static struct kinfo_proc **previous_pref;
static int previous_proc_count = 0;
static int previous_proc_count_max = 0;
static int previous_thread;

/* data used for recalculating pctcpu */
static double *pcpu;
static struct timespec proc_uptime;
static struct timeval proc_wall_time;
static struct timeval previous_wall_time;
static uint64_t previous_interval = 0;

/* total number of io operations */
static long total_inblock;
static long total_oublock;
static long total_majflt;

/* these are for getting the memory statistics */

static int arc_enabled;
static int carc_enabled;
static int pageshift;		/* log base 2 of the pagesize */

/* define pagetok in terms of pageshift */

#define pagetok(size) ((size) << pageshift)

/* swap usage */
#define ki_swap(kip) \
    ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0)

/* useful externals */
long percentages();

#ifdef ORDER
/*
 * Sorting orders.  The first element is the default.
 */
char *ordernames[] = {
	"cpu", "size", "res", "time", "pri", "threads",
	"total", "read", "write", "fault", "vcsw", "ivcsw",
	"jid", "swap", "pid", NULL
};
#endif

/* Per-cpu time states */
static int maxcpu;
static int maxid;
static int ncpus;
static u_long cpumask;
static long *times;
static long *pcpu_cp_time;
static long *pcpu_cp_old;
static long *pcpu_cp_diff;
static int *pcpu_cpu_states;

static int compare_swap(const void *a, const void *b);
static int compare_jid(const void *a, const void *b);
static int compare_pid(const void *a, const void *b);
static int compare_tid(const void *a, const void *b);
static const char *format_nice(const struct kinfo_proc *pp);
static void getsysctl(const char *name, void *ptr, size_t len);
static int swapmode(int *retavail, int *retfree);
static void update_layout(void);
static int find_uid(uid_t needle, int *haystack);

static int
find_uid(uid_t needle, int *haystack)
{
	size_t i = 0;

	for (; i < TOP_MAX_UIDS; ++i)
		if ((uid_t)haystack[i] == needle)
			return 1;
	return 0;
}

void
toggle_pcpustats(void)
{

	if (ncpus == 1)
		return;
	update_layout();
}

/* Adjust display based on ncpus and the ARC state. */
static void
update_layout(void)
{

	y_mem = 3;
	y_arc = 4;
	y_carc = 5;
	y_swap = 4 + arc_enabled + carc_enabled;
	y_idlecursor = 5 + arc_enabled + carc_enabled;
	y_message = 5 + arc_enabled + carc_enabled;
	y_header = 6 + arc_enabled + carc_enabled;
	y_procs = 7 + arc_enabled + carc_enabled;
	Header_lines = 7 + arc_enabled + carc_enabled;

	if (pcpu_stats) {
		y_mem += ncpus - 1;
		y_arc += ncpus - 1;
		y_carc += ncpus - 1;
		y_swap += ncpus - 1;
		y_idlecursor += ncpus - 1;
		y_message += ncpus - 1;
		y_header += ncpus - 1;
		y_procs += ncpus - 1;
		Header_lines += ncpus - 1;
	}
}

int
machine_init(struct statics *statics, char do_unames)
{
	int i, j, empty, pagesize;
	uint64_t arc_size;
	boolean_t carc_en;
	size_t size;
	struct passwd *pw;

	size = sizeof(smpmode);
	if ((sysctlbyname("machdep.smp_active", &smpmode, &size,
	    NULL, 0) != 0 &&
	    sysctlbyname("kern.smp.active", &smpmode, &size,
	    NULL, 0) != 0) ||
	    size != sizeof(smpmode))
		smpmode = 0;

	size = sizeof(arc_size);
	if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size,
	    NULL, 0) == 0 && arc_size != 0)
		arc_enabled = 1;
	size = sizeof(carc_en);
	if (arc_enabled &&
	    sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size,
	    NULL, 0) == 0 && carc_en == 1)
		carc_enabled = 1;

	if (do_unames) {
	    while ((pw = getpwent()) != NULL) {
		if (strlen(pw->pw_name) > namelength)
			namelength = strlen(pw->pw_name);
	    }
	}
	if (smpmode && namelength > SMPUNAMELEN)
		namelength = SMPUNAMELEN;
	else if (namelength > UPUNAMELEN)
		namelength = UPUNAMELEN;

	kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
	if (kd == NULL)
		return (-1);

	GETSYSCTL("kern.ccpu", ccpu);

	/* this is used in calculating WCPU -- calculate it ahead of time */
	logcpu = log(loaddouble(ccpu));

	pbase = NULL;
	pref = NULL;
	pcpu = NULL;
	nproc = 0;
	onproc = -1;

	/* get the page size and calculate pageshift from it */
	pagesize = getpagesize();
	pageshift = 0;
	while (pagesize > 1) {
		pageshift++;
		pagesize >>= 1;
	}

	/* we only need the amount of log(2)1024 for our conversion */
	pageshift -= LOG1024;

	/* fill in the statics information */
	statics->procstate_names = procstatenames;
	statics->cpustate_names = cpustatenames;
	statics->memory_names = memorynames;
	if (arc_enabled)
		statics->arc_names = arcnames;
	else
		statics->arc_names = NULL;
	if (carc_enabled)
		statics->carc_names = carcnames;
	else
		statics->carc_names = NULL;
	statics->swap_names = swapnames;
#ifdef ORDER
	statics->order_names = ordernames;
#endif

	/* Allocate state for per-CPU stats. */
	cpumask = 0;
	ncpus = 0;
	GETSYSCTL("kern.smp.maxcpus", maxcpu);
	size = sizeof(long) * maxcpu * CPUSTATES;
	times = malloc(size);
	if (times == NULL)
		err(1, "malloc %zu bytes", size);
	if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1)
		err(1, "sysctlbyname kern.cp_times");
	pcpu_cp_time = calloc(1, size);
	maxid = (size / CPUSTATES / sizeof(long)) - 1;
	for (i = 0; i <= maxid; i++) {
		empty = 1;
		for (j = 0; empty && j < CPUSTATES; j++) {
			if (times[i * CPUSTATES + j] != 0)
				empty = 0;
		}
		if (!empty) {
			cpumask |= (1ul << i);
			ncpus++;
		}
	}
	size = sizeof(long) * ncpus * CPUSTATES;
	pcpu_cp_old = calloc(1, size);
	pcpu_cp_diff = calloc(1, size);
	pcpu_cpu_states = calloc(1, size);
	statics->ncpus = ncpus;

	update_layout();

	/* all done! */
	return (0);
}

char *
format_header(char *uname_field)
{
	static char Header[128];
	const char *prehead;

	if (ps.jail)
		jidlength = TOP_JID_LEN + 1;	/* +1 for extra left space. */
	else
		jidlength = 0;

	if (ps.swap)
		swaplength = TOP_SWAP_LEN + 1;  /* +1 for extra left space */
	else
		swaplength = 0;

	switch (displaymode) {
	case DISP_CPU:
		/*
		 * The logic of picking the right header format seems reverse
		 * here because we only want to display a THR column when
		 * "thread mode" is off (and threads are not listed as
		 * separate lines).
		 */
		prehead = smpmode ?
		    (ps.thread ? smp_header : smp_header_thr) :
		    (ps.thread ? up_header : up_header_thr);
		snprintf(Header, sizeof(Header), prehead,
		    jidlength, ps.jail ? " JID" : "",
		    namelength, namelength, uname_field,
		    swaplength, ps.swap ? " SWAP" : "",
		    ps.wcpu ? "WCPU" : "CPU");
		break;
	case DISP_IO:
		prehead = io_header;
		snprintf(Header, sizeof(Header), prehead,
		    jidlength, ps.jail ? " JID" : "",
		    namelength, namelength, uname_field);
		break;
	}
	cmdlengthdelta = strlen(Header) - 7;
	return (Header);
}

static int swappgsin = -1;
static int swappgsout = -1;
extern struct timeval timeout;


void
get_system_info(struct system_info *si)
{
	long total;
	struct loadavg sysload;
	int mib[2];
	struct timeval boottime;
	uint64_t arc_stat, arc_stat2;
	int i, j;
	size_t size;

	/* get the CPU stats */
	size = (maxid + 1) * CPUSTATES * sizeof(long);
	if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1)
		err(1, "sysctlbyname kern.cp_times");
	GETSYSCTL("kern.cp_time", cp_time);
	GETSYSCTL("vm.loadavg", sysload);
	GETSYSCTL("kern.lastpid", lastpid);

	/* convert load averages to doubles */
	for (i = 0; i < 3; i++)
		si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;

	/* convert cp_time counts to percentages */
	for (i = j = 0; i <= maxid; i++) {
		if ((cpumask & (1ul << i)) == 0)
			continue;
		percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES],
		    &pcpu_cp_time[j * CPUSTATES],
		    &pcpu_cp_old[j * CPUSTATES],
		    &pcpu_cp_diff[j * CPUSTATES]);
		j++;
	}
	percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);

	/* sum memory & swap statistics */
	{
		static unsigned int swap_delay = 0;
		static int swapavail = 0;
		static int swapfree = 0;
		static long bufspace = 0;
		static int nspgsin, nspgsout;

		GETSYSCTL("vfs.bufspace", bufspace);
		GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
		GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
		GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]);
		GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]);
		GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
		GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
		GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
		/* convert memory stats to Kbytes */
		memory_stats[0] = pagetok(memory_stats[0]);
		memory_stats[1] = pagetok(memory_stats[1]);
		memory_stats[2] = pagetok(memory_stats[2]);
		memory_stats[3] = pagetok(memory_stats[3]);
		memory_stats[4] = bufspace / 1024;
		memory_stats[5] = pagetok(memory_stats[5]);
		memory_stats[6] = -1;

		/* first interval */
		if (swappgsin < 0) {
			swap_stats[4] = 0;
			swap_stats[5] = 0;
		}

		/* compute differences between old and new swap statistic */
		else {
			swap_stats[4] = pagetok(((nspgsin - swappgsin)));
			swap_stats[5] = pagetok(((nspgsout - swappgsout)));
		}

		swappgsin = nspgsin;
		swappgsout = nspgsout;

		/* call CPU heavy swapmode() only for changes */
		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
			swap_stats[3] = swapmode(&swapavail, &swapfree);
			swap_stats[0] = swapavail;
			swap_stats[1] = swapavail - swapfree;
			swap_stats[2] = swapfree;
		}
		swap_delay = 1;
		swap_stats[6] = -1;
	}

	if (arc_enabled) {
		GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat);
		arc_stats[0] = arc_stat >> 10;
		GETSYSCTL("vfs.zfs.mfu_size", arc_stat);
		arc_stats[1] = arc_stat >> 10;
		GETSYSCTL("vfs.zfs.mru_size", arc_stat);
		arc_stats[2] = arc_stat >> 10;
		GETSYSCTL("vfs.zfs.anon_size", arc_stat);
		arc_stats[3] = arc_stat >> 10;
		GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat);
		GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2);
		arc_stats[4] = arc_stat + arc_stat2 >> 10;
		GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat);
		arc_stats[5] = arc_stat >> 10;
		si->arc = arc_stats;
	}
	if (carc_enabled) {
		GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat);
		carc_stats[0] = arc_stat >> 10;
		carc_stats[2] = arc_stat >> 10; /* For ratio */
		GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat);
		carc_stats[1] = arc_stat >> 10;
		si->carc = carc_stats;
	}

	/* set arrays and strings */
	if (pcpu_stats) {
		si->cpustates = pcpu_cpu_states;
		si->ncpus = ncpus;
	} else {
		si->cpustates = cpu_states;
		si->ncpus = 1;
	}
	si->memory = memory_stats;
	si->swap = swap_stats;


	if (lastpid > 0) {
		si->last_pid = lastpid;
	} else {
		si->last_pid = -1;
	}

	/*
	 * Print how long system has been up.
	 * (Found by looking getting "boottime" from the kernel)
	 */
	mib[0] = CTL_KERN;
	mib[1] = KERN_BOOTTIME;
	size = sizeof(boottime);
	if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 &&
	    boottime.tv_sec != 0) {
		si->boottime = boottime;
	} else {
		si->boottime.tv_sec = -1;
	}
}

#define NOPROC	((void *)-1)

/*
 * We need to compare data from the old process entry with the new
 * process entry.
 * To facilitate doing this quickly we stash a pointer in the kinfo_proc
 * structure to cache the mapping.  We also use a negative cache pointer
 * of NOPROC to avoid duplicate lookups.
 * XXX: this could be done when the actual processes are fetched, we do
 * it here out of laziness.
 */
const struct kinfo_proc *
get_old_proc(struct kinfo_proc *pp)
{
	struct kinfo_proc **oldpp, *oldp;

	/*
	 * If this is the first fetch of the kinfo_procs then we don't have
	 * any previous entries.
	 */
	if (previous_proc_count == 0)
		return (NULL);
	/* negative cache? */
	if (pp->ki_udata == NOPROC)
		return (NULL);
	/* cached? */
	if (pp->ki_udata != NULL)
		return (pp->ki_udata);
	/*
	 * Not cached,
	 * 1) look up based on pid.
	 * 2) compare process start.
	 * If we fail here, then setup a negative cache entry, otherwise
	 * cache it.
	 */
	oldpp = bsearch(&pp, previous_pref, previous_proc_count,
	    sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid);
	if (oldpp == NULL) {
		pp->ki_udata = NOPROC;
		return (NULL);
	}
	oldp = *oldpp;
	if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
		pp->ki_udata = NOPROC;
		return (NULL);
	}
	pp->ki_udata = oldp;
	return (oldp);
}

/*
 * Return the total amount of IO done in blocks in/out and faults.
 * store the values individually in the pointers passed in.
 */
long
get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp,
    long *vcsw, long *ivcsw)
{
	const struct kinfo_proc *oldp;
	static struct kinfo_proc dummy;
	long ret;

	oldp = get_old_proc(pp);
	if (oldp == NULL) {
		bzero(&dummy, sizeof(dummy));
		oldp = &dummy;
	}
	*inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
	*oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
	*flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
	*vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
	*ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
	ret =
	    (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
	    (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
	    (RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
	return (ret);
}

/*
 * If there was a previous update, use the delta in ki_runtime over
 * the previous interval to calculate pctcpu.  Otherwise, fall back
 * to using the kernel's ki_pctcpu.
 */
static double
proc_calc_pctcpu(struct kinfo_proc *pp)
{
	const struct kinfo_proc *oldp;

	if (previous_interval != 0) {
		oldp = get_old_proc(pp);
		if (oldp != NULL)
			return ((double)(pp->ki_runtime - oldp->ki_runtime)
			    / previous_interval);

		/*
		 * If this process/thread was created during the previous
		 * interval, charge it's total runtime to the previous
		 * interval.
		 */
		else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec ||
		    (pp->ki_start.tv_sec == previous_wall_time.tv_sec &&
		    pp->ki_start.tv_usec >= previous_wall_time.tv_usec))
			return ((double)pp->ki_runtime / previous_interval);
	}
	return (pctdouble(pp->ki_pctcpu));
}

/*
 * Return true if this process has used any CPU time since the
 * previous update.
 */
static int
proc_used_cpu(struct kinfo_proc *pp)
{
	const struct kinfo_proc *oldp;

	oldp = get_old_proc(pp);
	if (oldp == NULL)
		return (PCTCPU(pp) != 0);
	return (pp->ki_runtime != oldp->ki_runtime ||
	    RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw ||
	    RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw);
}

/*
 * Return the total number of block in/out and faults by a process.
 */
long
get_io_total(struct kinfo_proc *pp)
{
	long dummy;

	return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
}

static struct handle handle;

caddr_t
get_process_info(struct system_info *si, struct process_select *sel,
    int (*compare)(const void *, const void *))
{
	int i;
	int total_procs;
	long p_io;
	long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
	long nsec;
	int active_procs;
	struct kinfo_proc **prefp;
	struct kinfo_proc *pp;
	struct timespec previous_proc_uptime;

	/* these are copied out of sel for speed */
	int show_idle;
	int show_jid;
	int show_self;
	int show_system;
	int show_uid;
	int show_command;
	int show_kidle;

	/*
	 * If thread state was toggled, don't cache the previous processes.
	 */
	if (previous_thread != sel->thread)
		nproc = 0;
	previous_thread = sel->thread;

	/*
	 * Save the previous process info.
	 */
	if (previous_proc_count_max < nproc) {
		free(previous_procs);
		previous_procs = malloc(nproc * sizeof(*previous_procs));
		free(previous_pref);
		previous_pref = malloc(nproc * sizeof(*previous_pref));
		if (previous_procs == NULL || previous_pref == NULL) {
			(void) fprintf(stderr, "top: Out of memory.\n");
			quit(23);
		}
		previous_proc_count_max = nproc;
	}
	if (nproc) {
		for (i = 0; i < nproc; i++)
			previous_pref[i] = &previous_procs[i];
		bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs));
		qsort(previous_pref, nproc, sizeof(*previous_pref),
		    ps.thread ? compare_tid : compare_pid);
	}
	previous_proc_count = nproc;
	previous_proc_uptime = proc_uptime;
	previous_wall_time = proc_wall_time;
	previous_interval = 0;

	pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC,
	    0, &nproc);
	(void)gettimeofday(&proc_wall_time, NULL);
	if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0)
		memset(&proc_uptime, 0, sizeof(proc_uptime));
	else if (previous_proc_uptime.tv_sec != 0 &&
	    previous_proc_uptime.tv_nsec != 0) {
		previous_interval = (proc_uptime.tv_sec -
		    previous_proc_uptime.tv_sec) * 1000000;
		nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec;
		if (nsec < 0) {
			previous_interval -= 1000000;
			nsec += 1000000000;
		}
		previous_interval += nsec / 1000;
	}
	if (nproc > onproc) {
		pref = realloc(pref, sizeof(*pref) * nproc);
		pcpu = realloc(pcpu, sizeof(*pcpu) * nproc);
		onproc = nproc;
	}
	if (pref == NULL || pbase == NULL || pcpu == NULL) {
		(void) fprintf(stderr, "top: Out of memory.\n");
		quit(23);
	}
	/* get a pointer to the states summary array */
	si->procstates = process_states;

	/* set up flags which define what we are going to select */
	show_idle = sel->idle;
	show_jid = sel->jid != -1;
	show_self = sel->self == -1;
	show_system = sel->system;
	show_uid = sel->uid[0] != -1;
	show_command = sel->command != NULL;
	show_kidle = sel->kidle;

	/* count up process states and get pointers to interesting procs */
	total_procs = 0;
	active_procs = 0;
	total_inblock = 0;
	total_oublock = 0;
	total_majflt = 0;
	memset((char *)process_states, 0, sizeof(process_states));
	prefp = pref;
	for (pp = pbase, i = 0; i < nproc; pp++, i++) {

		if (pp->ki_stat == 0)
			/* not in use */
			continue;

		if (!show_self && pp->ki_pid == sel->self)
			/* skip self */
			continue;

		if (!show_system && (pp->ki_flag & P_SYSTEM))
			/* skip system process */
			continue;

		p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt,
		    &p_vcsw, &p_ivcsw);
		total_inblock += p_inblock;
		total_oublock += p_oublock;
		total_majflt += p_majflt;
		total_procs++;
		process_states[pp->ki_stat]++;

		if (pp->ki_stat == SZOMB)
			/* skip zombies */
			continue;

		if (!show_kidle && pp->ki_tdflags & TDF_IDLETD)
			/* skip kernel idle process */
			continue;

		PCTCPU(pp) = proc_calc_pctcpu(pp);
		if (sel->thread && PCTCPU(pp) > 1.0)
			PCTCPU(pp) = 1.0;
		if (displaymode == DISP_CPU && !show_idle &&
		    (!proc_used_cpu(pp) ||
		     pp->ki_stat == SSTOP || pp->ki_stat == SIDL))
			/* skip idle or non-running processes */
			continue;

		if (displaymode == DISP_IO && !show_idle && p_io == 0)
			/* skip processes that aren't doing I/O */
			continue;

		if (show_jid && pp->ki_jid != sel->jid)
			/* skip proc. that don't belong to the selected JID */
			continue;

		if (show_uid && !find_uid(pp->ki_ruid, sel->uid))
			/* skip proc. that don't belong to the selected UID */
			continue;

		*prefp++ = pp;
		active_procs++;
	}

	/* if requested, sort the "interesting" processes */
	if (compare != NULL)
		qsort(pref, active_procs, sizeof(*pref), compare);

	/* remember active and total counts */
	si->p_total = total_procs;
	si->p_active = pref_len = active_procs;

	/* pass back a handle */
	handle.next_proc = pref;
	handle.remaining = active_procs;
	return ((caddr_t)&handle);
}

static char fmt[512];	/* static area where result is built */

char *
format_next_process(caddr_t handle, char *(*get_userid)(int), int flags)
{
	struct kinfo_proc *pp;
	const struct kinfo_proc *oldp;
	long cputime;
	double pct;
	struct handle *hp;
	char status[16];
	int cpu, state;
	struct rusage ru, *rup;
	long p_tot, s_tot;
	char *proc_fmt, thr_buf[6];
	char jid_buf[TOP_JID_LEN + 1], swap_buf[TOP_SWAP_LEN + 1];
	char *cmdbuf = NULL;
	char **args;
	const int cmdlen = 128;

	/* find and remember the next proc structure */
	hp = (struct handle *)handle;
	pp = *(hp->next_proc++);
	hp->remaining--;

	/* get the process's command name */
	if ((pp->ki_flag & P_INMEM) == 0) {
		/*
		 * Print swapped processes as <pname>
		 */
		size_t len;

		len = strlen(pp->ki_comm);
		if (len > sizeof(pp->ki_comm) - 3)
			len = sizeof(pp->ki_comm) - 3;
		memmove(pp->ki_comm + 1, pp->ki_comm, len);
		pp->ki_comm[0] = '<';
		pp->ki_comm[len + 1] = '>';
		pp->ki_comm[len + 2] = '\0';
	}

	/*
	 * Convert the process's runtime from microseconds to seconds.  This
	 * time includes the interrupt time although that is not wanted here.
	 * ps(1) is similarly sloppy.
	 */
	cputime = (pp->ki_runtime + 500000) / 1000000;

	/* calculate the base for cpu percentages */
	pct = PCTCPU(pp);

	/* generate "STATE" field */
	switch (state = pp->ki_stat) {
	case SRUN:
		if (smpmode && pp->ki_oncpu != NOCPU)
			sprintf(status, "CPU%d", pp->ki_oncpu);
		else
			strcpy(status, "RUN");
		break;
	case SLOCK:
		if (pp->ki_kiflag & KI_LOCKBLOCK) {
			sprintf(status, "*%.6s", pp->ki_lockname);
			break;
		}
		/* fall through */
	case SSLEEP:
		if (pp->ki_wmesg != NULL) {
			sprintf(status, "%.6s", pp->ki_wmesg);
			break;
		}
		/* FALLTHROUGH */
	default:

		if (state >= 0 &&
		    state < sizeof(state_abbrev) / sizeof(*state_abbrev))
			sprintf(status, "%.6s", state_abbrev[state]);
		else
			sprintf(status, "?%5d", state);
		break;
	}

	cmdbuf = (char *)malloc(cmdlen + 1);
	if (cmdbuf == NULL) {
		warn("malloc(%d)", cmdlen + 1);
		return NULL;
	}

	if (!(flags & FMT_SHOWARGS)) {
		if (ps.thread && pp->ki_flag & P_HADTHREADS &&
		    pp->ki_tdname[0]) {
			snprintf(cmdbuf, cmdlen, "%s{%s%s}", pp->ki_comm,
			    pp->ki_tdname, pp->ki_moretdname);
		} else {
			snprintf(cmdbuf, cmdlen, "%s", pp->ki_comm);
		}
	} else {
		if (pp->ki_flag & P_SYSTEM ||
		    pp->ki_args == NULL ||
		    (args = kvm_getargv(kd, pp, cmdlen)) == NULL ||
		    !(*args)) {
			if (ps.thread && pp->ki_flag & P_HADTHREADS &&
		    	    pp->ki_tdname[0]) {
				snprintf(cmdbuf, cmdlen,
				    "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname,
				    pp->ki_moretdname);
			} else {
				snprintf(cmdbuf, cmdlen,
				    "[%s]", pp->ki_comm);
			}
		} else {
			char *src, *dst, *argbuf;
			char *cmd;
			size_t argbuflen;
			size_t len;

			argbuflen = cmdlen * 4;
			argbuf = (char *)malloc(argbuflen + 1);
			if (argbuf == NULL) {
				warn("malloc(%zu)", argbuflen + 1);
				free(cmdbuf);
				return NULL;
			}

			dst = argbuf;

			/* Extract cmd name from argv */
			cmd = strrchr(*args, '/');
			if (cmd == NULL)
				cmd = *args;
			else
				cmd++;

			for (; (src = *args++) != NULL; ) {
				if (*src == '\0')
					continue;
				len = (argbuflen - (dst - argbuf) - 1) / 4;
				strvisx(dst, src,
				    MIN(strlen(src), len),
				    VIS_NL | VIS_CSTYLE);
				while (*dst != '\0')
					dst++;
				if ((argbuflen - (dst - argbuf) - 1) / 4 > 0)
					*dst++ = ' '; /* add delimiting space */
			}
			if (dst != argbuf && dst[-1] == ' ')
				dst--;
			*dst = '\0';

			if (strcmp(cmd, pp->ki_comm) != 0) {
				if (ps.thread && pp->ki_flag & P_HADTHREADS &&
				    pp->ki_tdname[0])
					snprintf(cmdbuf, cmdlen,
					    "%s (%s){%s%s}", argbuf,
					    pp->ki_comm, pp->ki_tdname,
					    pp->ki_moretdname);
				else
					snprintf(cmdbuf, cmdlen,
					    "%s (%s)", argbuf, pp->ki_comm);
			} else {
				if (ps.thread && pp->ki_flag & P_HADTHREADS &&
				    pp->ki_tdname[0])
					snprintf(cmdbuf, cmdlen,
					    "%s{%s%s}", argbuf, pp->ki_tdname,
					    pp->ki_moretdname);
				else
					strlcpy(cmdbuf, argbuf, cmdlen);
			}
			free(argbuf);
		}
	}

	if (ps.jail == 0)
		jid_buf[0] = '\0';
	else
		snprintf(jid_buf, sizeof(jid_buf), "%*d",
		    jidlength - 1, pp->ki_jid);

	if (ps.swap == 0)
		swap_buf[0] = '\0';
	else
		snprintf(swap_buf, sizeof(swap_buf), "%*s",
		    swaplength - 1,
		    format_k2(pagetok(ki_swap(pp)))); /* XXX */

	if (displaymode == DISP_IO) {
		oldp = get_old_proc(pp);
		if (oldp != NULL) {
			ru.ru_inblock = RU(pp)->ru_inblock -
			    RU(oldp)->ru_inblock;
			ru.ru_oublock = RU(pp)->ru_oublock -
			    RU(oldp)->ru_oublock;
			ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
			ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
			ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
			rup = &ru;
		} else {
			rup = RU(pp);
		}
		p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
		s_tot = total_inblock + total_oublock + total_majflt;

		snprintf(fmt, sizeof(fmt), io_Proc_format,
		    pp->ki_pid,
		    jidlength, jid_buf,
		    namelength, namelength, (*get_userid)(pp->ki_ruid),
		    rup->ru_nvcsw,
		    rup->ru_nivcsw,
		    rup->ru_inblock,
		    rup->ru_oublock,
		    rup->ru_majflt,
		    p_tot,
		    s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot),
		    screen_width > cmdlengthdelta ?
		    screen_width - cmdlengthdelta : 0,
		    printable(cmdbuf));

		free(cmdbuf);

		return (fmt);
	}

	/* format this entry */
	if (smpmode) {
		if (state == SRUN && pp->ki_oncpu != NOCPU)
			cpu = pp->ki_oncpu;
		else
			cpu = pp->ki_lastcpu;
	} else
		cpu = 0;
	proc_fmt = smpmode ? smp_Proc_format : up_Proc_format;
	if (ps.thread != 0)
		thr_buf[0] = '\0';
	else
		snprintf(thr_buf, sizeof(thr_buf), "%*d ",
		    (int)(sizeof(thr_buf) - 2), pp->ki_numthreads);

	snprintf(fmt, sizeof(fmt), proc_fmt,
	    pp->ki_pid,
	    jidlength, jid_buf,
	    namelength, namelength, (*get_userid)(pp->ki_ruid),
	    thr_buf,
	    pp->ki_pri.pri_level - PZERO,
	    format_nice(pp),
	    format_k2(PROCSIZE(pp)),
	    format_k2(pagetok(pp->ki_rssize)),
	    swaplength, swaplength, swap_buf,
	    status,
	    cpu,
	    format_time(cputime),
	    ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct,
	    screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0,
	    printable(cmdbuf));

	free(cmdbuf);

	/* return the result */
	return (fmt);
}

static void
getsysctl(const char *name, void *ptr, size_t len)
{
	size_t nlen = len;

	if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
		fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
		    strerror(errno));
		quit(23);
	}
	if (nlen != len) {
		fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n",
		    name, (unsigned long)len, (unsigned long)nlen);
		quit(23);
	}
}

static const char *
format_nice(const struct kinfo_proc *pp)
{
	const char *fifo, *kproc;
	int rtpri;
	static char nicebuf[4 + 1];

	fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F";
	kproc = (pp->ki_flag & P_KPROC) ? "k" : "";
	switch (PRI_BASE(pp->ki_pri.pri_class)) {
	case PRI_ITHD:
		return ("-");
	case PRI_REALTIME:
		/*
		 * XXX: the kernel doesn't tell us the original rtprio and
		 * doesn't really know what it was, so to recover it we
		 * must be more chummy with the implementation than the
		 * implementation is with itself.  pri_user gives a
		 * constant "base" priority, but is only initialized
		 * properly for user threads.  pri_native gives what the
		 * kernel calls the "base" priority, but it isn't constant
		 * since it is changed by priority propagation.  pri_native
		 * also isn't properly initialized for all threads, but it
		 * is properly initialized for kernel realtime and idletime
		 * threads.  Thus we use pri_user for the base priority of
		 * user threads (it is always correct) and pri_native for
		 * the base priority of kernel realtime and idletime threads
		 * (there is nothing better, and it is usually correct).
		 *
		 * The field width and thus the buffer are too small for
		 * values like "kr31F", but such values shouldn't occur,
		 * and if they do then the tailing "F" is not displayed.
		 */
		rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native :
		    pp->ki_pri.pri_user) - PRI_MIN_REALTIME;
		snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s",
		    kproc, rtpri, fifo);
		break;
	case PRI_TIMESHARE:
		if (pp->ki_flag & P_KPROC)
			return ("-");
		snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO);
		break;
	case PRI_IDLE:
		/* XXX: as above. */
		rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native :
		    pp->ki_pri.pri_user) - PRI_MIN_IDLE;
		snprintf(nicebuf, sizeof(nicebuf), "%si%d%s",
		    kproc, rtpri, fifo);
		break;
	default:
		return ("?");
	}
	return (nicebuf);
}

/* comparison routines for qsort */

static int
compare_pid(const void *p1, const void *p2)
{
	const struct kinfo_proc * const *pp1 = p1;
	const struct kinfo_proc * const *pp2 = p2;

	if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0)
		abort();

	return ((*pp1)->ki_pid - (*pp2)->ki_pid);
}

static int
compare_tid(const void *p1, const void *p2)
{
	const struct kinfo_proc * const *pp1 = p1;
	const struct kinfo_proc * const *pp2 = p2;

	if ((*pp2)->ki_tid < 0 || (*pp1)->ki_tid < 0)
		abort();

	return ((*pp1)->ki_tid - (*pp2)->ki_tid);
}

/*
 *  proc_compare - comparison function for "qsort"
 *	Compares the resource consumption of two processes using five
 *	distinct keys.  The keys (in descending order of importance) are:
 *	percent cpu, cpu ticks, state, resident set size, total virtual
 *	memory usage.  The process states are ordered as follows (from least
 *	to most important):  WAIT, zombie, sleep, stop, start, run.  The
 *	array declaration below maps a process state index into a number
 *	that reflects this ordering.
 */

static int sorted_state[] = {
	0,	/* not used		*/
	3,	/* sleep		*/
	1,	/* ABANDONED (WAIT)	*/
	6,	/* run			*/
	5,	/* start		*/
	2,	/* zombie		*/
	4	/* stop			*/
};


#define ORDERKEY_PCTCPU(a, b) do { \
	double diff; \
	if (ps.wcpu) \
		diff = weighted_cpu(PCTCPU((b)), (b)) - \
		    weighted_cpu(PCTCPU((a)), (a)); \
	else \
		diff = PCTCPU((b)) - PCTCPU((a)); \
	if (diff != 0) \
		return (diff > 0 ? 1 : -1); \
} while (0)

#define ORDERKEY_CPTICKS(a, b) do { \
	int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
	if (diff != 0) \
		return (diff > 0 ? 1 : -1); \
} while (0)

#define ORDERKEY_STATE(a, b) do { \
	int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \
	if (diff != 0) \
		return (diff > 0 ? 1 : -1); \
} while (0)

#define ORDERKEY_PRIO(a, b) do { \
	int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
	if (diff != 0) \
		return (diff > 0 ? 1 : -1); \
} while (0)

#define	ORDERKEY_THREADS(a, b) do { \
	int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \
	if (diff != 0) \
		return (diff > 0 ? 1 : -1); \
} while (0)

#define ORDERKEY_RSSIZE(a, b) do { \
	long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
	if (diff != 0) \
		return (diff > 0 ? 1 : -1); \
} while (0)

#define ORDERKEY_MEM(a, b) do { \
	long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
	if (diff != 0) \
		return (diff > 0 ? 1 : -1); \
} while (0)

#define ORDERKEY_JID(a, b) do { \
	int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \
	if (diff != 0) \
		return (diff > 0 ? 1 : -1); \
} while (0)

#define ORDERKEY_SWAP(a, b) do { \
	int diff = (int)ki_swap(b) - (int)ki_swap(a); \
	if (diff != 0) \
		return (diff > 0 ? 1 : -1); \
} while (0)

/* compare_cpu - the comparison function for sorting by cpu percentage */

int
#ifdef ORDER
compare_cpu(void *arg1, void *arg2)
#else
proc_compare(void *arg1, void *arg2)
#endif
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;

	ORDERKEY_PCTCPU(p1, p2);
	ORDERKEY_CPTICKS(p1, p2);
	ORDERKEY_STATE(p1, p2);
	ORDERKEY_PRIO(p1, p2);
	ORDERKEY_RSSIZE(p1, p2);
	ORDERKEY_MEM(p1, p2);

	return (0);
}

#ifdef ORDER
/* "cpu" compare routines */
int compare_size(), compare_res(), compare_time(), compare_prio(),
    compare_threads();

/*
 * "io" compare routines.  Context switches aren't i/o, but are displayed
 * on the "io" display.
 */
int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(),
    compare_vcsw(), compare_ivcsw();

int (*compares[])() = {
	compare_cpu,
	compare_size,
	compare_res,
	compare_time,
	compare_prio,
	compare_threads,
	compare_iototal,
	compare_ioread,
	compare_iowrite,
	compare_iofault,
	compare_vcsw,
	compare_ivcsw,
	compare_jid,
	compare_swap,
	NULL
};

/* compare_size - the comparison function for sorting by total memory usage */

int
compare_size(void *arg1, void *arg2)
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;

	ORDERKEY_MEM(p1, p2);
	ORDERKEY_RSSIZE(p1, p2);
	ORDERKEY_PCTCPU(p1, p2);
	ORDERKEY_CPTICKS(p1, p2);
	ORDERKEY_STATE(p1, p2);
	ORDERKEY_PRIO(p1, p2);

	return (0);
}

/* compare_res - the comparison function for sorting by resident set size */

int
compare_res(void *arg1, void *arg2)
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;

	ORDERKEY_RSSIZE(p1, p2);
	ORDERKEY_MEM(p1, p2);
	ORDERKEY_PCTCPU(p1, p2);
	ORDERKEY_CPTICKS(p1, p2);
	ORDERKEY_STATE(p1, p2);
	ORDERKEY_PRIO(p1, p2);

	return (0);
}

/* compare_time - the comparison function for sorting by total cpu time */

int
compare_time(void *arg1, void *arg2)
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;

	ORDERKEY_CPTICKS(p1, p2);
	ORDERKEY_PCTCPU(p1, p2);
	ORDERKEY_STATE(p1, p2);
	ORDERKEY_PRIO(p1, p2);
	ORDERKEY_RSSIZE(p1, p2);
	ORDERKEY_MEM(p1, p2);

	return (0);
}

/* compare_prio - the comparison function for sorting by priority */

int
compare_prio(void *arg1, void *arg2)
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;

	ORDERKEY_PRIO(p1, p2);
	ORDERKEY_CPTICKS(p1, p2);
	ORDERKEY_PCTCPU(p1, p2);
	ORDERKEY_STATE(p1, p2);
	ORDERKEY_RSSIZE(p1, p2);
	ORDERKEY_MEM(p1, p2);

	return (0);
}

/* compare_threads - the comparison function for sorting by threads */
int
compare_threads(void *arg1, void *arg2)
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;

	ORDERKEY_THREADS(p1, p2);
	ORDERKEY_PCTCPU(p1, p2);
	ORDERKEY_CPTICKS(p1, p2);
	ORDERKEY_STATE(p1, p2);
	ORDERKEY_PRIO(p1, p2);
	ORDERKEY_RSSIZE(p1, p2);
	ORDERKEY_MEM(p1, p2);

	return (0);
}

/* compare_jid - the comparison function for sorting by jid */
static int
compare_jid(const void *arg1, const void *arg2)
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;

	ORDERKEY_JID(p1, p2);
	ORDERKEY_PCTCPU(p1, p2);
	ORDERKEY_CPTICKS(p1, p2);
	ORDERKEY_STATE(p1, p2);
	ORDERKEY_PRIO(p1, p2);
	ORDERKEY_RSSIZE(p1, p2);
	ORDERKEY_MEM(p1, p2);

	return (0);
}

/* compare_swap - the comparison function for sorting by swap */
static int
compare_swap(const void *arg1, const void *arg2)
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;

	ORDERKEY_SWAP(p1, p2);
	ORDERKEY_PCTCPU(p1, p2);
	ORDERKEY_CPTICKS(p1, p2);
	ORDERKEY_STATE(p1, p2);
	ORDERKEY_PRIO(p1, p2);
	ORDERKEY_RSSIZE(p1, p2);
	ORDERKEY_MEM(p1, p2);

	return (0);
}
#endif /* ORDER */

/* assorted comparison functions for sorting by i/o */

int
#ifdef ORDER
compare_iototal(void *arg1, void *arg2)
#else
io_compare(void *arg1, void *arg2)
#endif
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;

	return (get_io_total(p2) - get_io_total(p1));
}

#ifdef ORDER
int
compare_ioread(void *arg1, void *arg2)
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
	long dummy, inp1, inp2;

	(void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
	(void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);

	return (inp2 - inp1);
}

int
compare_iowrite(void *arg1, void *arg2)
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
	long dummy, oup1, oup2;

	(void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
	(void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);

	return (oup2 - oup1);
}

int
compare_iofault(void *arg1, void *arg2)
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
	long dummy, flp1, flp2;

	(void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
	(void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);

	return (flp2 - flp1);
}

int
compare_vcsw(void *arg1, void *arg2)
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
	long dummy, flp1, flp2;

	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);

	return (flp2 - flp1);
}

int
compare_ivcsw(void *arg1, void *arg2)
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
	long dummy, flp1, flp2;

	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);

	return (flp2 - flp1);
}
#endif /* ORDER */

/*
 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
 *		the process does not exist.
 *		It is EXTREMELY IMPORTANT that this function work correctly.
 *		If top runs setuid root (as in SVR4), then this function
 *		is the only thing that stands in the way of a serious
 *		security problem.  It validates requests for the "kill"
 *		and "renice" commands.
 */

int
proc_owner(int pid)
{
	int cnt;
	struct kinfo_proc **prefp;
	struct kinfo_proc *pp;

	prefp = pref;
	cnt = pref_len;
	while (--cnt >= 0) {
		pp = *prefp++;
		if (pp->ki_pid == (pid_t)pid)
			return ((int)pp->ki_ruid);
	}
	return (-1);
}

static int
swapmode(int *retavail, int *retfree)
{
	int n;
	struct kvm_swap swapary[1];
	static int pagesize = 0;
	static u_long swap_maxpages = 0;

	*retavail = 0;
	*retfree = 0;

#define CONVERT(v)	((quad_t)(v) * pagesize / 1024)

	n = kvm_getswapinfo(kd, swapary, 1, 0);
	if (n < 0 || swapary[0].ksw_total == 0)
		return (0);

	if (pagesize == 0)
		pagesize = getpagesize();
	if (swap_maxpages == 0)
		GETSYSCTL("vm.swap_maxpages", swap_maxpages);

	/* ksw_total contains the total size of swap all devices which may
	   exceed the maximum swap size allocatable in the system */
	if ( swapary[0].ksw_total > swap_maxpages )
		swapary[0].ksw_total = swap_maxpages;

	*retavail = CONVERT(swapary[0].ksw_total);
	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);

	n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
	return (n);
}