Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
/* dfa - DFA construction routines */

/*  Copyright (c) 1990 The Regents of the University of California. */
/*  All rights reserved. */

/*  This code is derived from software contributed to Berkeley by */
/*  Vern Paxson. */

/*  The United States Government has rights in this work pursuant */
/*  to contract no. DE-AC03-76SF00098 between the United States */
/*  Department of Energy and the University of California. */

/*  Redistribution and use in source and binary forms, with or without */
/*  modification, are permitted provided that the following conditions */
/*  are met: */

/*  1. Redistributions of source code must retain the above copyright */
/*     notice, this list of conditions and the following disclaimer. */
/*  2. Redistributions in binary form must reproduce the above copyright */
/*     notice, this list of conditions and the following disclaimer in the */
/*     documentation and/or other materials provided with the distribution. */

/*  Neither the name of the University nor the names of its contributors */
/*  may be used to endorse or promote products derived from this software */
/*  without specific prior written permission. */

/*  THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
/*  IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
/*  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
/*  PURPOSE. */

#include "flexdef.h"
#include "tables.h"

/* declare functions that have forward references */

void dump_associated_rules PROTO ((FILE *, int));
void dump_transitions PROTO ((FILE *, int[]));
void sympartition PROTO ((int[], int, int[], int[]));
int symfollowset PROTO ((int[], int, int, int[]));


/* check_for_backing_up - check a DFA state for backing up
 *
 * synopsis
 *     void check_for_backing_up( int ds, int state[numecs] );
 *
 * ds is the number of the state to check and state[] is its out-transitions,
 * indexed by equivalence class.
 */

void check_for_backing_up (ds, state)
     int ds;
     int state[];
{
	if ((reject && !dfaacc[ds].dfaacc_set) || (!reject && !dfaacc[ds].dfaacc_state)) {	/* state is non-accepting */
		++num_backing_up;

		if (backing_up_report) {
			fprintf (backing_up_file,
				 _("State #%d is non-accepting -\n"), ds);

			/* identify the state */
			dump_associated_rules (backing_up_file, ds);

			/* Now identify it further using the out- and
			 * jam-transitions.
			 */
			dump_transitions (backing_up_file, state);

			putc ('\n', backing_up_file);
		}
	}
}


/* check_trailing_context - check to see if NFA state set constitutes
 *                          "dangerous" trailing context
 *
 * synopsis
 *    void check_trailing_context( int nfa_states[num_states+1], int num_states,
 *				int accset[nacc+1], int nacc );
 *
 * NOTES
 *  Trailing context is "dangerous" if both the head and the trailing
 *  part are of variable size \and/ there's a DFA state which contains
 *  both an accepting state for the head part of the rule and NFA states
 *  which occur after the beginning of the trailing context.
 *
 *  When such a rule is matched, it's impossible to tell if having been
 *  in the DFA state indicates the beginning of the trailing context or
 *  further-along scanning of the pattern.  In these cases, a warning
 *  message is issued.
 *
 *    nfa_states[1 .. num_states] is the list of NFA states in the DFA.
 *    accset[1 .. nacc] is the list of accepting numbers for the DFA state.
 */

void check_trailing_context (nfa_states, num_states, accset, nacc)
     int    *nfa_states, num_states;
     int    *accset;
     int nacc;
{
	int i, j;

	for (i = 1; i <= num_states; ++i) {
		int     ns = nfa_states[i];
		int type = state_type[ns];
		int ar = assoc_rule[ns];

		if (type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE) {	/* do nothing */
		}

		else if (type == STATE_TRAILING_CONTEXT) {
			/* Potential trouble.  Scan set of accepting numbers
			 * for the one marking the end of the "head".  We
			 * assume that this looping will be fairly cheap
			 * since it's rare that an accepting number set
			 * is large.
			 */
			for (j = 1; j <= nacc; ++j)
				if (accset[j] & YY_TRAILING_HEAD_MASK) {
					line_warning (_
						      ("dangerous trailing context"),
						      rule_linenum[ar]);
					return;
				}
		}
	}
}


/* dump_associated_rules - list the rules associated with a DFA state
 *
 * Goes through the set of NFA states associated with the DFA and
 * extracts the first MAX_ASSOC_RULES unique rules, sorts them,
 * and writes a report to the given file.
 */

void dump_associated_rules (file, ds)
     FILE   *file;
     int ds;
{
	int i, j;
	int num_associated_rules = 0;
	int     rule_set[MAX_ASSOC_RULES + 1];
	int    *dset = dss[ds];
	int     size = dfasiz[ds];

	for (i = 1; i <= size; ++i) {
		int rule_num = rule_linenum[assoc_rule[dset[i]]];

		for (j = 1; j <= num_associated_rules; ++j)
			if (rule_num == rule_set[j])
				break;

		if (j > num_associated_rules) {	/* new rule */
			if (num_associated_rules < MAX_ASSOC_RULES)
				rule_set[++num_associated_rules] =
					rule_num;
		}
	}

	qsort (&rule_set [1], num_associated_rules, sizeof (rule_set [1]), intcmp);

	fprintf (file, _(" associated rule line numbers:"));

	for (i = 1; i <= num_associated_rules; ++i) {
		if (i % 8 == 1)
			putc ('\n', file);

		fprintf (file, "\t%d", rule_set[i]);
	}

	putc ('\n', file);
}


/* dump_transitions - list the transitions associated with a DFA state
 *
 * synopsis
 *     dump_transitions( FILE *file, int state[numecs] );
 *
 * Goes through the set of out-transitions and lists them in human-readable
 * form (i.e., not as equivalence classes); also lists jam transitions
 * (i.e., all those which are not out-transitions, plus EOF).  The dump
 * is done to the given file.
 */

void dump_transitions (file, state)
     FILE   *file;
     int state[];
{
	int i, ec;
	int     out_char_set[CSIZE];

	for (i = 0; i < csize; ++i) {
		ec = ABS (ecgroup[i]);
		out_char_set[i] = state[ec];
	}

	fprintf (file, _(" out-transitions: "));

	list_character_set (file, out_char_set);

	/* now invert the members of the set to get the jam transitions */
	for (i = 0; i < csize; ++i)
		out_char_set[i] = !out_char_set[i];

	fprintf (file, _("\n jam-transitions: EOF "));

	list_character_set (file, out_char_set);

	putc ('\n', file);
}


/* epsclosure - construct the epsilon closure of a set of ndfa states
 *
 * synopsis
 *    int *epsclosure( int t[num_states], int *numstates_addr,
 *			int accset[num_rules+1], int *nacc_addr,
 *			int *hashval_addr );
 *
 * NOTES
 *  The epsilon closure is the set of all states reachable by an arbitrary
 *  number of epsilon transitions, which themselves do not have epsilon
 *  transitions going out, unioned with the set of states which have non-null
 *  accepting numbers.  t is an array of size numstates of nfa state numbers.
 *  Upon return, t holds the epsilon closure and *numstates_addr is updated.
 *  accset holds a list of the accepting numbers, and the size of accset is
 *  given by *nacc_addr.  t may be subjected to reallocation if it is not
 *  large enough to hold the epsilon closure.
 *
 *  hashval is the hash value for the dfa corresponding to the state set.
 */

int    *epsclosure (t, ns_addr, accset, nacc_addr, hv_addr)
     int    *t, *ns_addr, accset[], *nacc_addr, *hv_addr;
{
	int stkpos, ns, tsp;
	int     numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
	int     stkend, nstate;
	static int did_stk_init = false, *stk;

#define MARK_STATE(state) \
do{ trans1[state] = trans1[state] - MARKER_DIFFERENCE;} while(0)

#define IS_MARKED(state) (trans1[state] < 0)

#define UNMARK_STATE(state) \
do{ trans1[state] = trans1[state] + MARKER_DIFFERENCE;} while(0)

#define CHECK_ACCEPT(state) \
do{ \
nfaccnum = accptnum[state]; \
if ( nfaccnum != NIL ) \
accset[++nacc] = nfaccnum; \
}while(0)

#define DO_REALLOCATION() \
do { \
current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
++num_reallocs; \
t = reallocate_integer_array( t, current_max_dfa_size ); \
stk = reallocate_integer_array( stk, current_max_dfa_size ); \
}while(0) \

#define PUT_ON_STACK(state) \
do { \
if ( ++stkend >= current_max_dfa_size ) \
DO_REALLOCATION(); \
stk[stkend] = state; \
MARK_STATE(state); \
}while(0)

#define ADD_STATE(state) \
do { \
if ( ++numstates >= current_max_dfa_size ) \
DO_REALLOCATION(); \
t[numstates] = state; \
hashval += state; \
}while(0)

#define STACK_STATE(state) \
do { \
PUT_ON_STACK(state); \
CHECK_ACCEPT(state); \
if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
ADD_STATE(state); \
}while(0)


	if (!did_stk_init) {
		stk = allocate_integer_array (current_max_dfa_size);
		did_stk_init = true;
	}

	nacc = stkend = hashval = 0;

	for (nstate = 1; nstate <= numstates; ++nstate) {
		ns = t[nstate];

		/* The state could be marked if we've already pushed it onto
		 * the stack.
		 */
		if (!IS_MARKED (ns)) {
			PUT_ON_STACK (ns);
			CHECK_ACCEPT (ns);
			hashval += ns;
		}
	}

	for (stkpos = 1; stkpos <= stkend; ++stkpos) {
		ns = stk[stkpos];
		transsym = transchar[ns];

		if (transsym == SYM_EPSILON) {
			tsp = trans1[ns] + MARKER_DIFFERENCE;

			if (tsp != NO_TRANSITION) {
				if (!IS_MARKED (tsp))
					STACK_STATE (tsp);

				tsp = trans2[ns];

				if (tsp != NO_TRANSITION
				    && !IS_MARKED (tsp))
					STACK_STATE (tsp);
			}
		}
	}

	/* Clear out "visit" markers. */

	for (stkpos = 1; stkpos <= stkend; ++stkpos) {
		if (IS_MARKED (stk[stkpos]))
			UNMARK_STATE (stk[stkpos]);
		else
			flexfatal (_
				   ("consistency check failed in epsclosure()"));
	}

	*ns_addr = numstates;
	*hv_addr = hashval;
	*nacc_addr = nacc;

	return t;
}


/* increase_max_dfas - increase the maximum number of DFAs */

void increase_max_dfas ()
{
	current_max_dfas += MAX_DFAS_INCREMENT;

	++num_reallocs;

	base = reallocate_integer_array (base, current_max_dfas);
	def = reallocate_integer_array (def, current_max_dfas);
	dfasiz = reallocate_integer_array (dfasiz, current_max_dfas);
	accsiz = reallocate_integer_array (accsiz, current_max_dfas);
	dhash = reallocate_integer_array (dhash, current_max_dfas);
	dss = reallocate_int_ptr_array (dss, current_max_dfas);
	dfaacc = reallocate_dfaacc_union (dfaacc, current_max_dfas);

	if (nultrans)
		nultrans =
			reallocate_integer_array (nultrans,
						  current_max_dfas);
}


/* ntod - convert an ndfa to a dfa
 *
 * Creates the dfa corresponding to the ndfa we've constructed.  The
 * dfa starts out in state #1.
 */

void ntod ()
{
	int    *accset, ds, nacc, newds;
	int     sym, hashval, numstates, dsize;
	int     num_full_table_rows=0;	/* used only for -f */
	int    *nset, *dset;
	int     targptr, totaltrans, i, comstate, comfreq, targ;
	int     symlist[CSIZE + 1];
	int     num_start_states;
	int     todo_head, todo_next;

	struct yytbl_data *yynxt_tbl = 0;
	flex_int32_t *yynxt_data = 0, yynxt_curr = 0;

	/* Note that the following are indexed by *equivalence classes*
	 * and not by characters.  Since equivalence classes are indexed
	 * beginning with 1, even if the scanner accepts NUL's, this
	 * means that (since every character is potentially in its own
	 * equivalence class) these arrays must have room for indices
	 * from 1 to CSIZE, so their size must be CSIZE + 1.
	 */
	int     duplist[CSIZE + 1], state[CSIZE + 1];
	int     targfreq[CSIZE + 1], targstate[CSIZE + 1];

	/* accset needs to be large enough to hold all of the rules present
	 * in the input, *plus* their YY_TRAILING_HEAD_MASK variants.
	 */
	accset = allocate_integer_array ((num_rules + 1) * 2);
	nset = allocate_integer_array (current_max_dfa_size);

	/* The "todo" queue is represented by the head, which is the DFA
	 * state currently being processed, and the "next", which is the
	 * next DFA state number available (not in use).  We depend on the
	 * fact that snstods() returns DFA's \in increasing order/, and thus
	 * need only know the bounds of the dfas to be processed.
	 */
	todo_head = todo_next = 0;

	for (i = 0; i <= csize; ++i) {
		duplist[i] = NIL;
		symlist[i] = false;
	}

	for (i = 0; i <= num_rules; ++i)
		accset[i] = NIL;

	if (trace) {
		dumpnfa (scset[1]);
		fputs (_("\n\nDFA Dump:\n\n"), stderr);
	}

	inittbl ();

	/* Check to see whether we should build a separate table for
	 * transitions on NUL characters.  We don't do this for full-speed
	 * (-F) scanners, since for them we don't have a simple state
	 * number lying around with which to index the table.  We also
	 * don't bother doing it for scanners unless (1) NUL is in its own
	 * equivalence class (indicated by a positive value of
	 * ecgroup[NUL]), (2) NUL's equivalence class is the last
	 * equivalence class, and (3) the number of equivalence classes is
	 * the same as the number of characters.  This latter case comes
	 * about when useecs is false or when it's true but every character
	 * still manages to land in its own class (unlikely, but it's
	 * cheap to check for).  If all these things are true then the
	 * character code needed to represent NUL's equivalence class for
	 * indexing the tables is going to take one more bit than the
	 * number of characters, and therefore we won't be assured of
	 * being able to fit it into a YY_CHAR variable.  This rules out
	 * storing the transitions in a compressed table, since the code
	 * for interpreting them uses a YY_CHAR variable (perhaps it
	 * should just use an integer, though; this is worth pondering ...
	 * ###).
	 *
	 * Finally, for full tables, we want the number of entries in the
	 * table to be a power of two so the array references go fast (it
	 * will just take a shift to compute the major index).  If
	 * encoding NUL's transitions in the table will spoil this, we
	 * give it its own table (note that this will be the case if we're
	 * not using equivalence classes).
	 */

	/* Note that the test for ecgroup[0] == numecs below accomplishes
	 * both (1) and (2) above
	 */
	if (!fullspd && ecgroup[0] == numecs) {
		/* NUL is alone in its equivalence class, which is the
		 * last one.
		 */
		int     use_NUL_table = (numecs == csize);

		if (fulltbl && !use_NUL_table) {
			/* We still may want to use the table if numecs
			 * is a power of 2.
			 */
			int     power_of_two;

			for (power_of_two = 1; power_of_two <= csize;
			     power_of_two *= 2)
				if (numecs == power_of_two) {
					use_NUL_table = true;
					break;
				}
		}

		if (use_NUL_table)
			nultrans =
				allocate_integer_array (current_max_dfas);

		/* From now on, nultrans != nil indicates that we're
		 * saving null transitions for later, separate encoding.
		 */
	}


	if (fullspd) {
		for (i = 0; i <= numecs; ++i)
			state[i] = 0;

		place_state (state, 0, 0);
		dfaacc[0].dfaacc_state = 0;
	}

	else if (fulltbl) {
		if (nultrans)
			/* We won't be including NUL's transitions in the
			 * table, so build it for entries from 0 .. numecs - 1.
			 */
			num_full_table_rows = numecs;

		else
			/* Take into account the fact that we'll be including
			 * the NUL entries in the transition table.  Build it
			 * from 0 .. numecs.
			 */
			num_full_table_rows = numecs + 1;

		/* Begin generating yy_nxt[][]
		 * This spans the entire LONG function.
		 * This table is tricky because we don't know how big it will be.
		 * So we'll have to realloc() on the way...
		 * we'll wait until we can calculate yynxt_tbl->td_hilen.
		 */
		yynxt_tbl =
			(struct yytbl_data *) calloc (1,
						      sizeof (struct
							      yytbl_data));
		yytbl_data_init (yynxt_tbl, YYTD_ID_NXT);
		yynxt_tbl->td_hilen = 1;
		yynxt_tbl->td_lolen = num_full_table_rows;
		yynxt_tbl->td_data = yynxt_data =
			(flex_int32_t *) calloc (yynxt_tbl->td_lolen *
					    yynxt_tbl->td_hilen,
					    sizeof (flex_int32_t));
		yynxt_curr = 0;

		buf_prints (&yydmap_buf,
			    "\t{YYTD_ID_NXT, (void**)&yy_nxt, sizeof(%s)},\n",
			    long_align ? "flex_int32_t" : "flex_int16_t");

		/* Unless -Ca, declare it "short" because it's a real
		 * long-shot that that won't be large enough.
		 */
		if (gentables)
			out_str_dec
				("static yyconst %s yy_nxt[][%d] =\n    {\n",
				 long_align ? "flex_int32_t" : "flex_int16_t",
				 num_full_table_rows);
		else {
			out_dec ("#undef YY_NXT_LOLEN\n#define YY_NXT_LOLEN (%d)\n", num_full_table_rows);
			out_str ("static yyconst %s *yy_nxt =0;\n",
				 long_align ? "flex_int32_t" : "flex_int16_t");
		}


		if (gentables)
			outn ("    {");

		/* Generate 0 entries for state #0. */
		for (i = 0; i < num_full_table_rows; ++i) {
			mk2data (0);
			yynxt_data[yynxt_curr++] = 0;
		}

		dataflush ();
		if (gentables)
			outn ("    },\n");
	}

	/* Create the first states. */

	num_start_states = lastsc * 2;

	for (i = 1; i <= num_start_states; ++i) {
		numstates = 1;

		/* For each start condition, make one state for the case when
		 * we're at the beginning of the line (the '^' operator) and
		 * one for the case when we're not.
		 */
		if (i % 2 == 1)
			nset[numstates] = scset[(i / 2) + 1];
		else
			nset[numstates] =
				mkbranch (scbol[i / 2], scset[i / 2]);

		nset = epsclosure (nset, &numstates, accset, &nacc,
				   &hashval);

		if (snstods (nset, numstates, accset, nacc, hashval, &ds)) {
			numas += nacc;
			totnst += numstates;
			++todo_next;

			if (variable_trailing_context_rules && nacc > 0)
				check_trailing_context (nset, numstates,
							accset, nacc);
		}
	}

	if (!fullspd) {
		if (!snstods (nset, 0, accset, 0, 0, &end_of_buffer_state))
			flexfatal (_
				   ("could not create unique end-of-buffer state"));

		++numas;
		++num_start_states;
		++todo_next;
	}


	while (todo_head < todo_next) {
		targptr = 0;
		totaltrans = 0;

		for (i = 1; i <= numecs; ++i)
			state[i] = 0;

		ds = ++todo_head;

		dset = dss[ds];
		dsize = dfasiz[ds];

		if (trace)
			fprintf (stderr, _("state # %d:\n"), ds);

		sympartition (dset, dsize, symlist, duplist);

		for (sym = 1; sym <= numecs; ++sym) {
			if (symlist[sym]) {
				symlist[sym] = 0;

				if (duplist[sym] == NIL) {
					/* Symbol has unique out-transitions. */
					numstates =
						symfollowset (dset, dsize,
							      sym, nset);
					nset = epsclosure (nset,
							   &numstates,
							   accset, &nacc,
							   &hashval);

					if (snstods
					    (nset, numstates, accset, nacc,
					     hashval, &newds)) {
						totnst = totnst +
							numstates;
						++todo_next;
						numas += nacc;

						if (variable_trailing_context_rules && nacc > 0)
							check_trailing_context
								(nset,
								 numstates,
								 accset,
								 nacc);
					}

					state[sym] = newds;

					if (trace)
						fprintf (stderr,
							 "\t%d\t%d\n", sym,
							 newds);

					targfreq[++targptr] = 1;
					targstate[targptr] = newds;
					++numuniq;
				}

				else {
					/* sym's equivalence class has the same
					 * transitions as duplist(sym)'s
					 * equivalence class.
					 */
					targ = state[duplist[sym]];
					state[sym] = targ;

					if (trace)
						fprintf (stderr,
							 "\t%d\t%d\n", sym,
							 targ);

					/* Update frequency count for
					 * destination state.
					 */

					i = 0;
					while (targstate[++i] != targ) ;

					++targfreq[i];
					++numdup;
				}

				++totaltrans;
				duplist[sym] = NIL;
			}
		}


		numsnpairs += totaltrans;

		if (ds > num_start_states)
			check_for_backing_up (ds, state);

		if (nultrans) {
			nultrans[ds] = state[NUL_ec];
			state[NUL_ec] = 0;	/* remove transition */
		}

		if (fulltbl) {

			/* Each time we hit here, it's another td_hilen, so we realloc. */
			yynxt_tbl->td_hilen++;
			yynxt_tbl->td_data = yynxt_data =
				(flex_int32_t *) realloc (yynxt_data,
						     yynxt_tbl->td_hilen *
						     yynxt_tbl->td_lolen *
						     sizeof (flex_int32_t));


			if (gentables)
				outn ("    {");

			/* Supply array's 0-element. */
			if (ds == end_of_buffer_state) {
				mk2data (-end_of_buffer_state);
				yynxt_data[yynxt_curr++] =
					-end_of_buffer_state;
			}
			else {
				mk2data (end_of_buffer_state);
				yynxt_data[yynxt_curr++] =
					end_of_buffer_state;
			}

			for (i = 1; i < num_full_table_rows; ++i) {
				/* Jams are marked by negative of state
				 * number.
				 */
				mk2data (state[i] ? state[i] : -ds);
				yynxt_data[yynxt_curr++] =
					state[i] ? state[i] : -ds;
			}

			dataflush ();
			if (gentables)
				outn ("    },\n");
		}

		else if (fullspd)
			place_state (state, ds, totaltrans);

		else if (ds == end_of_buffer_state)
			/* Special case this state to make sure it does what
			 * it's supposed to, i.e., jam on end-of-buffer.
			 */
			stack1 (ds, 0, 0, JAMSTATE);

		else {		/* normal, compressed state */

			/* Determine which destination state is the most
			 * common, and how many transitions to it there are.
			 */

			comfreq = 0;
			comstate = 0;

			for (i = 1; i <= targptr; ++i)
				if (targfreq[i] > comfreq) {
					comfreq = targfreq[i];
					comstate = targstate[i];
				}

			bldtbl (state, ds, totaltrans, comstate, comfreq);
		}
	}

	if (fulltbl) {
		dataend ();
		if (tablesext) {
			yytbl_data_compress (yynxt_tbl);
			if (yytbl_data_fwrite (&tableswr, yynxt_tbl) < 0)
				flexerror (_
					   ("Could not write yynxt_tbl[][]"));
		}
		if (yynxt_tbl) {
			yytbl_data_destroy (yynxt_tbl);
			yynxt_tbl = 0;
		}
	}

	else if (!fullspd) {
		cmptmps ();	/* create compressed template entries */

		/* Create tables for all the states with only one
		 * out-transition.
		 */
		while (onesp > 0) {
			mk1tbl (onestate[onesp], onesym[onesp],
				onenext[onesp], onedef[onesp]);
			--onesp;
		}

		mkdeftbl ();
	}

	flex_free ((void *) accset);
	flex_free ((void *) nset);
}


/* snstods - converts a set of ndfa states into a dfa state
 *
 * synopsis
 *    is_new_state = snstods( int sns[numstates], int numstates,
 *				int accset[num_rules+1], int nacc,
 *				int hashval, int *newds_addr );
 *
 * On return, the dfa state number is in newds.
 */

int snstods (sns, numstates, accset, nacc, hashval, newds_addr)
     int sns[], numstates, accset[], nacc, hashval, *newds_addr;
{
	int     didsort = 0;
	int i, j;
	int     newds, *oldsns;

	for (i = 1; i <= lastdfa; ++i)
		if (hashval == dhash[i]) {
			if (numstates == dfasiz[i]) {
				oldsns = dss[i];

				if (!didsort) {
					/* We sort the states in sns so we
					 * can compare it to oldsns quickly.
					 */
					qsort (&sns [1], numstates, sizeof (sns [1]), intcmp);
					didsort = 1;
				}

				for (j = 1; j <= numstates; ++j)
					if (sns[j] != oldsns[j])
						break;

				if (j > numstates) {
					++dfaeql;
					*newds_addr = i;
					return 0;
				}

				++hshcol;
			}

			else
				++hshsave;
		}

	/* Make a new dfa. */

	if (++lastdfa >= current_max_dfas)
		increase_max_dfas ();

	newds = lastdfa;

	dss[newds] = allocate_integer_array (numstates + 1);

	/* If we haven't already sorted the states in sns, we do so now,
	 * so that future comparisons with it can be made quickly.
	 */

	if (!didsort)
		qsort (&sns [1], numstates, sizeof (sns [1]), intcmp);

	for (i = 1; i <= numstates; ++i)
		dss[newds][i] = sns[i];

	dfasiz[newds] = numstates;
	dhash[newds] = hashval;

	if (nacc == 0) {
		if (reject)
			dfaacc[newds].dfaacc_set = (int *) 0;
		else
			dfaacc[newds].dfaacc_state = 0;

		accsiz[newds] = 0;
	}

	else if (reject) {
		/* We sort the accepting set in increasing order so the
		 * disambiguating rule that the first rule listed is considered
		 * match in the event of ties will work.
		 */

		qsort (&accset [1], nacc, sizeof (accset [1]), intcmp);

		dfaacc[newds].dfaacc_set =
			allocate_integer_array (nacc + 1);

		/* Save the accepting set for later */
		for (i = 1; i <= nacc; ++i) {
			dfaacc[newds].dfaacc_set[i] = accset[i];

			if (accset[i] <= num_rules)
				/* Who knows, perhaps a REJECT can yield
				 * this rule.
				 */
				rule_useful[accset[i]] = true;
		}

		accsiz[newds] = nacc;
	}

	else {
		/* Find lowest numbered rule so the disambiguating rule
		 * will work.
		 */
		j = num_rules + 1;

		for (i = 1; i <= nacc; ++i)
			if (accset[i] < j)
				j = accset[i];

		dfaacc[newds].dfaacc_state = j;

		if (j <= num_rules)
			rule_useful[j] = true;
	}

	*newds_addr = newds;

	return 1;
}


/* symfollowset - follow the symbol transitions one step
 *
 * synopsis
 *    numstates = symfollowset( int ds[current_max_dfa_size], int dsize,
 *				int transsym, int nset[current_max_dfa_size] );
 */

int symfollowset (ds, dsize, transsym, nset)
     int ds[], dsize, transsym, nset[];
{
	int     ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist;

	numstates = 0;

	for (i = 1; i <= dsize; ++i) {	/* for each nfa state ns in the state set of ds */
		ns = ds[i];
		sym = transchar[ns];
		tsp = trans1[ns];

		if (sym < 0) {	/* it's a character class */
			sym = -sym;
			ccllist = cclmap[sym];
			lenccl = ccllen[sym];

			if (cclng[sym]) {
				for (j = 0; j < lenccl; ++j) {
					/* Loop through negated character
					 * class.
					 */
					ch = ccltbl[ccllist + j];

					if (ch == 0)
						ch = NUL_ec;

					if (ch > transsym)
						/* Transsym isn't in negated
						 * ccl.
						 */
						break;

					else if (ch == transsym)
						/* next 2 */
						goto bottom;
				}

				/* Didn't find transsym in ccl. */
				nset[++numstates] = tsp;
			}

			else
				for (j = 0; j < lenccl; ++j) {
					ch = ccltbl[ccllist + j];

					if (ch == 0)
						ch = NUL_ec;

					if (ch > transsym)
						break;
					else if (ch == transsym) {
						nset[++numstates] = tsp;
						break;
					}
				}
		}

		else if (sym == SYM_EPSILON) {	/* do nothing */
		}

		else if (ABS (ecgroup[sym]) == transsym)
			nset[++numstates] = tsp;

	      bottom:;
	}

	return numstates;
}


/* sympartition - partition characters with same out-transitions
 *
 * synopsis
 *    sympartition( int ds[current_max_dfa_size], int numstates,
 *			int symlist[numecs], int duplist[numecs] );
 */

void sympartition (ds, numstates, symlist, duplist)
     int ds[], numstates;
     int symlist[], duplist[];
{
	int     tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;

	/* Partitioning is done by creating equivalence classes for those
	 * characters which have out-transitions from the given state.  Thus
	 * we are really creating equivalence classes of equivalence classes.
	 */

	for (i = 1; i <= numecs; ++i) {	/* initialize equivalence class list */
		duplist[i] = i - 1;
		dupfwd[i] = i + 1;
	}

	duplist[1] = NIL;
	dupfwd[numecs] = NIL;

	for (i = 1; i <= numstates; ++i) {
		ns = ds[i];
		tch = transchar[ns];

		if (tch != SYM_EPSILON) {
			if (tch < -lastccl || tch >= csize) {
				flexfatal (_
					   ("bad transition character detected in sympartition()"));
			}

			if (tch >= 0) {	/* character transition */
				int     ec = ecgroup[tch];

				mkechar (ec, dupfwd, duplist);
				symlist[ec] = 1;
			}

			else {	/* character class */
				tch = -tch;

				lenccl = ccllen[tch];
				cclp = cclmap[tch];
				mkeccl (ccltbl + cclp, lenccl, dupfwd,
					duplist, numecs, NUL_ec);

				if (cclng[tch]) {
					j = 0;

					for (k = 0; k < lenccl; ++k) {
						ich = ccltbl[cclp + k];

						if (ich == 0)
							ich = NUL_ec;

						for (++j; j < ich; ++j)
							symlist[j] = 1;
					}

					for (++j; j <= numecs; ++j)
						symlist[j] = 1;
				}

				else
					for (k = 0; k < lenccl; ++k) {
						ich = ccltbl[cclp + k];

						if (ich == 0)
							ich = NUL_ec;

						symlist[ich] = 1;
					}
			}
		}
	}
}