Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
.Dd 2015-03-02
.Dt GPERF 7
.Os
.Sh NAME
.Nm gperf
.Nd Perfect Hash Function Generator
.Sh  Introduction
This manual documents the GNU
.Li gperf
perfect hash function generator utility, focusing on its features and how
to use them, and how to report bugs.
.Pp
.Sh  GNU GENERAL PUBLIC LICENSE
.Bd -filled -offset indent
Copyright \(co 1989, 1991 Free Software Foundation, Inc., 59 Temple Place, Suite
330, Boston, MA 02111-1307, USA.
.Pp
Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.
.Ed
.Pp
.Ss  Preamble
The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change free software---to make sure the
software is free for all its users. This General Public License applies to
most of the Free Software Foundation's software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software
is covered by the GNU Library General Public License instead.) You can apply
it to your programs, too.
.Pp
When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for this service if you
wish), that you receive source code or can get it if you want it, that you
can change the software or use pieces of it in new free programs; and that
you know you can do these things.
.Pp
To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These restrictions
translate to certain responsibilities for you if you distribute copies of
the software, or if you modify it.
.Pp
For example, if you distribute copies of such a program, whether gratis or
for a fee, you must give the recipients all the rights that you have. You
must make sure that they, too, receive or can get the source code. And you
must show them these terms so they know their rights.
.Pp
We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you legal permission to copy, distribute
and/or modify the software.
.Pp
Also, for each author's protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If
the software is modified by someone else and passed on, we want its recipients
to know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors' reputations.
.Pp
Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will individually
obtain patent licenses, in effect making the program proprietary. To prevent
this, we have made it clear that any patent must be licensed for everyone's
free use or not licensed at all.
.Pp
The precise terms and conditions for copying, distribution and modification
follow.
.Pp
.Bl -enum
.It
This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms
of this General Public License. The \(lqProgram\(rq, below, refers to any such program
or work, and a \(lqwork based on the Program\(rq means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or
a portion of it, either verbatim or with modifications and/or translated into
another language. (Hereinafter, translation is included without limitation
in the term \(lqmodification\(rq.) Each licensee is addressed as \(lqyou\(rq.
.Pp
Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running the Program
is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program
does.
.Pp
.It
You may copy and distribute verbatim copies of the Program's source code as
you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty;
keep intact all the notices that refer to this License and to the absence
of any warranty; and give any other recipients of the Program a copy of this
License along with the Program.
.Pp
You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.
.Pp
.It
You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications
or work under the terms of Section 1 above, provided that you also meet all
of these conditions:
.Pp
.Bl -enum
.It
You must cause the modified files to carry prominent notices stating that
you changed the files and the date of any change.
.Pp
.It
You must cause any work that you distribute or publish, that in whole or in
part contains or is derived from the Program or any part thereof, to be licensed
as a whole at no charge to all third parties under the terms of this License.
.Pp
.It
If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement,
your work based on the Program is not required to print an announcement.)
.El
.Pp
These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be reasonably
considered independent and separate works in themselves, then this License,
and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote
it.
.Pp
Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works based
on the Program.
.Pp
In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.
.Pp
.It
You may copy and distribute the Program (or a work based on it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above
provided that you also do one of the following:
.Pp
.Bl -enum
.It
Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
.Pp
.It
Accompany it with a written offer, valid for at least three years, to give
any third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the corresponding
source code, to be distributed under the terms of Sections 1 and 2 above on
a medium customarily used for software interchange; or,
.Pp
.It
Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable
form with such an offer, in accord with Subsection b above.)
.El
.Pp
The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all
the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation
of the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself
accompanies the executable.
.Pp
If distribution of executable or object code is made by offering access to
copy from a designated place, then offering equivalent access to copy the
source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with
the object code.
.Pp
.It
You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.
.Pp
.It
You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Program
or its derivative works. These actions are prohibited by law if you do not
accept this License. Therefore, by modifying or distributing the Program (or
any work based on the Program), you indicate your acceptance of this License
to do so, and all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
.Pp
.It
Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor
to copy, distribute or modify the Program subject to these terms and conditions.
You may not impose any further restrictions on the recipients' exercise of
the rights granted herein. You are not responsible for enforcing compliance
by third parties to this License.
.Pp
.It
If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed
on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as
a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the
only way you could satisfy both it and this License would be to refrain entirely
from distribution of the Program.
.Pp
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply and
the section as a whole is intended to apply in other circumstances.
.Pp
It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of software
distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose
that choice.
.Pp
This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.
.Pp
.It
If the distribution and/or use of the Program is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder
who places the Program under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.
.Pp
.It
The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new
problems or concerns.
.Pp
Each version is given a distinguishing version number. If the Program specifies
a version number of this License which applies to it and \(lqany later version\(rq,
you have the option of following the terms and conditions either of that version
or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose
any version ever published by the Free Software Foundation.
.Pp
.It
If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission.
For software which is copyrighted by the Free Software Foundation, write to
the Free Software Foundation; we sometimes make exceptions for this. Our decision
will be guided by the two goals of preserving the free status of all derivatives
of our free software and of promoting the sharing and reuse of software generally.
.Pp
.It
BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
\(lqAS IS\(rq WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
.Pp
.It
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA
OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES
OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
.El
.Pp
.Ss  How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software
which everyone can redistribute and change under these terms.
.Pp
To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively convey the exclusion
of warranty; and each file should have at least the \(lqcopyright\(rq line and a pointer
to where the full notice is found.
.Pp
.Bd -literal -offset indent
one line to give the program's name and an idea of what it does.
Copyright (C) year  name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
.Ed
.Pp
Also add information on how to contact you by electronic and paper mail.
.Pp
If the program is interactive, make it output a short notice like this when
it starts in an interactive mode:
.Pp
.Bd -literal -offset indent
Gnomovision version 69, Copyright (C) year  name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type `show w'.  This is free software, and you are welcome
to redistribute it under certain conditions; type `show c' 
for details.
.Ed
.Pp
The hypothetical commands
.Li show w
and
.Li show c
should show the appropriate parts of the General Public License. Of course,
the commands you use may be called something other than
.Li show w
and
.Li show c
; they could even be mouse-clicks or menu items---whatever suits your program.
.Pp
You should also get your employer (if you work as a programmer) or your school,
if any, to sign a \(lqcopyright disclaimer\(rq for the program, if necessary. Here
is a sample; alter the names:
.Pp
.Bd -literal -offset indent

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program `Gnomovision'
(which makes passes at compilers) written 
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

.Ed
.Pp
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider
it more useful to permit linking proprietary applications with the library.
If this is what you want to do, use the GNU Library General Public License
instead of this License.
.Pp
.Sh  Contributors to GNU Li gperf Utility
.Bl -bullet
.It
The GNU
.Li gperf
perfect hash function generator utility was written in GNU C++ by Douglas
C. Schmidt. The general idea for the perfect hash function generator was inspired
by Keith Bostic's algorithm written in C, and distributed to net.sources around
1984. The current program is a heavily modified, enhanced, and extended implementation
of Keith's basic idea, created at the University of California, Irvine. Bugs,
patches, and suggestions should be reported to
.Li <bug-gnu-gperf@gnu.org> .
.Pp
.It
Special thanks is extended to Michael Tiemann and Doug Lea, for providing
a useful compiler, and for giving me a forum to exhibit my creation.
.Pp
In addition, Adam de Boor and Nels Olson provided many tips and insights that
greatly helped improve the quality and functionality of
.Li gperf .
.Pp
.It
Bruno Haible enhanced and optimized the search algorithm. He also rewrote
the input routines and the output routines for better reliability, and added
a testsuite.
.El
.Pp
.Sh  Introduction
.Li gperf
is a perfect hash function generator written in C++. It transforms an
.Va n
element user-specified keyword set
.Va W
into a perfect hash function
.Va F .
.Va F
uniquely maps keywords in
.Va W
onto the range 0..
.Va k ,
where
.Va k
>=
.Va n-1 .
If
.Va k
=
.Va n-1
then
.Va F
is a
.Em minimal
perfect hash function.
.Li gperf
generates a 0..
.Va k
element static lookup table and a pair of C functions. These functions determine
whether a given character string
.Va s
occurs in
.Va W ,
using at most one probe into the lookup table.
.Pp
.Li gperf
currently generates the reserved keyword recognizer for lexical analyzers
in several production and research compilers and language processing tools,
including GNU C, GNU C++, GNU Java, GNU Pascal, GNU Modula 3, and GNU indent.
Complete C++ source code for
.Li gperf
is available from
.Li http://ftp.gnu.org/pub/gnu/gperf/ .
A paper describing
.Li gperf
\&'s design and implementation in greater detail is available in the Second
USENIX C++ Conference proceedings or from
.Li http://www.cs.wustl.edu/~schmidt/resume.html .
.Pp
.Sh  Static search structures and GNU Li gperf
A
.Em static search structure
is an Abstract Data Type with certain fundamental operations, e.g.,
.Em initialize ,
.Em insert ,
and
.Em retrieve .
Conceptually, all insertions occur before any retrievals. In practice,
.Li gperf
generates a
.Em static
array containing search set keywords and any associated attributes specified
by the user. Thus, there is essentially no execution-time cost for the insertions.
It is a useful data structure for representing
.Em static search sets .
Static search sets occur frequently in software system applications. Typical
static search sets include compiler reserved words, assembler instruction
opcodes, and built-in shell interpreter commands. Search set members, called
.Em keywords ,
are inserted into the structure only once, usually during program initialization,
and are not generally modified at run-time.
.Pp
Numerous static search structure implementations exist, e.g., arrays, linked
lists, binary search trees, digital search tries, and hash tables. Different
approaches offer trade-offs between space utilization and search time efficiency.
For example, an
.Va n
element sorted array is space efficient, though the average-case time complexity
for retrieval operations using binary search is proportional to log
.Va n .
Conversely, hash table implementations often locate a table entry in constant
time, but typically impose additional memory overhead and exhibit poor worst
case performance.
.Pp
.Em Minimal perfect hash functions
provide an optimal solution for a particular class of static search sets.
A minimal perfect hash function is defined by two properties:
.Pp
.Bl -bullet
.It
It allows keyword recognition in a static search set using at most
.Em one
probe into the hash table. This represents the \(lqperfect\(rq property.
.It
The actual memory allocated to store the keywords is precisely large enough
for the keyword set, and
.Em no larger .
This is the \(lqminimal\(rq property.
.El
.Pp
For most applications it is far easier to generate
.Em perfect
hash functions than
.Em minimal perfect
hash functions. Moreover, non-minimal perfect hash functions frequently execute
faster than minimal ones in practice. This phenomena occurs since searching
a sparse keyword table increases the probability of locating a \(lqnull\(rq entry,
thereby reducing string comparisons.
.Li gperf
\&'s default behavior generates
.Em near-minimal
perfect hash functions for keyword sets. However,
.Li gperf
provides many options that permit user control over the degree of minimality
and perfection.
.Pp
Static search sets often exhibit relative stability over time. For example,
Ada's 63 reserved words have remained constant for nearly a decade. It is
therefore frequently worthwhile to expend concerted effort building an optimal
search structure
.Em once ,
if it subsequently receives heavy use multiple times.
.Li gperf
removes the drudgery associated with constructing time- and space-efficient
search structures by hand. It has proven a useful and practical tool for serious
programming projects. Output from
.Li gperf
is currently used in several production and research compilers, including
GNU C, GNU C++, GNU Java, GNU Pascal, and GNU Modula 3. The latter two compilers
are not yet part of the official GNU distribution. Each compiler utilizes
.Li gperf
to automatically generate static search structures that efficiently identify
their respective reserved keywords.
.Pp
.Sh  High-Level Description of GNU Li gperf
The perfect hash function generator
.Li gperf
reads a set of \(lqkeywords\(rq from an input file (or from the standard input by
default). It attempts to derive a perfect hashing function that recognizes
a member of the
.Em static keyword set
with at most a single probe into the lookup table. If
.Li gperf
succeeds in generating such a function it produces a pair of C source code
routines that perform hashing and table lookup recognition. All generated
C code is directed to the standard output. Command-line options described
below allow you to modify the input and output format to
.Li gperf .
.Pp
By default,
.Li gperf
attempts to produce time-efficient code, with less emphasis on efficient space
utilization. However, several options exist that permit trading-off execution
time for storage space and vice versa. In particular, expanding the generated
table size produces a sparse search structure, generally yielding faster searches.
Conversely, you can direct
.Li gperf
to utilize a C
.Li switch
statement scheme that minimizes data space storage size. Furthermore, using
a C
.Li switch
may actually speed up the keyword retrieval time somewhat. Actual results
depend on your C compiler, of course.
.Pp
In general,
.Li gperf
assigns values to the bytes it is using for hashing until some set of values
gives each keyword a unique value. A helpful heuristic is that the larger
the hash value range, the easier it is for
.Li gperf
to find and generate a perfect hash function. Experimentation is the key to
getting the most from
.Li gperf .
.Pp
.Ss  Input Format to Li gperf
You can control the input file format by varying certain command-line arguments,
in particular the
.Li -t
option. The input's appearance is similar to GNU utilities
.Li flex
and
.Li bison
(or UNIX utilities
.Li lex
and
.Li yacc ) .
Here's an outline of the general format:
.Pp
.Bd -literal -offset indent

declarations
%%
keywords
%%
functions

.Ed
.Pp
.Em Unlike
.Li flex
or
.Li bison ,
the declarations section and the functions section are optional. The following
sections describe the input format for each section.
.Pp
It is possible to omit the declaration section entirely, if the
.Li -t
option is not given. In this case the input file begins directly with the
first keyword line, e.g.:
.Pp
.Bd -literal -offset indent

january
february
march
april
\&...

.Ed
.Pp
.Em  Declarations
.Pp
The keyword input file optionally contains a section for including arbitrary
C declarations and definitions,
.Li gperf
declarations that act like command-line options, as well as for providing
a user-supplied
.Li struct .
.Pp
.No  User-supplied Li struct
.Pp
If the
.Li -t
option (or, equivalently, the
.Li %struct-type
declaration)
.Em is
enabled, you
.Em must
provide a C
.Li struct
as the last component in the declaration section from the input file. The
first field in this struct must be of type
.Li char *
or
.Li const char *
if the
.Li -P
option is not given, or of type
.Li int
if the option
.Li -P
(or, equivalently, the
.Li %pic
declaration) is enabled. This first field must be called
.Li name ,
although it is possible to modify its name with the
.Li -K
option (or, equivalently, the
.Li %define slot-name
declaration) described below.
.Pp
Here is a simple example, using months of the year and their attributes as
input:
.Pp
.Bd -literal -offset indent

struct month { char *name; int number; int days; int leap_days; };
%%
january,   1, 31, 31
february,  2, 28, 29
march,     3, 31, 31
april,     4, 30, 30
may,       5, 31, 31
june,      6, 30, 30
july,      7, 31, 31
august,    8, 31, 31
september, 9, 30, 30
october,  10, 31, 31
november, 11, 30, 30
december, 12, 31, 31

.Ed
.Pp
Separating the
.Li struct
declaration from the list of keywords and other fields are a pair of consecutive
percent signs,
.Li %% ,
appearing left justified in the first column, as in the UNIX utility
.Li lex .
.Pp
If the
.Li struct
has already been declared in an include file, it can be mentioned in an abbreviated
form, like this:
.Pp
.Bd -literal -offset indent

struct month;
%%
january,   1, 31, 31
\&...

.Ed
.Pp
.No  Gperf Declarations
.Pp
The declaration section can contain
.Li gperf
declarations. They influence the way
.Li gperf
works, like command line options do. In fact, every such declaration is equivalent
to a command line option. There are three forms of declarations:
.Pp
.Bl -enum
.It
Declarations without argument, like
.Li %compare-lengths .
.Pp
.It
Declarations with an argument, like
.Li %switch= Va count .
.Pp
.It
Declarations of names of entities in the output file, like
.Li %define lookup-function-name Va name .
.El
.Pp
When a declaration is given both in the input file and as a command line option,
the command-line option's value prevails.
.Pp
The following
.Li gperf
declarations are available.
.Pp
.Bl -tag -width Ds
.It  %delimiters= Va delimiter-list
Allows you to provide a string containing delimiters used to separate keywords
from their attributes. The default is ",". This option is essential if you
want to use keywords that have embedded commas or newlines.
.Pp
.It  %struct-type
Allows you to include a
.Li struct
type declaration for generated code; see above for an example.
.Pp
.It  %ignore-case
Consider upper and lower case ASCII characters as equivalent. The string comparison
will use a case insignificant character comparison. Note that locale dependent
case mappings are ignored.
.Pp
.It  %language= Va language-name
Instructs
.Li gperf
to generate code in the language specified by the option's argument. Languages
handled are currently:
.Pp
.Bl -tag -width Ds
.It  KR-C
Old-style K&R C. This language is understood by old-style C compilers and
ANSI C compilers, but ANSI C compilers may flag warnings (or even errors)
because of lacking
.Li const .
.Pp
.It  C
Common C. This language is understood by ANSI C compilers, and also by old-style
C compilers, provided that you
.Li #define const
to empty for compilers which don't know about this keyword.
.Pp
.It  ANSI-C
ANSI C. This language is understood by ANSI C compilers and C++ compilers.
.Pp
.It  C++
C++. This language is understood by C++ compilers.
.El
.Pp
The default is C.
.Pp
.It  %define slot-name Va name
This declaration is only useful when option
.Li -t
(or, equivalently, the
.Li %struct-type
declaration) has been given. By default, the program assumes the structure
component identifier for the keyword is
.Li name .
This option allows an arbitrary choice of identifier for this component, although
it still must occur as the first field in your supplied
.Li struct .
.Pp
.It  %define initializer-suffix Va initializers
This declaration is only useful when option
.Li -t
(or, equivalently, the
.Li %struct-type
declaration) has been given. It permits to specify initializers for the structure
members following
.Va slot-name
in empty hash table entries. The list of initializers should start with a
comma. By default, the emitted code will zero-initialize structure members
following
.Va slot-name .
.Pp
.It  %define hash-function-name Va name
Allows you to specify the name for the generated hash function. Default name
is
.Li hash .
This option permits the use of two hash tables in the same file.
.Pp
.It  %define lookup-function-name Va name
Allows you to specify the name for the generated lookup function. Default
name is
.Li in_word_set .
This option permits multiple generated hash functions to be used in the same
application.
.Pp
.It  %define class-name Va name
This option is only useful when option
.Li -L C++
(or, equivalently, the
.Li %language=C++
declaration) has been given. It allows you to specify the name of generated
C++ class. Default name is
.Li Perfect_Hash .
.Pp
.It  %7bit
This option specifies that all strings that will be passed as arguments to
the generated hash function and the generated lookup function will solely
consist of 7-bit ASCII characters (bytes in the range 0..127). (Note that
the ANSI C functions
.Li isalnum
and
.Li isgraph
do
.Em not
guarantee that a byte is in this range. Only an explicit test like
.Li c >= 'A' && c <= 'Z'
guarantees this.)
.Pp
.It  %compare-lengths
Compare keyword lengths before trying a string comparison. This option is
mandatory for binary comparisons (see Section
.Dq Binary Strings ) .
It also might cut down on the number of string comparisons made during the
lookup, since keywords with different lengths are never compared via
.Li strcmp .
However, using
.Li %compare-lengths
might greatly increase the size of the generated C code if the lookup table
range is large (which implies that the switch option
.Li -S
or
.Li %switch
is not enabled), since the length table contains as many elements as there
are entries in the lookup table.
.Pp
.It  %compare-strncmp
Generates C code that uses the
.Li strncmp
function to perform string comparisons. The default action is to use
.Li strcmp .
.Pp
.It  %readonly-tables
Makes the contents of all generated lookup tables constant, i.e., \(lqreadonly\(rq.
Many compilers can generate more efficient code for this by putting the tables
in readonly memory.
.Pp
.It  %enum
Define constant values using an enum local to the lookup function rather than
with #defines. This also means that different lookup functions can reside
in the same file. Thanks to James Clark
.Li <jjc@ai.mit.edu> .
.Pp
.It  %includes
Include the necessary system include file,
.Li <string.h> ,
at the beginning of the code. By default, this is not done; the user must
include this header file himself to allow compilation of the code.
.Pp
.It  %global-table
Generate the static table of keywords as a static global variable, rather
than hiding it inside of the lookup function (which is the default behavior).
.Pp
.It  %pic
Optimize the generated table for inclusion in shared libraries. This reduces
the startup time of programs using a shared library containing the generated
code. If the
.Li %struct-type
declaration (or, equivalently, the option
.Li -t )
is also given, the first field of the user-defined struct must be of type
.Li int ,
not
.Li char * ,
because it will contain offsets into the string pool instead of actual strings.
To convert such an offset to a string, you can use the expression
.Li stringpool + Va o ,
where
.Va o
is the offset. The string pool name can be changed through the
.Li %define string-pool-name
declaration.
.Pp
.It  %define string-pool-name Va name
Allows you to specify the name of the generated string pool created by the
declaration
.Li %pic
(or, equivalently, the option
.Li -P ) .
The default name is
.Li stringpool .
This declaration permits the use of two hash tables in the same file, with
.Li %pic
and even when the
.Li %global-table
declaration (or, equivalently, the option
.Li -G )
is given.
.Pp
.It  %null-strings
Use NULL strings instead of empty strings for empty keyword table entries.
This reduces the startup time of programs using a shared library containing
the generated code (but not as much as the declaration
.Li %pic ) ,
at the expense of one more test-and-branch instruction at run time.
.Pp
.It  %define word-array-name Va name
Allows you to specify the name for the generated array containing the hash
table. Default name is
.Li wordlist .
This option permits the use of two hash tables in the same file, even when
the option
.Li -G
(or, equivalently, the
.Li %global-table
declaration) is given.
.Pp
.It  %define length-table-name Va name
Allows you to specify the name for the generated array containing the length
table. Default name is
.Li lengthtable .
This option permits the use of two length tables in the same file, even when
the option
.Li -G
(or, equivalently, the
.Li %global-table
declaration) is given.
.Pp
.It  %switch= Va count
Causes the generated C code to use a
.Li switch
statement scheme, rather than an array lookup table. This can lead to a reduction
in both time and space requirements for some input files. The argument to
this option determines how many
.Li switch
statements are generated. A value of 1 generates 1
.Li switch
containing all the elements, a value of 2 generates 2 tables with 1/2 the
elements in each
.Li switch ,
etc. This is useful since many C compilers cannot correctly generate code
for large
.Li switch
statements. This option was inspired in part by Keith Bostic's original C
program.
.Pp
.It  %omit-struct-type
Prevents the transfer of the type declaration to the output file. Use this
option if the type is already defined elsewhere.
.El
.Pp
.No  C Code Inclusion
.Pp
Using a syntax similar to GNU utilities
.Li flex
and
.Li bison ,
it is possible to directly include C source text and comments verbatim into
the generated output file. This is accomplished by enclosing the region inside
left-justified surrounding
.Li %{ ,
.Li %}
pairs. Here is an input fragment based on the previous example that illustrates
this feature:
.Pp
.Bd -literal -offset indent

%{
#include <assert.h>
/* This section of code is inserted directly into the output. */
int return_month_days (struct month *months, int is_leap_year);
%}
struct month { char *name; int number; int days; int leap_days; };
%%
january,   1, 31, 31
february,  2, 28, 29
march,     3, 31, 31
\&...

.Ed
.Pp
.Em  Format for Keyword Entries
.Pp
The second input file format section contains lines of keywords and any associated
attributes you might supply. A line beginning with
.Li #
in the first column is considered a comment. Everything following the
.Li #
is ignored, up to and including the following newline. A line beginning with
.Li %
in the first column is an option declaration and must not occur within the
keywords section.
.Pp
The first field of each non-comment line is always the keyword itself. It
can be given in two ways: as a simple name, i.e., without surrounding string
quotation marks, or as a string enclosed in double-quotes, in C syntax, possibly
with backslash escapes like
.Li \e"
or
.Li \e234
or
.Li \exa8 .
In either case, it must start right at the beginning of the line, without
leading whitespace. In this context, a \(lqfield\(rq is considered to extend up to,
but not include, the first blank, comma, or newline. Here is a simple example
taken from a partial list of C reserved words:
.Pp
.Bd -literal -offset indent

# These are a few C reserved words, see the c.gperf file 
# for a complete list of ANSI C reserved words.
unsigned
sizeof
switch
signed
if
default
for
while
return

.Ed
.Pp
Note that unlike
.Li flex
or
.Li bison
the first
.Li %%
marker may be elided if the declaration section is empty.
.Pp
Additional fields may optionally follow the leading keyword. Fields should
be separated by commas, and terminate at the end of line. What these fields
mean is entirely up to you; they are used to initialize the elements of the
user-defined
.Li struct
provided by you in the declaration section. If the
.Li -t
option (or, equivalently, the
.Li %struct-type
declaration) is
.Em not
enabled these fields are simply ignored. All previous examples except the
last one contain keyword attributes.
.Pp
.Em  Including Additional C Functions
.Pp
The optional third section also corresponds closely with conventions found
in
.Li flex
and
.Li bison .
All text in this section, starting at the final
.Li %%
and extending to the end of the input file, is included verbatim into the
generated output file. Naturally, it is your responsibility to ensure that
the code contained in this section is valid C.
.Pp
.Em  Where to place directives for GNU Li indent.
.Pp
If you want to invoke GNU
.Li indent
on a
.Li gperf
input file, you will see that GNU
.Li indent
doesn't understand the
.Li %% ,
.Li %{
and
.Li %}
directives that control
.Li gperf
\&'s interpretation of the input file. Therefore you have to insert some directives
for GNU
.Li indent .
More precisely, assuming the most general input file structure
.Pp
.Bd -literal -offset indent

declarations part 1
%{
verbatim code
%}
declarations part 2
%%
keywords
%%
functions

.Ed
.Pp
you would insert
.Li *INDENT-OFF*
and
.Li *INDENT-ON*
comments as follows:
.Pp
.Bd -literal -offset indent

/* *INDENT-OFF* */
declarations part 1
%{
/* *INDENT-ON* */
verbatim code
/* *INDENT-OFF* */
%}
declarations part 2
%%
keywords
%%
/* *INDENT-ON* */
functions

.Ed
.Pp
.Ss  Output Format for Generated C Code with Li gperf
Several options control how the generated C code appears on the standard output.
Two C functions are generated. They are called
.Li hash
and
.Li in_word_set ,
although you may modify their names with a command-line option. Both functions
require two arguments, a string,
.Li char *
.Va str ,
and a length parameter,
.Li int
.Va len .
Their default function prototypes are as follows:
.Pp
Function:
.Ft  unsigned int
.Fo  hash
.Fa  (const char * Va str, unsigned int Va len)
.Fc
.Pp
By default, the generated
.Li hash
function returns an integer value created by adding
.Va len
to several user-specified
.Va str
byte positions indexed into an
.Em associated values
table stored in a local static array. The associated values table is constructed
internally by
.Li gperf
and later output as a static local C array called
.Li hash_table .
The relevant selected positions (i.e. indices into
.Va str )
are specified via the
.Li -k
option when running
.Li gperf ,
as detailed in the
.Em Options
section below (see Section
.Dq Options ) .
.Pp
Function:
.Ft 
.Fo  in_word_set
.Fa  (const char * Va str, unsigned int Va len)
.Fc
.Pp
If
.Va str
is in the keyword set, returns a pointer to that keyword. More exactly, if
the option
.Li -t
(or, equivalently, the
.Li %struct-type
declaration) was given, it returns a pointer to the matching keyword's structure.
Otherwise it returns
.Li NULL .
.Pp
If the option
.Li -c
(or, equivalently, the
.Li %compare-strncmp
declaration) is not used,
.Va str
must be a NUL terminated string of exactly length
.Va len .
If
.Li -c
(or, equivalently, the
.Li %compare-strncmp
declaration) is used,
.Va str
must simply be an array of
.Va len
bytes and does not need to be NUL terminated.
.Pp
The code generated for these two functions is affected by the following options:
.Pp
.Bl -tag -width Ds
.It  -t
.It  --struct-type
Make use of the user-defined
.Li struct .
.Pp
.It  -S Va total-switch-statements
.It  --switch= Va total-switch-statements
Generate 1 or more C
.Li switch
statement rather than use a large, (and potentially sparse) static array.
Although the exact time and space savings of this approach vary according
to your C compiler's degree of optimization, this method often results in
smaller and faster code.
.El
.Pp
If the
.Li -t
and
.Li -S
options (or, equivalently, the
.Li %struct-type
and
.Li %switch
declarations) are omitted, the default action is to generate a
.Li char *
array containing the keywords, together with additional empty strings used
for padding the array. By experimenting with the various input and output
options, and timing the resulting C code, you can determine the best option
choices for different keyword set characteristics.
.Pp
.Ss  Use of NUL bytes
By default, the code generated by
.Li gperf
operates on zero terminated strings, the usual representation of strings in
C. This means that the keywords in the input file must not contain NUL bytes,
and the
.Va str
argument passed to
.Li hash
or
.Li in_word_set
must be NUL terminated and have exactly length
.Va len .
.Pp
If option
.Li -c
(or, equivalently, the
.Li %compare-strncmp
declaration) is used, then the
.Va str
argument does not need to be NUL terminated. The code generated by
.Li gperf
will only access the first
.Va len ,
not
.Va len+1 ,
bytes starting at
.Va str .
However, the keywords in the input file still must not contain NUL bytes.
.Pp
If option
.Li -l
(or, equivalently, the
.Li %compare-lengths
declaration) is used, then the hash table performs binary comparison. The
keywords in the input file may contain NUL bytes, written in string syntax
as
.Li \e000
or
.Li \ex00 ,
and the code generated by
.Li gperf
will treat NUL like any other byte. Also, in this case the
.Li -c
option (or, equivalently, the
.Li %compare-strncmp
declaration) is ignored.
.Pp
.Sh  Invoking Li gperf
There are
.Em many
options to
.Li gperf .
They were added to make the program more convenient for use with real applications.
\(lqOn-line\(rq help is readily available via the
.Li --help
option. Here is the complete list of options.
.Pp
.Ss  Specifying the Location of the Output File
.Bl -tag -width Ds
.It  --output-file= Va file
Allows you to specify the name of the file to which the output is written
to.
.El
.Pp
The results are written to standard output if no output file is specified
or if it is
.Li - .
.Pp
.Ss  Options that affect Interpretation of the Input File
These options are also available as declarations in the input file (see Section
.Dq Gperf Declarations ) .
.Pp
.Bl -tag -width Ds
.It  -e Va keyword-delimiter-list
.It  --delimiters= Va keyword-delimiter-list
Allows you to provide a string containing delimiters used to separate keywords
from their attributes. The default is ",". This option is essential if you
want to use keywords that have embedded commas or newlines. One useful trick
is to use -e'TAB', where TAB is the literal tab character.
.Pp
.It  -t
.It  --struct-type
Allows you to include a
.Li struct
type declaration for generated code. Any text before a pair of consecutive
.Li %%
is considered part of the type declaration. Keywords and additional fields
may follow this, one group of fields per line. A set of examples for generating
perfect hash tables and functions for Ada, C, C++, Pascal, Modula 2, Modula
3 and JavaScript reserved words are distributed with this release.
.Pp
.It  --ignore-case
Consider upper and lower case ASCII characters as equivalent. The string comparison
will use a case insignificant character comparison. Note that locale dependent
case mappings are ignored. This option is therefore not suitable if a properly
internationalized or locale aware case mapping should be used. (For example,
in a Turkish locale, the upper case equivalent of the lowercase ASCII letter
.Li i
is the non-ASCII character
.Li capital i with dot above . )
For this case, it is better to apply an uppercase or lowercase conversion
on the string before passing it to the
.Li gperf
generated function.
.El
.Pp
.Ss  Options to specify the Language for the Output Code
These options are also available as declarations in the input file (see Section
.Dq Gperf Declarations ) .
.Pp
.Bl -tag -width Ds
.It  -L Va generated-language-name
.It  --language= Va generated-language-name
Instructs
.Li gperf
to generate code in the language specified by the option's argument. Languages
handled are currently:
.Pp
.Bl -tag -width Ds
.It  KR-C
Old-style K&R C. This language is understood by old-style C compilers and
ANSI C compilers, but ANSI C compilers may flag warnings (or even errors)
because of lacking
.Li const .
.Pp
.It  C
Common C. This language is understood by ANSI C compilers, and also by old-style
C compilers, provided that you
.Li #define const
to empty for compilers which don't know about this keyword.
.Pp
.It  ANSI-C
ANSI C. This language is understood by ANSI C compilers and C++ compilers.
.Pp
.It  C++
C++. This language is understood by C++ compilers.
.El
.Pp
The default is C.
.Pp
.It  -a
This option is supported for compatibility with previous releases of
.Li gperf .
It does not do anything.
.Pp
.It  -g
This option is supported for compatibility with previous releases of
.Li gperf .
It does not do anything.
.El
.Pp
.Ss  Options for fine tuning Details in the Output Code
Most of these options are also available as declarations in the input file
(see Section
.Dq Gperf Declarations ) .
.Pp
.Bl -tag -width Ds
.It  -K Va slot-name
.It  --slot-name= Va slot-name
This option is only useful when option
.Li -t
(or, equivalently, the
.Li %struct-type
declaration) has been given. By default, the program assumes the structure
component identifier for the keyword is
.Li name .
This option allows an arbitrary choice of identifier for this component, although
it still must occur as the first field in your supplied
.Li struct .
.Pp
.It  -F Va initializers
.It  --initializer-suffix= Va initializers
This option is only useful when option
.Li -t
(or, equivalently, the
.Li %struct-type
declaration) has been given. It permits to specify initializers for the structure
members following
.Va slot-name
in empty hash table entries. The list of initializers should start with a
comma. By default, the emitted code will zero-initialize structure members
following
.Va slot-name .
.Pp
.It  -H Va hash-function-name
.It  --hash-function-name= Va hash-function-name
Allows you to specify the name for the generated hash function. Default name
is
.Li hash .
This option permits the use of two hash tables in the same file.
.Pp
.It  -N Va lookup-function-name
.It  --lookup-function-name= Va lookup-function-name
Allows you to specify the name for the generated lookup function. Default
name is
.Li in_word_set .
This option permits multiple generated hash functions to be used in the same
application.
.Pp
.It  -Z Va class-name
.It  --class-name= Va class-name
This option is only useful when option
.Li -L C++
(or, equivalently, the
.Li %language=C++
declaration) has been given. It allows you to specify the name of generated
C++ class. Default name is
.Li Perfect_Hash .
.Pp
.It  -7
.It  --seven-bit
This option specifies that all strings that will be passed as arguments to
the generated hash function and the generated lookup function will solely
consist of 7-bit ASCII characters (bytes in the range 0..127). (Note that
the ANSI C functions
.Li isalnum
and
.Li isgraph
do
.Em not
guarantee that a byte is in this range. Only an explicit test like
.Li c >= 'A' && c <= 'Z'
guarantees this.) This was the default in versions of
.Li gperf
earlier than 2.7; now the default is to support 8-bit and multibyte characters.
.Pp
.It  -l
.It  --compare-lengths
Compare keyword lengths before trying a string comparison. This option is
mandatory for binary comparisons (see Section
.Dq Binary Strings ) .
It also might cut down on the number of string comparisons made during the
lookup, since keywords with different lengths are never compared via
.Li strcmp .
However, using
.Li -l
might greatly increase the size of the generated C code if the lookup table
range is large (which implies that the switch option
.Li -S
or
.Li %switch
is not enabled), since the length table contains as many elements as there
are entries in the lookup table.
.Pp
.It  -c
.It  --compare-strncmp
Generates C code that uses the
.Li strncmp
function to perform string comparisons. The default action is to use
.Li strcmp .
.Pp
.It  -C
.It  --readonly-tables
Makes the contents of all generated lookup tables constant, i.e., \(lqreadonly\(rq.
Many compilers can generate more efficient code for this by putting the tables
in readonly memory.
.Pp
.It  -E
.It  --enum
Define constant values using an enum local to the lookup function rather than
with #defines. This also means that different lookup functions can reside
in the same file. Thanks to James Clark
.Li <jjc@ai.mit.edu> .
.Pp
.It  -I
.It  --includes
Include the necessary system include file,
.Li <string.h> ,
at the beginning of the code. By default, this is not done; the user must
include this header file himself to allow compilation of the code.
.Pp
.It  -G
.It  --global-table
Generate the static table of keywords as a static global variable, rather
than hiding it inside of the lookup function (which is the default behavior).
.Pp
.It  -P
.It  --pic
Optimize the generated table for inclusion in shared libraries. This reduces
the startup time of programs using a shared library containing the generated
code. If the option
.Li -t
(or, equivalently, the
.Li %struct-type
declaration) is also given, the first field of the user-defined struct must
be of type
.Li int ,
not
.Li char * ,
because it will contain offsets into the string pool instead of actual strings.
To convert such an offset to a string, you can use the expression
.Li stringpool + Va o ,
where
.Va o
is the offset. The string pool name can be changed through the option
.Li --string-pool-name .
.Pp
.It  -Q Va string-pool-name
.It  --string-pool-name= Va string-pool-name
Allows you to specify the name of the generated string pool created by option
.Li -P .
The default name is
.Li stringpool .
This option permits the use of two hash tables in the same file, with
.Li -P
and even when the option
.Li -G
(or, equivalently, the
.Li %global-table
declaration) is given.
.Pp
.It  --null-strings
Use NULL strings instead of empty strings for empty keyword table entries.
This reduces the startup time of programs using a shared library containing
the generated code (but not as much as option
.Li -P ) ,
at the expense of one more test-and-branch instruction at run time.
.Pp
.It  -W Va hash-table-array-name
.It  --word-array-name= Va hash-table-array-name
Allows you to specify the name for the generated array containing the hash
table. Default name is
.Li wordlist .
This option permits the use of two hash tables in the same file, even when
the option
.Li -G
(or, equivalently, the
.Li %global-table
declaration) is given.
.Pp
.It  --length-table-name= Va length-table-array-name
Allows you to specify the name for the generated array containing the length
table. Default name is
.Li lengthtable .
This option permits the use of two length tables in the same file, even when
the option
.Li -G
(or, equivalently, the
.Li %global-table
declaration) is given.
.Pp
.It  -S Va total-switch-statements
.It  --switch= Va total-switch-statements
Causes the generated C code to use a
.Li switch
statement scheme, rather than an array lookup table. This can lead to a reduction
in both time and space requirements for some input files. The argument to
this option determines how many
.Li switch
statements are generated. A value of 1 generates 1
.Li switch
containing all the elements, a value of 2 generates 2 tables with 1/2 the
elements in each
.Li switch ,
etc. This is useful since many C compilers cannot correctly generate code
for large
.Li switch
statements. This option was inspired in part by Keith Bostic's original C
program.
.Pp
.It  -T
.It  --omit-struct-type
Prevents the transfer of the type declaration to the output file. Use this
option if the type is already defined elsewhere.
.Pp
.It  -p
This option is supported for compatibility with previous releases of
.Li gperf .
It does not do anything.
.El
.Pp
.Ss  Options for changing the Algorithms employed by Li gperf
.Bl -tag -width Ds
.It  -k Va selected-byte-positions
.It  --key-positions= Va selected-byte-positions
Allows selection of the byte positions used in the keywords' hash function.
The allowable choices range between 1-255, inclusive. The positions are separated
by commas, e.g.,
.Li -k 9,4,13,14
; ranges may be used, e.g.,
.Li -k 2-7
; and positions may occur in any order. Furthermore, the wildcard '*' causes
the generated hash function to consider
.Sy all
byte positions in each keyword, whereas '$' instructs the hash function to
use the \(lqfinal byte\(rq of a keyword (this is the only way to use a byte position
greater than 255, incidentally).
.Pp
For instance, the option
.Li -k 1,2,4,6-10,'$'
generates a hash function that considers positions 1,2,4,6,7,8,9,10, plus
the last byte in each keyword (which may be at a different position for each
keyword, obviously). Keywords with length less than the indicated byte positions
work properly, since selected byte positions exceeding the keyword length
are simply not referenced in the hash function.
.Pp
This option is not normally needed since version 2.8 of
.Li gperf
; the default byte positions are computed depending on the keyword set, through
a search that minimizes the number of byte positions.
.Pp
.It  -D
.It  --duplicates
Handle keywords whose selected byte sets hash to duplicate values. Duplicate
hash values can occur if a set of keywords has the same names, but possesses
different attributes, or if the selected byte positions are not well chosen.
With the -D option
.Li gperf
treats all these keywords as part of an equivalence class and generates a
perfect hash function with multiple comparisons for duplicate keywords. It
is up to you to completely disambiguate the keywords by modifying the generated
C code. However,
.Li gperf
helps you out by organizing the output.
.Pp
Using this option usually means that the generated hash function is no longer
perfect. On the other hand, it permits
.Li gperf
to work on keyword sets that it otherwise could not handle.
.Pp
.It  -m Va iterations
.It  --multiple-iterations= Va iterations
Perform multiple choices of the
.Li -i
and
.Li -j
values, and choose the best results. This increases the running time by a
factor of
.Va iterations
but does a good job minimizing the generated table size.
.Pp
.It  -i Va initial-value
.It  --initial-asso= Va initial-value
Provides an initial
.Va value
for the associate values array. Default is 0. Increasing the initial value
helps inflate the final table size, possibly leading to more time efficient
keyword lookups. Note that this option is not particularly useful when
.Li -S
(or, equivalently,
.Li %switch )
is used. Also,
.Li -i
is overridden when the
.Li -r
option is used.
.Pp
.It  -j Va jump-value
.It  --jump= Va jump-value
Affects the \(lqjump value\(rq, i.e., how far to advance the associated byte value
upon collisions.
.Va Jump-value
is rounded up to an odd number, the default is 5. If the
.Va jump-value
is 0
.Li gperf
jumps by random amounts.
.Pp
.It  -n
.It  --no-strlen
Instructs the generator not to include the length of a keyword when computing
its hash value. This may save a few assembly instructions in the generated
lookup table.
.Pp
.It  -r
.It  --random
Utilizes randomness to initialize the associated values table. This frequently
generates solutions faster than using deterministic initialization (which
starts all associated values at 0). Furthermore, using the randomization option
generally increases the size of the table.
.Pp
.It  -s Va size-multiple
.It  --size-multiple= Va size-multiple
Affects the size of the generated hash table. The numeric argument for this
option indicates \(lqhow many times larger or smaller\(rq the maximum associated value
range should be, in relationship to the number of keywords. It can be written
as an integer, a floating-point number or a fraction. For example, a value
of 3 means \(lqallow the maximum associated value to be about 3 times larger than
the number of input keywords\(rq. Conversely, a value of 1/3 means \(lqallow the maximum
associated value to be about 3 times smaller than the number of input keywords\(rq.
Values smaller than 1 are useful for limiting the overall size of the generated
hash table, though the option
.Li -m
is better at this purpose.
.Pp
If `generate switch' option
.Li -S
(or, equivalently,
.Li %switch )
is
.Em not
enabled, the maximum associated value influences the static array table size,
and a larger table should decrease the time required for an unsuccessful search,
at the expense of extra table space.
.Pp
The default value is 1, thus the default maximum associated value about the
same size as the number of keywords (for efficiency, the maximum associated
value is always rounded up to a power of 2). The actual table size may vary
somewhat, since this technique is essentially a heuristic.
.El
.Pp
.Ss  Informative Output
.Bl -tag -width Ds
.It  -h
.It  --help
Prints a short summary on the meaning of each program option. Aborts further
program execution.
.Pp
.It  -v
.It  --version
Prints out the current version number.
.Pp
.It  -d
.It  --debug
Enables the debugging option. This produces verbose diagnostics to \(lqstandard
error\(rq when
.Li gperf
is executing. It is useful both for maintaining the program and for determining
whether a given set of options is actually speeding up the search for a solution.
Some useful information is dumped at the end of the program when the
.Li -d
option is enabled.
.El
.Pp
.Sh  Known Bugs and Limitations with Li gperf
The following are some limitations with the current release of
.Li gperf :
.Pp
.Bl -bullet
.It
The
.Li gperf
utility is tuned to execute quickly, and works quickly for small to medium
size data sets (around 1000 keywords). It is extremely useful for maintaining
perfect hash functions for compiler keyword sets. Several recent enhancements
now enable
.Li gperf
to work efficiently on much larger keyword sets (over 15,000 keywords). When
processing large keyword sets it helps greatly to have over 8 megs of RAM.
.Pp
.It
The size of the generate static keyword array can get
.Em extremely
large if the input keyword file is large or if the keywords are quite similar.
This tends to slow down the compilation of the generated C code, and
.Em greatly
inflates the object code size. If this situation occurs, consider using the
.Li -S
option to reduce data size, potentially increasing keyword recognition time
a negligible amount. Since many C compilers cannot correctly generate code
for large switch statements it is important to qualify the
.Va -S
option with an appropriate numerical argument that controls the number of
switch statements generated.
.Pp
.It
The maximum number of selected byte positions has an arbitrary limit of 255.
This restriction should be removed, and if anyone considers this a problem
write me and let me know so I can remove the constraint.
.El
.Pp
.Sh  Things Still Left to Do
It should be \(lqrelatively\(rq easy to replace the current perfect hash function
algorithm with a more exhaustive approach; the perfect hash module is essential
independent from other program modules. Additional worthwhile improvements
include:
.Pp
.Bl -bullet
.It
Another useful extension involves modifying the program to generate \(lqminimal\(rq
perfect hash functions (under certain circumstances, the current version can
be rather extravagant in the generated table size). This is mostly of theoretical
interest, since a sparse table often produces faster lookups, and use of the
.Li -S
.Li switch
option can minimize the data size, at the expense of slightly longer lookups
(note that the gcc compiler generally produces good code for
.Li switch
statements, reducing the need for more complex schemes).
.Pp
.It
In addition to improving the algorithm, it would also be useful to generate
an Ada package as the code output, in addition to the current C and C++ routines.
.El
.Pp
.Sh  Bibliography
[1] Chang, C.C.:
.Em A Scheme for Constructing Ordered Minimal Perfect Hashing Functions
Information Sciences 39(1986), 187-195.
.Pp
[2] Cichelli, Richard J.
.Em Author's Response to \(lqOn Cichelli's Minimal Perfect Hash Functions Method\(rq
Communications of the ACM, 23, 12(December 1980), 729.
.Pp
[3] Cichelli, Richard J.
.Em Minimal Perfect Hash Functions Made Simple
Communications of the ACM, 23, 1(January 1980), 17-19.
.Pp
[4] Cook, C. R. and Oldehoeft, R.R.
.Em A Letter Oriented Minimal Perfect Hashing Function
SIGPLAN Notices, 17, 9(September 1982), 18-27.
.Pp
[5] Cormack, G. V. and Horspool, R. N. S. and Kaiserwerth, M.
.Em Practical Perfect Hashing
Computer Journal, 28, 1(January 1985), 54-58.
.Pp
[6] Jaeschke, G.
.Em Reciprocal Hashing: A Method for Generating Minimal Perfect Hashing Functions
Communications of the ACM, 24, 12(December 1981), 829-833.
.Pp
[7] Jaeschke, G. and Osterburg, G.
.Em On Cichelli's Minimal Perfect Hash Functions Method
Communications of the ACM, 23, 12(December 1980), 728-729.
.Pp
[8] Sager, Thomas J.
.Em A Polynomial Time Generator for Minimal Perfect Hash Functions
Communications of the ACM, 28, 5(December 1985), 523-532
.Pp
[9] Schmidt, Douglas C.
.Em GPERF: A Perfect Hash Function Generator
Second USENIX C++ Conference Proceedings, April 1990.
.Pp
[10] Schmidt, Douglas C.
.Em GPERF: A Perfect Hash Function Generator
C++ Report, SIGS 10 10 (November/December 1998).
.Pp
[11] Sebesta, R.W. and Taylor, M.A.
.Em Minimal Perfect Hash Functions for Reserved Word Lists
SIGPLAN Notices, 20, 12(September 1985), 47-53.
.Pp
[12] Sprugnoli, R.
.Em Perfect Hashing Functions: A Single Probe Retrieving Method for Static Sets
Communications of the ACM, 20 11(November 1977), 841-850.
.Pp
[13] Stallman, Richard M.
.Em Using and Porting GNU CC
Free Software Foundation, 1988.
.Pp
[14] Stroustrup, Bjarne
.Em The C++ Programming Language.
Addison-Wesley, 1986.
.Pp
[15] Tiemann, Michael D.
.Em User's Guide to GNU C++
Free Software Foundation, 1989.
.Pp
.Sh  Concept Index