Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
// Singly-linked list implementation -*- C++ -*-

// Copyright (C) 2001, 2002, 2004, 2005 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
// USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

/*
 * Copyright (c) 1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 */

/** @file ext/slist
 *  This file is a GNU extension to the Standard C++ Library (possibly
 *  containing extensions from the HP/SGI STL subset). 
 */

#ifndef _SLIST
#define _SLIST 1

#include <bits/stl_algobase.h>
#include <bits/allocator.h>
#include <bits/stl_construct.h>
#include <bits/stl_uninitialized.h>
#include <bits/concept_check.h>

_GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)

  using std::size_t;
  using std::ptrdiff_t;
  using std::_Construct;
  using std::_Destroy;
  using std::allocator;
  using std::__true_type;
  using std::__false_type;

  struct _Slist_node_base
  {
    _Slist_node_base* _M_next;
  };
  
  inline _Slist_node_base*
  __slist_make_link(_Slist_node_base* __prev_node,
		    _Slist_node_base* __new_node)
  {
    __new_node->_M_next = __prev_node->_M_next;
    __prev_node->_M_next = __new_node;
    return __new_node;
  }

  inline _Slist_node_base*
  __slist_previous(_Slist_node_base* __head,
		   const _Slist_node_base* __node)
  {
    while (__head && __head->_M_next != __node)
      __head = __head->_M_next;
    return __head;
  }

  inline const _Slist_node_base*
  __slist_previous(const _Slist_node_base* __head,
		   const _Slist_node_base* __node)
  {
    while (__head && __head->_M_next != __node)
      __head = __head->_M_next;
    return __head;
  }

  inline void
  __slist_splice_after(_Slist_node_base* __pos,
		       _Slist_node_base* __before_first,
		       _Slist_node_base* __before_last)
  {
    if (__pos != __before_first && __pos != __before_last)
      {
	_Slist_node_base* __first = __before_first->_M_next;
	_Slist_node_base* __after = __pos->_M_next;
	__before_first->_M_next = __before_last->_M_next;
	__pos->_M_next = __first;
	__before_last->_M_next = __after;
      }
  }

  inline void
  __slist_splice_after(_Slist_node_base* __pos, _Slist_node_base* __head)
  {
    _Slist_node_base* __before_last = __slist_previous(__head, 0);
    if (__before_last != __head)
      {
	_Slist_node_base* __after = __pos->_M_next;
	__pos->_M_next = __head->_M_next;
	__head->_M_next = 0;
	__before_last->_M_next = __after;
      }
  }

  inline _Slist_node_base*
  __slist_reverse(_Slist_node_base* __node)
  {
    _Slist_node_base* __result = __node;
    __node = __node->_M_next;
    __result->_M_next = 0;
    while(__node)
      {
	_Slist_node_base* __next = __node->_M_next;
	__node->_M_next = __result;
	__result = __node;
	__node = __next;
      }
    return __result;
  }

  inline size_t
  __slist_size(_Slist_node_base* __node)
  {
    size_t __result = 0;
    for (; __node != 0; __node = __node->_M_next)
      ++__result;
    return __result;
  }

  template <class _Tp>
    struct _Slist_node : public _Slist_node_base
    {
      _Tp _M_data;
    };

  struct _Slist_iterator_base
  {
    typedef size_t                    size_type;
    typedef ptrdiff_t                 difference_type;
    typedef std::forward_iterator_tag iterator_category;

    _Slist_node_base* _M_node;
    
    _Slist_iterator_base(_Slist_node_base* __x)
    : _M_node(__x) {}

    void
    _M_incr()
    { _M_node = _M_node->_M_next; }

    bool
    operator==(const _Slist_iterator_base& __x) const
    { return _M_node == __x._M_node; }

    bool
    operator!=(const _Slist_iterator_base& __x) const
    { return _M_node != __x._M_node; }
  };

  template <class _Tp, class _Ref, class _Ptr>
    struct _Slist_iterator : public _Slist_iterator_base
    {
      typedef _Slist_iterator<_Tp, _Tp&, _Tp*>             iterator;
      typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
      typedef _Slist_iterator<_Tp, _Ref, _Ptr>             _Self;

      typedef _Tp              value_type;
      typedef _Ptr             pointer;
      typedef _Ref             reference;
      typedef _Slist_node<_Tp> _Node;

      explicit
      _Slist_iterator(_Node* __x)
      : _Slist_iterator_base(__x) {}

      _Slist_iterator()
      : _Slist_iterator_base(0) {}

      _Slist_iterator(const iterator& __x)
      : _Slist_iterator_base(__x._M_node) {}

      reference
      operator*() const
      { return ((_Node*) _M_node)->_M_data; }

      pointer
      operator->() const
      { return &(operator*()); }

      _Self&
      operator++()
      {
	_M_incr();
	return *this;
      }

      _Self
      operator++(int)
      {
	_Self __tmp = *this;
	_M_incr();
	return __tmp;
      }
    };

  template <class _Tp, class _Alloc>
    struct _Slist_base
    : public _Alloc::template rebind<_Slist_node<_Tp> >::other
    {
      typedef typename _Alloc::template rebind<_Slist_node<_Tp> >::other
        _Node_alloc;
      typedef _Alloc allocator_type;

      allocator_type
      get_allocator() const
      { return *static_cast<const _Node_alloc*>(this); }

      _Slist_base(const allocator_type& __a)
      : _Node_alloc(__a)
      { this->_M_head._M_next = 0; }

      ~_Slist_base()
      { _M_erase_after(&this->_M_head, 0); }

    protected:
      _Slist_node_base _M_head;

      _Slist_node<_Tp>*
      _M_get_node()
      { return _Node_alloc::allocate(1); }
  
      void
      _M_put_node(_Slist_node<_Tp>* __p)
      { _Node_alloc::deallocate(__p, 1); }

    protected:
      _Slist_node_base* _M_erase_after(_Slist_node_base* __pos)
      {
	_Slist_node<_Tp>* __next = (_Slist_node<_Tp>*) (__pos->_M_next);
	_Slist_node_base* __next_next = __next->_M_next;
	__pos->_M_next = __next_next;
	get_allocator().destroy(&__next->_M_data);
	_M_put_node(__next);
	return __next_next;
      }
      _Slist_node_base* _M_erase_after(_Slist_node_base*, _Slist_node_base*);
    };

  template <class _Tp, class _Alloc>
    _Slist_node_base*
    _Slist_base<_Tp,_Alloc>::_M_erase_after(_Slist_node_base* __before_first,
					    _Slist_node_base* __last_node)
    {
      _Slist_node<_Tp>* __cur = (_Slist_node<_Tp>*) (__before_first->_M_next);
      while (__cur != __last_node)
	{
	  _Slist_node<_Tp>* __tmp = __cur;
	  __cur = (_Slist_node<_Tp>*) __cur->_M_next;
	  get_allocator().destroy(&__tmp->_M_data);
	  _M_put_node(__tmp);
	}
      __before_first->_M_next = __last_node;
      return __last_node;
    }

  /**
   *  This is an SGI extension.
   *  @ingroup SGIextensions
   *  @doctodo
   */
  template <class _Tp, class _Alloc = allocator<_Tp> >
    class slist : private _Slist_base<_Tp,_Alloc>
    {
      // concept requirements
      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
	
    private:
      typedef _Slist_base<_Tp,_Alloc> _Base;

    public:
      typedef _Tp               value_type;
      typedef value_type*       pointer;
      typedef const value_type* const_pointer;
      typedef value_type&       reference;
      typedef const value_type& const_reference;
      typedef size_t            size_type;
      typedef ptrdiff_t         difference_type;
      
      typedef _Slist_iterator<_Tp, _Tp&, _Tp*>             iterator;
      typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
      
      typedef typename _Base::allocator_type allocator_type;

      allocator_type
      get_allocator() const
      { return _Base::get_allocator(); }

    private:
      typedef _Slist_node<_Tp>      _Node;
      typedef _Slist_node_base      _Node_base;
      typedef _Slist_iterator_base  _Iterator_base;
      
      _Node*
      _M_create_node(const value_type& __x)
      {
	_Node* __node = this->_M_get_node();
	try
	  {
	    get_allocator().construct(&__node->_M_data, __x);
	    __node->_M_next = 0;
	  }
	catch(...)
	  {
	    this->_M_put_node(__node);
	    __throw_exception_again;
	  }
	return __node;
      }

      _Node*
      _M_create_node()
      {
	_Node* __node = this->_M_get_node();
	try
	  {
	    get_allocator().construct(&__node->_M_data, value_type());
	    __node->_M_next = 0;
	  }
	catch(...)
	  {
	    this->_M_put_node(__node);
	    __throw_exception_again;
	  }
	return __node;
      }

    public:
      explicit
      slist(const allocator_type& __a = allocator_type())
      : _Base(__a) {}

      slist(size_type __n, const value_type& __x,
	    const allocator_type& __a =  allocator_type())
      : _Base(__a)
      { _M_insert_after_fill(&this->_M_head, __n, __x); }

      explicit
      slist(size_type __n)
      : _Base(allocator_type())
      { _M_insert_after_fill(&this->_M_head, __n, value_type()); }

      // We don't need any dispatching tricks here, because
      // _M_insert_after_range already does them.
      template <class _InputIterator>
        slist(_InputIterator __first, _InputIterator __last,
	      const allocator_type& __a =  allocator_type())
	: _Base(__a)
        { _M_insert_after_range(&this->_M_head, __first, __last); }

      slist(const slist& __x)
      : _Base(__x.get_allocator())
      { _M_insert_after_range(&this->_M_head, __x.begin(), __x.end()); }

      slist&
      operator= (const slist& __x);

      ~slist() {}

    public:
      // assign(), a generalized assignment member function.  Two
      // versions: one that takes a count, and one that takes a range.
      // The range version is a member template, so we dispatch on whether
      // or not the type is an integer.
      
      void
      assign(size_type __n, const _Tp& __val)
      { _M_fill_assign(__n, __val); }

      void
      _M_fill_assign(size_type __n, const _Tp& __val);

      template <class _InputIterator>
        void
        assign(_InputIterator __first, _InputIterator __last)
        {
	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
	  _M_assign_dispatch(__first, __last, _Integral());
	}

      template <class _Integer>
      void
      _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
      { _M_fill_assign((size_type) __n, (_Tp) __val); }

      template <class _InputIterator>
      void
      _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
			 __false_type);

    public:

      iterator
      begin()
      { return iterator((_Node*)this->_M_head._M_next); }

      const_iterator
      begin() const
      { return const_iterator((_Node*)this->_M_head._M_next);}

      iterator
      end()
      { return iterator(0); }

      const_iterator
      end() const
      { return const_iterator(0); }

      // Experimental new feature: before_begin() returns a
      // non-dereferenceable iterator that, when incremented, yields
      // begin().  This iterator may be used as the argument to
      // insert_after, erase_after, etc.  Note that even for an empty
      // slist, before_begin() is not the same iterator as end().  It
      // is always necessary to increment before_begin() at least once to
      // obtain end().
      iterator
      before_begin()
      { return iterator((_Node*) &this->_M_head); }

      const_iterator
      before_begin() const
      { return const_iterator((_Node*) &this->_M_head); }

      size_type
      size() const
      { return __slist_size(this->_M_head._M_next); }

      size_type
      max_size() const
      { return size_type(-1); }

      bool
      empty() const
      { return this->_M_head._M_next == 0; }

      void
      swap(slist& __x)
      { std::swap(this->_M_head._M_next, __x._M_head._M_next); }

    public:

      reference
      front()
      { return ((_Node*) this->_M_head._M_next)->_M_data; }

      const_reference
      front() const
      { return ((_Node*) this->_M_head._M_next)->_M_data; }

      void
      push_front(const value_type& __x)
      { __slist_make_link(&this->_M_head, _M_create_node(__x)); }

      void
      push_front()
      { __slist_make_link(&this->_M_head, _M_create_node()); }

      void
      pop_front()
      {
	_Node* __node = (_Node*) this->_M_head._M_next;
	this->_M_head._M_next = __node->_M_next;
	get_allocator().destroy(&__node->_M_data);
	this->_M_put_node(__node);
      }

      iterator
      previous(const_iterator __pos)
      { return iterator((_Node*) __slist_previous(&this->_M_head,
						  __pos._M_node)); }

      const_iterator
      previous(const_iterator __pos) const
      { return const_iterator((_Node*) __slist_previous(&this->_M_head,
							__pos._M_node)); }

    private:
      _Node*
      _M_insert_after(_Node_base* __pos, const value_type& __x)
      { return (_Node*) (__slist_make_link(__pos, _M_create_node(__x))); }

      _Node*
      _M_insert_after(_Node_base* __pos)
      { return (_Node*) (__slist_make_link(__pos, _M_create_node())); }

      void
      _M_insert_after_fill(_Node_base* __pos,
			   size_type __n, const value_type& __x)
      {
	for (size_type __i = 0; __i < __n; ++__i)
	  __pos = __slist_make_link(__pos, _M_create_node(__x));
      }

      // Check whether it's an integral type.  If so, it's not an iterator.
      template <class _InIterator>
        void
        _M_insert_after_range(_Node_base* __pos,
			      _InIterator __first, _InIterator __last)
        {
	  typedef typename std::__is_integer<_InIterator>::__type _Integral;
	  _M_insert_after_range(__pos, __first, __last, _Integral());
	}

      template <class _Integer>
        void
        _M_insert_after_range(_Node_base* __pos, _Integer __n, _Integer __x,
			      __true_type)
        { _M_insert_after_fill(__pos, __n, __x); }

      template <class _InIterator>
        void
        _M_insert_after_range(_Node_base* __pos,
			      _InIterator __first, _InIterator __last,
			      __false_type)
        {
	  while (__first != __last)
	    {
	      __pos = __slist_make_link(__pos, _M_create_node(*__first));
	      ++__first;
	    }
	}

    public:
      iterator
      insert_after(iterator __pos, const value_type& __x)
      { return iterator(_M_insert_after(__pos._M_node, __x)); }

      iterator
      insert_after(iterator __pos)
      { return insert_after(__pos, value_type()); }

      void
      insert_after(iterator __pos, size_type __n, const value_type& __x)
      { _M_insert_after_fill(__pos._M_node, __n, __x); }

      // We don't need any dispatching tricks here, because
      // _M_insert_after_range already does them.
      template <class _InIterator>
        void
        insert_after(iterator __pos, _InIterator __first, _InIterator __last)
        { _M_insert_after_range(__pos._M_node, __first, __last); }

      iterator
      insert(iterator __pos, const value_type& __x)
      { return iterator(_M_insert_after(__slist_previous(&this->_M_head,
							 __pos._M_node),
					__x)); }

      iterator
      insert(iterator __pos)
      { return iterator(_M_insert_after(__slist_previous(&this->_M_head,
							 __pos._M_node),
					value_type())); }

      void
      insert(iterator __pos, size_type __n, const value_type& __x)
      { _M_insert_after_fill(__slist_previous(&this->_M_head, __pos._M_node),
			     __n, __x); }

      // We don't need any dispatching tricks here, because
      // _M_insert_after_range already does them.
      template <class _InIterator>
        void
        insert(iterator __pos, _InIterator __first, _InIterator __last)
        { _M_insert_after_range(__slist_previous(&this->_M_head, __pos._M_node),
				__first, __last); }

    public:
      iterator
      erase_after(iterator __pos)
      { return iterator((_Node*) this->_M_erase_after(__pos._M_node)); }

      iterator
      erase_after(iterator __before_first, iterator __last)
      { 
	return iterator((_Node*) this->_M_erase_after(__before_first._M_node,
						      __last._M_node));
      }

      iterator
      erase(iterator __pos)
      { 
	return iterator((_Node*) this->_M_erase_after
			(__slist_previous(&this->_M_head, __pos._M_node)));
      }

      iterator
      erase(iterator __first, iterator __last)
      { 
	return iterator((_Node*) this->_M_erase_after
			(__slist_previous(&this->_M_head, __first._M_node),
			 __last._M_node));
      }
      
      void
      resize(size_type new_size, const _Tp& __x);

      void
      resize(size_type new_size)
      { resize(new_size, _Tp()); }

      void
      clear()
      { this->_M_erase_after(&this->_M_head, 0); }

    public:
      // Moves the range [__before_first + 1, __before_last + 1) to *this,
      //  inserting it immediately after __pos.  This is constant time.
      void
      splice_after(iterator __pos,
		   iterator __before_first, iterator __before_last)
      {
	if (__before_first != __before_last)
	  __slist_splice_after(__pos._M_node, __before_first._M_node,
			       __before_last._M_node);
      }

      // Moves the element that follows __prev to *this, inserting it
      // immediately after __pos.  This is constant time.
      void
      splice_after(iterator __pos, iterator __prev)
      { __slist_splice_after(__pos._M_node,
			     __prev._M_node, __prev._M_node->_M_next); }

      // Removes all of the elements from the list __x to *this, inserting
      // them immediately after __pos.  __x must not be *this.  Complexity:
      // linear in __x.size().
      void
      splice_after(iterator __pos, slist& __x)
      { __slist_splice_after(__pos._M_node, &__x._M_head); }

      // Linear in distance(begin(), __pos), and linear in __x.size().
      void
      splice(iterator __pos, slist& __x)
      {
	if (__x._M_head._M_next)
	  __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
			       &__x._M_head,
			       __slist_previous(&__x._M_head, 0)); }

      // Linear in distance(begin(), __pos), and in distance(__x.begin(), __i).
      void
      splice(iterator __pos, slist& __x, iterator __i)
      { __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
			     __slist_previous(&__x._M_head, __i._M_node),
			     __i._M_node); }

      // Linear in distance(begin(), __pos), in distance(__x.begin(), __first),
      // and in distance(__first, __last).
      void
      splice(iterator __pos, slist& __x, iterator __first, iterator __last)
      {
	if (__first != __last)
	  __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
			       __slist_previous(&__x._M_head, __first._M_node),
			       __slist_previous(__first._M_node,
						__last._M_node));
      }

    public:
      void
      reverse()
      {
	if (this->_M_head._M_next)
	  this->_M_head._M_next = __slist_reverse(this->_M_head._M_next);
      }

      void
      remove(const _Tp& __val);

      void
      unique();
      
      void
      merge(slist& __x);
      
      void
      sort();

      template <class _Predicate>
        void
        remove_if(_Predicate __pred);

      template <class _BinaryPredicate>
        void
        unique(_BinaryPredicate __pred);

      template <class _StrictWeakOrdering>
        void
        merge(slist&, _StrictWeakOrdering);

      template <class _StrictWeakOrdering>
        void
        sort(_StrictWeakOrdering __comp);
    };

  template <class _Tp, class _Alloc>
    slist<_Tp, _Alloc>&
    slist<_Tp, _Alloc>::operator=(const slist<_Tp, _Alloc>& __x)
    {
      if (&__x != this)
	{
	  _Node_base* __p1 = &this->_M_head;
	  _Node* __n1 = (_Node*) this->_M_head._M_next;
	  const _Node* __n2 = (const _Node*) __x._M_head._M_next;
	  while (__n1 && __n2)
	    {
	      __n1->_M_data = __n2->_M_data;
	      __p1 = __n1;
	      __n1 = (_Node*) __n1->_M_next;
	      __n2 = (const _Node*) __n2->_M_next;
	    }
	  if (__n2 == 0)
	    this->_M_erase_after(__p1, 0);
	  else
	    _M_insert_after_range(__p1, const_iterator((_Node*)__n2),
                                  const_iterator(0));
	}
      return *this;
    }

  template <class _Tp, class _Alloc>
    void
    slist<_Tp, _Alloc>::_M_fill_assign(size_type __n, const _Tp& __val)
    {
      _Node_base* __prev = &this->_M_head;
      _Node* __node = (_Node*) this->_M_head._M_next;
      for (; __node != 0 && __n > 0; --__n)
	{
	  __node->_M_data = __val;
	  __prev = __node;
	  __node = (_Node*) __node->_M_next;
	}
      if (__n > 0)
	_M_insert_after_fill(__prev, __n, __val);
      else
	this->_M_erase_after(__prev, 0);
    }
  
  template <class _Tp, class _Alloc>
    template <class _InputIterator>
      void
      slist<_Tp, _Alloc>::_M_assign_dispatch(_InputIterator __first,
					     _InputIterator __last,
					     __false_type)
      {
	_Node_base* __prev = &this->_M_head;
	_Node* __node = (_Node*) this->_M_head._M_next;
	while (__node != 0 && __first != __last)
	  {
	    __node->_M_data = *__first;
	    __prev = __node;
	    __node = (_Node*) __node->_M_next;
	    ++__first;
	  }
	if (__first != __last)
	  _M_insert_after_range(__prev, __first, __last);
	else
	  this->_M_erase_after(__prev, 0);
      }
  
  template <class _Tp, class _Alloc>
    inline bool
    operator==(const slist<_Tp, _Alloc>& _SL1, const slist<_Tp, _Alloc>& _SL2)
    {
      typedef typename slist<_Tp,_Alloc>::const_iterator const_iterator;
      const_iterator __end1 = _SL1.end();
      const_iterator __end2 = _SL2.end();
      
      const_iterator __i1 = _SL1.begin();
      const_iterator __i2 = _SL2.begin();
      while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2)
	{
	  ++__i1;
	  ++__i2;
	}
      return __i1 == __end1 && __i2 == __end2;
    }


  template <class _Tp, class _Alloc>
    inline bool
    operator<(const slist<_Tp, _Alloc>& _SL1, const slist<_Tp, _Alloc>& _SL2)
    { return std::lexicographical_compare(_SL1.begin(), _SL1.end(),
					  _SL2.begin(), _SL2.end()); }

  template <class _Tp, class _Alloc>
    inline bool
    operator!=(const slist<_Tp, _Alloc>& _SL1, const slist<_Tp, _Alloc>& _SL2)
    { return !(_SL1 == _SL2); }

  template <class _Tp, class _Alloc>
    inline bool
    operator>(const slist<_Tp, _Alloc>& _SL1, const slist<_Tp, _Alloc>& _SL2)
    { return _SL2 < _SL1; }

  template <class _Tp, class _Alloc>
    inline bool
    operator<=(const slist<_Tp, _Alloc>& _SL1, const slist<_Tp, _Alloc>& _SL2)
    { return !(_SL2 < _SL1); }

  template <class _Tp, class _Alloc>
    inline bool
    operator>=(const slist<_Tp, _Alloc>& _SL1, const slist<_Tp, _Alloc>& _SL2)
    { return !(_SL1 < _SL2); }

  template <class _Tp, class _Alloc>
    inline void
    swap(slist<_Tp, _Alloc>& __x, slist<_Tp, _Alloc>& __y)
    { __x.swap(__y); }

  template <class _Tp, class _Alloc>
    void
    slist<_Tp, _Alloc>::resize(size_type __len, const _Tp& __x)
    {
      _Node_base* __cur = &this->_M_head;
      while (__cur->_M_next != 0 && __len > 0)
	{
	  --__len;
	  __cur = __cur->_M_next;
	}
      if (__cur->_M_next)
	this->_M_erase_after(__cur, 0);
      else
	_M_insert_after_fill(__cur, __len, __x);
    }

  template <class _Tp, class _Alloc>
    void
    slist<_Tp, _Alloc>::remove(const _Tp& __val)
    { 
      _Node_base* __cur = &this->_M_head;
      while (__cur && __cur->_M_next)
	{
	  if (((_Node*) __cur->_M_next)->_M_data == __val)
	    this->_M_erase_after(__cur);
	  else
	    __cur = __cur->_M_next;
	}
    }

  template <class _Tp, class _Alloc>
    void
    slist<_Tp, _Alloc>::unique()
    {
      _Node_base* __cur = this->_M_head._M_next;
      if (__cur)
	{
	  while (__cur->_M_next)
	    {
	      if (((_Node*)__cur)->_M_data
		  == ((_Node*)(__cur->_M_next))->_M_data)
		this->_M_erase_after(__cur);
	      else
		__cur = __cur->_M_next;
	    }
	}
    }

  template <class _Tp, class _Alloc>
    void
    slist<_Tp, _Alloc>::merge(slist<_Tp, _Alloc>& __x)
    {
      _Node_base* __n1 = &this->_M_head;
      while (__n1->_M_next && __x._M_head._M_next)
	{
	  if (((_Node*) __x._M_head._M_next)->_M_data
	      < ((_Node*) __n1->_M_next)->_M_data)
	    __slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
	  __n1 = __n1->_M_next;
	}
      if (__x._M_head._M_next)
	{
	  __n1->_M_next = __x._M_head._M_next;
	  __x._M_head._M_next = 0;
	}
    }

  template <class _Tp, class _Alloc>
    void
    slist<_Tp, _Alloc>::sort()
    {
      if (this->_M_head._M_next && this->_M_head._M_next->_M_next)
	{
	  slist __carry;
	  slist __counter[64];
	  int __fill = 0;
	  while (!empty())
	    {
	      __slist_splice_after(&__carry._M_head,
				   &this->_M_head, this->_M_head._M_next);
	      int __i = 0;
	      while (__i < __fill && !__counter[__i].empty())
		{
		  __counter[__i].merge(__carry);
		  __carry.swap(__counter[__i]);
		  ++__i;
		}
	      __carry.swap(__counter[__i]);
	      if (__i == __fill)
		++__fill;
	    }
	  
	  for (int __i = 1; __i < __fill; ++__i)
	    __counter[__i].merge(__counter[__i-1]);
	  this->swap(__counter[__fill-1]);
	}
    }

  template <class _Tp, class _Alloc>
    template <class _Predicate>
      void slist<_Tp, _Alloc>::remove_if(_Predicate __pred)
      {
	_Node_base* __cur = &this->_M_head;
	while (__cur->_M_next)
	  {
	    if (__pred(((_Node*) __cur->_M_next)->_M_data))
	      this->_M_erase_after(__cur);
	    else
	      __cur = __cur->_M_next;
	  }
      }

  template <class _Tp, class _Alloc>
    template <class _BinaryPredicate>
      void
      slist<_Tp, _Alloc>::unique(_BinaryPredicate __pred)
      {
	_Node* __cur = (_Node*) this->_M_head._M_next;
	if (__cur)
	  {
	    while (__cur->_M_next)
	      {
		if (__pred(((_Node*)__cur)->_M_data,
			   ((_Node*)(__cur->_M_next))->_M_data))
		  this->_M_erase_after(__cur);
		else
		  __cur = (_Node*) __cur->_M_next;
	      }
	  }
      }

  template <class _Tp, class _Alloc>
    template <class _StrictWeakOrdering>
      void
      slist<_Tp, _Alloc>::merge(slist<_Tp, _Alloc>& __x,
			       _StrictWeakOrdering __comp)
      {
	_Node_base* __n1 = &this->_M_head;
	while (__n1->_M_next && __x._M_head._M_next)
	  {
	    if (__comp(((_Node*) __x._M_head._M_next)->_M_data,
		       ((_Node*) __n1->_M_next)->_M_data))
	      __slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
	    __n1 = __n1->_M_next;
	  }
	if (__x._M_head._M_next)
	  {
	    __n1->_M_next = __x._M_head._M_next;
	    __x._M_head._M_next = 0;
	  }
      }

  template <class _Tp, class _Alloc>
    template <class _StrictWeakOrdering>
      void
      slist<_Tp, _Alloc>::sort(_StrictWeakOrdering __comp)
      {
	if (this->_M_head._M_next && this->_M_head._M_next->_M_next)
	  {
	    slist __carry;
	    slist __counter[64];
	    int __fill = 0;
	    while (!empty())
	      {
		__slist_splice_after(&__carry._M_head,
				     &this->_M_head, this->_M_head._M_next);
		int __i = 0;
		while (__i < __fill && !__counter[__i].empty())
		  {
		    __counter[__i].merge(__carry, __comp);
		    __carry.swap(__counter[__i]);
		    ++__i;
		  }
		__carry.swap(__counter[__i]);
		if (__i == __fill)
		  ++__fill;
	      }

	    for (int __i = 1; __i < __fill; ++__i)
	      __counter[__i].merge(__counter[__i-1], __comp);
	    this->swap(__counter[__fill-1]);
	  }
      }

_GLIBCXX_END_NAMESPACE

_GLIBCXX_BEGIN_NAMESPACE(std)

  // Specialization of insert_iterator so that insertions will be constant
  // time rather than linear time.
  template <class _Tp, class _Alloc>
    class insert_iterator<__gnu_cxx::slist<_Tp, _Alloc> >
    {
    protected:
      typedef __gnu_cxx::slist<_Tp, _Alloc> _Container;
      _Container* container;
      typename _Container::iterator iter;

    public:
      typedef _Container          container_type;
      typedef output_iterator_tag iterator_category;
      typedef void                value_type;
      typedef void                difference_type;
      typedef void                pointer;
      typedef void                reference;

      insert_iterator(_Container& __x, typename _Container::iterator __i)
      : container(&__x)
      {
	if (__i == __x.begin())
	  iter = __x.before_begin();
	else
	  iter = __x.previous(__i);
      }

      insert_iterator<_Container>&
      operator=(const typename _Container::value_type& __value)
      {
	iter = container->insert_after(iter, __value);
	return *this;
      }

      insert_iterator<_Container>&
      operator*()
      { return *this; }

      insert_iterator<_Container>&
      operator++()
      { return *this; }

      insert_iterator<_Container>&
      operator++(int)
      { return *this; }
    };

_GLIBCXX_END_NAMESPACE

#endif