Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation of the scalar evolution expander,
// which is used to generate the code corresponding to a given scalar evolution
// expression.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;
using namespace PatternMatch;

/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
/// reusing an existing cast if a suitable one exists, moving an existing
/// cast if a suitable one exists but isn't in the right place, or
/// creating a new one.
Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
                                       Instruction::CastOps Op,
                                       BasicBlock::iterator IP) {
  // This function must be called with the builder having a valid insertion
  // point. It doesn't need to be the actual IP where the uses of the returned
  // cast will be added, but it must dominate such IP.
  // We use this precondition to produce a cast that will dominate all its
  // uses. In particular, this is crucial for the case where the builder's
  // insertion point *is* the point where we were asked to put the cast.
  // Since we don't know the builder's insertion point is actually
  // where the uses will be added (only that it dominates it), we are
  // not allowed to move it.
  BasicBlock::iterator BIP = Builder.GetInsertPoint();

  Instruction *Ret = nullptr;

  // Check to see if there is already a cast!
  for (User *U : V->users())
    if (U->getType() == Ty)
      if (CastInst *CI = dyn_cast<CastInst>(U))
        if (CI->getOpcode() == Op) {
          // If the cast isn't where we want it, create a new cast at IP.
          // Likewise, do not reuse a cast at BIP because it must dominate
          // instructions that might be inserted before BIP.
          if (BasicBlock::iterator(CI) != IP || BIP == IP) {
            // Create a new cast, and leave the old cast in place in case
            // it is being used as an insert point. Clear its operand
            // so that it doesn't hold anything live.
            Ret = CastInst::Create(Op, V, Ty, "", &*IP);
            Ret->takeName(CI);
            CI->replaceAllUsesWith(Ret);
            CI->setOperand(0, UndefValue::get(V->getType()));
            break;
          }
          Ret = CI;
          break;
        }

  // Create a new cast.
  if (!Ret)
    Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP);

  // We assert at the end of the function since IP might point to an
  // instruction with different dominance properties than a cast
  // (an invoke for example) and not dominate BIP (but the cast does).
  assert(SE.DT.dominates(Ret, &*BIP));

  rememberInstruction(Ret);
  return Ret;
}

static BasicBlock::iterator findInsertPointAfter(Instruction *I,
                                                 BasicBlock *MustDominate) {
  BasicBlock::iterator IP = ++I->getIterator();
  if (auto *II = dyn_cast<InvokeInst>(I))
    IP = II->getNormalDest()->begin();

  while (isa<PHINode>(IP))
    ++IP;

  if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
    ++IP;
  } else if (isa<CatchSwitchInst>(IP)) {
    IP = MustDominate->getFirstInsertionPt();
  } else {
    assert(!IP->isEHPad() && "unexpected eh pad!");
  }

  return IP;
}

/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
/// which must be possible with a noop cast, doing what we can to share
/// the casts.
Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
  assert((Op == Instruction::BitCast ||
          Op == Instruction::PtrToInt ||
          Op == Instruction::IntToPtr) &&
         "InsertNoopCastOfTo cannot perform non-noop casts!");
  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
         "InsertNoopCastOfTo cannot change sizes!");

  // Short-circuit unnecessary bitcasts.
  if (Op == Instruction::BitCast) {
    if (V->getType() == Ty)
      return V;
    if (CastInst *CI = dyn_cast<CastInst>(V)) {
      if (CI->getOperand(0)->getType() == Ty)
        return CI->getOperand(0);
    }
  }
  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
    if (CastInst *CI = dyn_cast<CastInst>(V))
      if ((CI->getOpcode() == Instruction::PtrToInt ||
           CI->getOpcode() == Instruction::IntToPtr) &&
          SE.getTypeSizeInBits(CI->getType()) ==
          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
        return CI->getOperand(0);
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
      if ((CE->getOpcode() == Instruction::PtrToInt ||
           CE->getOpcode() == Instruction::IntToPtr) &&
          SE.getTypeSizeInBits(CE->getType()) ==
          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
        return CE->getOperand(0);
  }

  // Fold a cast of a constant.
  if (Constant *C = dyn_cast<Constant>(V))
    return ConstantExpr::getCast(Op, C, Ty);

  // Cast the argument at the beginning of the entry block, after
  // any bitcasts of other arguments.
  if (Argument *A = dyn_cast<Argument>(V)) {
    BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
    while ((isa<BitCastInst>(IP) &&
            isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
            cast<BitCastInst>(IP)->getOperand(0) != A) ||
           isa<DbgInfoIntrinsic>(IP))
      ++IP;
    return ReuseOrCreateCast(A, Ty, Op, IP);
  }

  // Cast the instruction immediately after the instruction.
  Instruction *I = cast<Instruction>(V);
  BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock());
  return ReuseOrCreateCast(I, Ty, Op, IP);
}

/// InsertBinop - Insert the specified binary operator, doing a small amount
/// of work to avoid inserting an obviously redundant operation.
Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
                                 Value *LHS, Value *RHS) {
  // Fold a binop with constant operands.
  if (Constant *CLHS = dyn_cast<Constant>(LHS))
    if (Constant *CRHS = dyn_cast<Constant>(RHS))
      return ConstantExpr::get(Opcode, CLHS, CRHS);

  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
  unsigned ScanLimit = 6;
  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
  // Scanning starts from the last instruction before the insertion point.
  BasicBlock::iterator IP = Builder.GetInsertPoint();
  if (IP != BlockBegin) {
    --IP;
    for (; ScanLimit; --IP, --ScanLimit) {
      // Don't count dbg.value against the ScanLimit, to avoid perturbing the
      // generated code.
      if (isa<DbgInfoIntrinsic>(IP))
        ScanLimit++;

      // Conservatively, do not use any instruction which has any of wrap/exact
      // flags installed.
      // TODO: Instead of simply disable poison instructions we can be clever
      //       here and match SCEV to this instruction.
      auto canGeneratePoison = [](Instruction *I) {
        if (isa<OverflowingBinaryOperator>(I) &&
            (I->hasNoSignedWrap() || I->hasNoUnsignedWrap()))
          return true;
        if (isa<PossiblyExactOperator>(I) && I->isExact())
          return true;
        return false;
      };
      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
          IP->getOperand(1) == RHS && !canGeneratePoison(&*IP))
        return &*IP;
      if (IP == BlockBegin) break;
    }
  }

  // Save the original insertion point so we can restore it when we're done.
  DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
  SCEVInsertPointGuard Guard(Builder, this);

  // Move the insertion point out of as many loops as we can.
  while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
    if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
    BasicBlock *Preheader = L->getLoopPreheader();
    if (!Preheader) break;

    // Ok, move up a level.
    Builder.SetInsertPoint(Preheader->getTerminator());
  }

  // If we haven't found this binop, insert it.
  Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
  BO->setDebugLoc(Loc);
  rememberInstruction(BO);

  return BO;
}

/// FactorOutConstant - Test if S is divisible by Factor, using signed
/// division. If so, update S with Factor divided out and return true.
/// S need not be evenly divisible if a reasonable remainder can be
/// computed.
/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
/// check to see if the divide was folded.
static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
                              const SCEV *Factor, ScalarEvolution &SE,
                              const DataLayout &DL) {
  // Everything is divisible by one.
  if (Factor->isOne())
    return true;

  // x/x == 1.
  if (S == Factor) {
    S = SE.getConstant(S->getType(), 1);
    return true;
  }

  // For a Constant, check for a multiple of the given factor.
  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
    // 0/x == 0.
    if (C->isZero())
      return true;
    // Check for divisibility.
    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
      ConstantInt *CI =
          ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
      // If the quotient is zero and the remainder is non-zero, reject
      // the value at this scale. It will be considered for subsequent
      // smaller scales.
      if (!CI->isZero()) {
        const SCEV *Div = SE.getConstant(CI);
        S = Div;
        Remainder = SE.getAddExpr(
            Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
        return true;
      }
    }
  }

  // In a Mul, check if there is a constant operand which is a multiple
  // of the given factor.
  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
    // Size is known, check if there is a constant operand which is a multiple
    // of the given factor. If so, we can factor it.
    const SCEVConstant *FC = cast<SCEVConstant>(Factor);
    if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
      if (!C->getAPInt().srem(FC->getAPInt())) {
        SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
        NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
        S = SE.getMulExpr(NewMulOps);
        return true;
      }
  }

  // In an AddRec, check if both start and step are divisible.
  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
    const SCEV *Step = A->getStepRecurrence(SE);
    const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
    if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
      return false;
    if (!StepRem->isZero())
      return false;
    const SCEV *Start = A->getStart();
    if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
      return false;
    S = SE.getAddRecExpr(Start, Step, A->getLoop(),
                         A->getNoWrapFlags(SCEV::FlagNW));
    return true;
  }

  return false;
}

/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
/// is the number of SCEVAddRecExprs present, which are kept at the end of
/// the list.
///
static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
                                Type *Ty,
                                ScalarEvolution &SE) {
  unsigned NumAddRecs = 0;
  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
    ++NumAddRecs;
  // Group Ops into non-addrecs and addrecs.
  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
  // Let ScalarEvolution sort and simplify the non-addrecs list.
  const SCEV *Sum = NoAddRecs.empty() ?
                    SE.getConstant(Ty, 0) :
                    SE.getAddExpr(NoAddRecs);
  // If it returned an add, use the operands. Otherwise it simplified
  // the sum into a single value, so just use that.
  Ops.clear();
  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
    Ops.append(Add->op_begin(), Add->op_end());
  else if (!Sum->isZero())
    Ops.push_back(Sum);
  // Then append the addrecs.
  Ops.append(AddRecs.begin(), AddRecs.end());
}

/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
/// This helps expose more opportunities for folding parts of the expressions
/// into GEP indices.
///
static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
                         Type *Ty,
                         ScalarEvolution &SE) {
  // Find the addrecs.
  SmallVector<const SCEV *, 8> AddRecs;
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
      const SCEV *Start = A->getStart();
      if (Start->isZero()) break;
      const SCEV *Zero = SE.getConstant(Ty, 0);
      AddRecs.push_back(SE.getAddRecExpr(Zero,
                                         A->getStepRecurrence(SE),
                                         A->getLoop(),
                                         A->getNoWrapFlags(SCEV::FlagNW)));
      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
        Ops[i] = Zero;
        Ops.append(Add->op_begin(), Add->op_end());
        e += Add->getNumOperands();
      } else {
        Ops[i] = Start;
      }
    }
  if (!AddRecs.empty()) {
    // Add the addrecs onto the end of the list.
    Ops.append(AddRecs.begin(), AddRecs.end());
    // Resort the operand list, moving any constants to the front.
    SimplifyAddOperands(Ops, Ty, SE);
  }
}

/// expandAddToGEP - Expand an addition expression with a pointer type into
/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
/// BasicAliasAnalysis and other passes analyze the result. See the rules
/// for getelementptr vs. inttoptr in
/// http://llvm.org/docs/LangRef.html#pointeraliasing
/// for details.
///
/// Design note: The correctness of using getelementptr here depends on
/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
/// they may introduce pointer arithmetic which may not be safely converted
/// into getelementptr.
///
/// Design note: It might seem desirable for this function to be more
/// loop-aware. If some of the indices are loop-invariant while others
/// aren't, it might seem desirable to emit multiple GEPs, keeping the
/// loop-invariant portions of the overall computation outside the loop.
/// However, there are a few reasons this is not done here. Hoisting simple
/// arithmetic is a low-level optimization that often isn't very
/// important until late in the optimization process. In fact, passes
/// like InstructionCombining will combine GEPs, even if it means
/// pushing loop-invariant computation down into loops, so even if the
/// GEPs were split here, the work would quickly be undone. The
/// LoopStrengthReduction pass, which is usually run quite late (and
/// after the last InstructionCombining pass), takes care of hoisting
/// loop-invariant portions of expressions, after considering what
/// can be folded using target addressing modes.
///
Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
                                    const SCEV *const *op_end,
                                    PointerType *PTy,
                                    Type *Ty,
                                    Value *V) {
  Type *OriginalElTy = PTy->getElementType();
  Type *ElTy = OriginalElTy;
  SmallVector<Value *, 4> GepIndices;
  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
  bool AnyNonZeroIndices = false;

  // Split AddRecs up into parts as either of the parts may be usable
  // without the other.
  SplitAddRecs(Ops, Ty, SE);

  Type *IntPtrTy = DL.getIntPtrType(PTy);

  // Descend down the pointer's type and attempt to convert the other
  // operands into GEP indices, at each level. The first index in a GEP
  // indexes into the array implied by the pointer operand; the rest of
  // the indices index into the element or field type selected by the
  // preceding index.
  for (;;) {
    // If the scale size is not 0, attempt to factor out a scale for
    // array indexing.
    SmallVector<const SCEV *, 8> ScaledOps;
    if (ElTy->isSized()) {
      const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy);
      if (!ElSize->isZero()) {
        SmallVector<const SCEV *, 8> NewOps;
        for (const SCEV *Op : Ops) {
          const SCEV *Remainder = SE.getConstant(Ty, 0);
          if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
            // Op now has ElSize factored out.
            ScaledOps.push_back(Op);
            if (!Remainder->isZero())
              NewOps.push_back(Remainder);
            AnyNonZeroIndices = true;
          } else {
            // The operand was not divisible, so add it to the list of operands
            // we'll scan next iteration.
            NewOps.push_back(Op);
          }
        }
        // If we made any changes, update Ops.
        if (!ScaledOps.empty()) {
          Ops = NewOps;
          SimplifyAddOperands(Ops, Ty, SE);
        }
      }
    }

    // Record the scaled array index for this level of the type. If
    // we didn't find any operands that could be factored, tentatively
    // assume that element zero was selected (since the zero offset
    // would obviously be folded away).
    Value *Scaled = ScaledOps.empty() ?
                    Constant::getNullValue(Ty) :
                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
    GepIndices.push_back(Scaled);

    // Collect struct field index operands.
    while (StructType *STy = dyn_cast<StructType>(ElTy)) {
      bool FoundFieldNo = false;
      // An empty struct has no fields.
      if (STy->getNumElements() == 0) break;
      // Field offsets are known. See if a constant offset falls within any of
      // the struct fields.
      if (Ops.empty())
        break;
      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
        if (SE.getTypeSizeInBits(C->getType()) <= 64) {
          const StructLayout &SL = *DL.getStructLayout(STy);
          uint64_t FullOffset = C->getValue()->getZExtValue();
          if (FullOffset < SL.getSizeInBytes()) {
            unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
            GepIndices.push_back(
                ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
            ElTy = STy->getTypeAtIndex(ElIdx);
            Ops[0] =
                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
            AnyNonZeroIndices = true;
            FoundFieldNo = true;
          }
        }
      // If no struct field offsets were found, tentatively assume that
      // field zero was selected (since the zero offset would obviously
      // be folded away).
      if (!FoundFieldNo) {
        ElTy = STy->getTypeAtIndex(0u);
        GepIndices.push_back(
          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
      }
    }

    if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
      ElTy = ATy->getElementType();
    else
      break;
  }

  // If none of the operands were convertible to proper GEP indices, cast
  // the base to i8* and do an ugly getelementptr with that. It's still
  // better than ptrtoint+arithmetic+inttoptr at least.
  if (!AnyNonZeroIndices) {
    // Cast the base to i8*.
    V = InsertNoopCastOfTo(V,
       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));

    assert(!isa<Instruction>(V) ||
           SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));

    // Expand the operands for a plain byte offset.
    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);

    // Fold a GEP with constant operands.
    if (Constant *CLHS = dyn_cast<Constant>(V))
      if (Constant *CRHS = dyn_cast<Constant>(Idx))
        return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
                                              CLHS, CRHS);

    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
    unsigned ScanLimit = 6;
    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
    // Scanning starts from the last instruction before the insertion point.
    BasicBlock::iterator IP = Builder.GetInsertPoint();
    if (IP != BlockBegin) {
      --IP;
      for (; ScanLimit; --IP, --ScanLimit) {
        // Don't count dbg.value against the ScanLimit, to avoid perturbing the
        // generated code.
        if (isa<DbgInfoIntrinsic>(IP))
          ScanLimit++;
        if (IP->getOpcode() == Instruction::GetElementPtr &&
            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
          return &*IP;
        if (IP == BlockBegin) break;
      }
    }

    // Save the original insertion point so we can restore it when we're done.
    SCEVInsertPointGuard Guard(Builder, this);

    // Move the insertion point out of as many loops as we can.
    while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
      BasicBlock *Preheader = L->getLoopPreheader();
      if (!Preheader) break;

      // Ok, move up a level.
      Builder.SetInsertPoint(Preheader->getTerminator());
    }

    // Emit a GEP.
    Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
    rememberInstruction(GEP);

    return GEP;
  }

  {
    SCEVInsertPointGuard Guard(Builder, this);

    // Move the insertion point out of as many loops as we can.
    while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
      if (!L->isLoopInvariant(V)) break;

      bool AnyIndexNotLoopInvariant = any_of(
          GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });

      if (AnyIndexNotLoopInvariant)
        break;

      BasicBlock *Preheader = L->getLoopPreheader();
      if (!Preheader) break;

      // Ok, move up a level.
      Builder.SetInsertPoint(Preheader->getTerminator());
    }

    // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
    // because ScalarEvolution may have changed the address arithmetic to
    // compute a value which is beyond the end of the allocated object.
    Value *Casted = V;
    if (V->getType() != PTy)
      Casted = InsertNoopCastOfTo(Casted, PTy);
    Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep");
    Ops.push_back(SE.getUnknown(GEP));
    rememberInstruction(GEP);
  }

  return expand(SE.getAddExpr(Ops));
}

/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
/// SCEV expansion. If they are nested, this is the most nested. If they are
/// neighboring, pick the later.
static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
                                        DominatorTree &DT) {
  if (!A) return B;
  if (!B) return A;
  if (A->contains(B)) return B;
  if (B->contains(A)) return A;
  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
  return A; // Arbitrarily break the tie.
}

/// getRelevantLoop - Get the most relevant loop associated with the given
/// expression, according to PickMostRelevantLoop.
const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
  // Test whether we've already computed the most relevant loop for this SCEV.
  auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
  if (!Pair.second)
    return Pair.first->second;

  if (isa<SCEVConstant>(S))
    // A constant has no relevant loops.
    return nullptr;
  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
    if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
      return Pair.first->second = SE.LI.getLoopFor(I->getParent());
    // A non-instruction has no relevant loops.
    return nullptr;
  }
  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
    const Loop *L = nullptr;
    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
      L = AR->getLoop();
    for (const SCEV *Op : N->operands())
      L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
    return RelevantLoops[N] = L;
  }
  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
    const Loop *Result = getRelevantLoop(C->getOperand());
    return RelevantLoops[C] = Result;
  }
  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
    const Loop *Result = PickMostRelevantLoop(
        getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
    return RelevantLoops[D] = Result;
  }
  llvm_unreachable("Unexpected SCEV type!");
}

namespace {

/// LoopCompare - Compare loops by PickMostRelevantLoop.
class LoopCompare {
  DominatorTree &DT;
public:
  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}

  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
                  std::pair<const Loop *, const SCEV *> RHS) const {
    // Keep pointer operands sorted at the end.
    if (LHS.second->getType()->isPointerTy() !=
        RHS.second->getType()->isPointerTy())
      return LHS.second->getType()->isPointerTy();

    // Compare loops with PickMostRelevantLoop.
    if (LHS.first != RHS.first)
      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;

    // If one operand is a non-constant negative and the other is not,
    // put the non-constant negative on the right so that a sub can
    // be used instead of a negate and add.
    if (LHS.second->isNonConstantNegative()) {
      if (!RHS.second->isNonConstantNegative())
        return false;
    } else if (RHS.second->isNonConstantNegative())
      return true;

    // Otherwise they are equivalent according to this comparison.
    return false;
  }
};

}

Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
  Type *Ty = SE.getEffectiveSCEVType(S->getType());

  // Collect all the add operands in a loop, along with their associated loops.
  // Iterate in reverse so that constants are emitted last, all else equal, and
  // so that pointer operands are inserted first, which the code below relies on
  // to form more involved GEPs.
  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
       E(S->op_begin()); I != E; ++I)
    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));

  // Sort by loop. Use a stable sort so that constants follow non-constants and
  // pointer operands precede non-pointer operands.
  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT));

  // Emit instructions to add all the operands. Hoist as much as possible
  // out of loops, and form meaningful getelementptrs where possible.
  Value *Sum = nullptr;
  for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
    const Loop *CurLoop = I->first;
    const SCEV *Op = I->second;
    if (!Sum) {
      // This is the first operand. Just expand it.
      Sum = expand(Op);
      ++I;
    } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
      // The running sum expression is a pointer. Try to form a getelementptr
      // at this level with that as the base.
      SmallVector<const SCEV *, 4> NewOps;
      for (; I != E && I->first == CurLoop; ++I) {
        // If the operand is SCEVUnknown and not instructions, peek through
        // it, to enable more of it to be folded into the GEP.
        const SCEV *X = I->second;
        if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
          if (!isa<Instruction>(U->getValue()))
            X = SE.getSCEV(U->getValue());
        NewOps.push_back(X);
      }
      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
    } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
      // The running sum is an integer, and there's a pointer at this level.
      // Try to form a getelementptr. If the running sum is instructions,
      // use a SCEVUnknown to avoid re-analyzing them.
      SmallVector<const SCEV *, 4> NewOps;
      NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
                                               SE.getSCEV(Sum));
      for (++I; I != E && I->first == CurLoop; ++I)
        NewOps.push_back(I->second);
      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
    } else if (Op->isNonConstantNegative()) {
      // Instead of doing a negate and add, just do a subtract.
      Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
      Sum = InsertNoopCastOfTo(Sum, Ty);
      Sum = InsertBinop(Instruction::Sub, Sum, W);
      ++I;
    } else {
      // A simple add.
      Value *W = expandCodeFor(Op, Ty);
      Sum = InsertNoopCastOfTo(Sum, Ty);
      // Canonicalize a constant to the RHS.
      if (isa<Constant>(Sum)) std::swap(Sum, W);
      Sum = InsertBinop(Instruction::Add, Sum, W);
      ++I;
    }
  }

  return Sum;
}

Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
  Type *Ty = SE.getEffectiveSCEVType(S->getType());

  // Collect all the mul operands in a loop, along with their associated loops.
  // Iterate in reverse so that constants are emitted last, all else equal.
  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
       E(S->op_begin()); I != E; ++I)
    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));

  // Sort by loop. Use a stable sort so that constants follow non-constants.
  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT));

  // Emit instructions to mul all the operands. Hoist as much as possible
  // out of loops.
  Value *Prod = nullptr;
  auto I = OpsAndLoops.begin();

  // Expand the calculation of X pow N in the following manner:
  // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
  // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
  const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
    auto E = I;
    // Calculate how many times the same operand from the same loop is included
    // into this power.
    uint64_t Exponent = 0;
    const uint64_t MaxExponent = UINT64_MAX >> 1;
    // No one sane will ever try to calculate such huge exponents, but if we
    // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
    // below when the power of 2 exceeds our Exponent, and we want it to be
    // 1u << 31 at most to not deal with unsigned overflow.
    while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
      ++Exponent;
      ++E;
    }
    assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");

    // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
    // that are needed into the result.
    Value *P = expandCodeFor(I->second, Ty);
    Value *Result = nullptr;
    if (Exponent & 1)
      Result = P;
    for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
      P = InsertBinop(Instruction::Mul, P, P);
      if (Exponent & BinExp)
        Result = Result ? InsertBinop(Instruction::Mul, Result, P) : P;
    }

    I = E;
    assert(Result && "Nothing was expanded?");
    return Result;
  };

  while (I != OpsAndLoops.end()) {
    if (!Prod) {
      // This is the first operand. Just expand it.
      Prod = ExpandOpBinPowN();
    } else if (I->second->isAllOnesValue()) {
      // Instead of doing a multiply by negative one, just do a negate.
      Prod = InsertNoopCastOfTo(Prod, Ty);
      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
      ++I;
    } else {
      // A simple mul.
      Value *W = ExpandOpBinPowN();
      Prod = InsertNoopCastOfTo(Prod, Ty);
      // Canonicalize a constant to the RHS.
      if (isa<Constant>(Prod)) std::swap(Prod, W);
      const APInt *RHS;
      if (match(W, m_Power2(RHS))) {
        // Canonicalize Prod*(1<<C) to Prod<<C.
        assert(!Ty->isVectorTy() && "vector types are not SCEVable");
        Prod = InsertBinop(Instruction::Shl, Prod,
                           ConstantInt::get(Ty, RHS->logBase2()));
      } else {
        Prod = InsertBinop(Instruction::Mul, Prod, W);
      }
    }
  }

  return Prod;
}

Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
  Type *Ty = SE.getEffectiveSCEVType(S->getType());

  Value *LHS = expandCodeFor(S->getLHS(), Ty);
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
    const APInt &RHS = SC->getAPInt();
    if (RHS.isPowerOf2())
      return InsertBinop(Instruction::LShr, LHS,
                         ConstantInt::get(Ty, RHS.logBase2()));
  }

  Value *RHS = expandCodeFor(S->getRHS(), Ty);
  return InsertBinop(Instruction::UDiv, LHS, RHS);
}

/// Move parts of Base into Rest to leave Base with the minimal
/// expression that provides a pointer operand suitable for a
/// GEP expansion.
static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
                              ScalarEvolution &SE) {
  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
    Base = A->getStart();
    Rest = SE.getAddExpr(Rest,
                         SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
                                          A->getStepRecurrence(SE),
                                          A->getLoop(),
                                          A->getNoWrapFlags(SCEV::FlagNW)));
  }
  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
    Base = A->getOperand(A->getNumOperands()-1);
    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
    NewAddOps.back() = Rest;
    Rest = SE.getAddExpr(NewAddOps);
    ExposePointerBase(Base, Rest, SE);
  }
}

/// Determine if this is a well-behaved chain of instructions leading back to
/// the PHI. If so, it may be reused by expanded expressions.
bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
                                         const Loop *L) {
  if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
      (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
    return false;
  // If any of the operands don't dominate the insert position, bail.
  // Addrec operands are always loop-invariant, so this can only happen
  // if there are instructions which haven't been hoisted.
  if (L == IVIncInsertLoop) {
    for (User::op_iterator OI = IncV->op_begin()+1,
           OE = IncV->op_end(); OI != OE; ++OI)
      if (Instruction *OInst = dyn_cast<Instruction>(OI))
        if (!SE.DT.dominates(OInst, IVIncInsertPos))
          return false;
  }
  // Advance to the next instruction.
  IncV = dyn_cast<Instruction>(IncV->getOperand(0));
  if (!IncV)
    return false;

  if (IncV->mayHaveSideEffects())
    return false;

  if (IncV == PN)
    return true;

  return isNormalAddRecExprPHI(PN, IncV, L);
}

/// getIVIncOperand returns an induction variable increment's induction
/// variable operand.
///
/// If allowScale is set, any type of GEP is allowed as long as the nonIV
/// operands dominate InsertPos.
///
/// If allowScale is not set, ensure that a GEP increment conforms to one of the
/// simple patterns generated by getAddRecExprPHILiterally and
/// expandAddtoGEP. If the pattern isn't recognized, return NULL.
Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
                                           Instruction *InsertPos,
                                           bool allowScale) {
  if (IncV == InsertPos)
    return nullptr;

  switch (IncV->getOpcode()) {
  default:
    return nullptr;
  // Check for a simple Add/Sub or GEP of a loop invariant step.
  case Instruction::Add:
  case Instruction::Sub: {
    Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
    if (!OInst || SE.DT.dominates(OInst, InsertPos))
      return dyn_cast<Instruction>(IncV->getOperand(0));
    return nullptr;
  }
  case Instruction::BitCast:
    return dyn_cast<Instruction>(IncV->getOperand(0));
  case Instruction::GetElementPtr:
    for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) {
      if (isa<Constant>(*I))
        continue;
      if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
        if (!SE.DT.dominates(OInst, InsertPos))
          return nullptr;
      }
      if (allowScale) {
        // allow any kind of GEP as long as it can be hoisted.
        continue;
      }
      // This must be a pointer addition of constants (pretty), which is already
      // handled, or some number of address-size elements (ugly). Ugly geps
      // have 2 operands. i1* is used by the expander to represent an
      // address-size element.
      if (IncV->getNumOperands() != 2)
        return nullptr;
      unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
      if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
          && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
        return nullptr;
      break;
    }
    return dyn_cast<Instruction>(IncV->getOperand(0));
  }
}

/// If the insert point of the current builder or any of the builders on the
/// stack of saved builders has 'I' as its insert point, update it to point to
/// the instruction after 'I'.  This is intended to be used when the instruction
/// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
/// different block, the inconsistent insert point (with a mismatched
/// Instruction and Block) can lead to an instruction being inserted in a block
/// other than its parent.
void SCEVExpander::fixupInsertPoints(Instruction *I) {
  BasicBlock::iterator It(*I);
  BasicBlock::iterator NewInsertPt = std::next(It);
  if (Builder.GetInsertPoint() == It)
    Builder.SetInsertPoint(&*NewInsertPt);
  for (auto *InsertPtGuard : InsertPointGuards)
    if (InsertPtGuard->GetInsertPoint() == It)
      InsertPtGuard->SetInsertPoint(NewInsertPt);
}

/// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
/// it available to other uses in this loop. Recursively hoist any operands,
/// until we reach a value that dominates InsertPos.
bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
  if (SE.DT.dominates(IncV, InsertPos))
      return true;

  // InsertPos must itself dominate IncV so that IncV's new position satisfies
  // its existing users.
  if (isa<PHINode>(InsertPos) ||
      !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
    return false;

  if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
    return false;

  // Check that the chain of IV operands leading back to Phi can be hoisted.
  SmallVector<Instruction*, 4> IVIncs;
  for(;;) {
    Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
    if (!Oper)
      return false;
    // IncV is safe to hoist.
    IVIncs.push_back(IncV);
    IncV = Oper;
    if (SE.DT.dominates(IncV, InsertPos))
      break;
  }
  for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
    fixupInsertPoints(*I);
    (*I)->moveBefore(InsertPos);
  }
  return true;
}

/// Determine if this cyclic phi is in a form that would have been generated by
/// LSR. We don't care if the phi was actually expanded in this pass, as long
/// as it is in a low-cost form, for example, no implied multiplication. This
/// should match any patterns generated by getAddRecExprPHILiterally and
/// expandAddtoGEP.
bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
                                           const Loop *L) {
  for(Instruction *IVOper = IncV;
      (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
                                /*allowScale=*/false));) {
    if (IVOper == PN)
      return true;
  }
  return false;
}

/// expandIVInc - Expand an IV increment at Builder's current InsertPos.
/// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
/// need to materialize IV increments elsewhere to handle difficult situations.
Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
                                 Type *ExpandTy, Type *IntTy,
                                 bool useSubtract) {
  Value *IncV;
  // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
  if (ExpandTy->isPointerTy()) {
    PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
    // If the step isn't constant, don't use an implicitly scaled GEP, because
    // that would require a multiply inside the loop.
    if (!isa<ConstantInt>(StepV))
      GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
                                  GEPPtrTy->getAddressSpace());
    const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
    IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
    if (IncV->getType() != PN->getType()) {
      IncV = Builder.CreateBitCast(IncV, PN->getType());
      rememberInstruction(IncV);
    }
  } else {
    IncV = useSubtract ?
      Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
      Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
    rememberInstruction(IncV);
  }
  return IncV;
}

/// \brief Hoist the addrec instruction chain rooted in the loop phi above the
/// position. This routine assumes that this is possible (has been checked).
void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
                                  Instruction *Pos, PHINode *LoopPhi) {
  do {
    if (DT->dominates(InstToHoist, Pos))
      break;
    // Make sure the increment is where we want it. But don't move it
    // down past a potential existing post-inc user.
    fixupInsertPoints(InstToHoist);
    InstToHoist->moveBefore(Pos);
    Pos = InstToHoist;
    InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
  } while (InstToHoist != LoopPhi);
}

/// \brief Check whether we can cheaply express the requested SCEV in terms of
/// the available PHI SCEV by truncation and/or inversion of the step.
static bool canBeCheaplyTransformed(ScalarEvolution &SE,
                                    const SCEVAddRecExpr *Phi,
                                    const SCEVAddRecExpr *Requested,
                                    bool &InvertStep) {
  Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
  Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());

  if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
    return false;

  // Try truncate it if necessary.
  Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
  if (!Phi)
    return false;

  // Check whether truncation will help.
  if (Phi == Requested) {
    InvertStep = false;
    return true;
  }

  // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
  if (SE.getAddExpr(Requested->getStart(),
                    SE.getNegativeSCEV(Requested)) == Phi) {
    InvertStep = true;
    return true;
  }

  return false;
}

static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
  if (!isa<IntegerType>(AR->getType()))
    return false;

  unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
  Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
  const SCEV *Step = AR->getStepRecurrence(SE);
  const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
                                            SE.getSignExtendExpr(AR, WideTy));
  const SCEV *ExtendAfterOp =
    SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
  return ExtendAfterOp == OpAfterExtend;
}

static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
  if (!isa<IntegerType>(AR->getType()))
    return false;

  unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
  Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
  const SCEV *Step = AR->getStepRecurrence(SE);
  const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
                                            SE.getZeroExtendExpr(AR, WideTy));
  const SCEV *ExtendAfterOp =
    SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
  return ExtendAfterOp == OpAfterExtend;
}

/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
/// the base addrec, which is the addrec without any non-loop-dominating
/// values, and return the PHI.
PHINode *
SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
                                        const Loop *L,
                                        Type *ExpandTy,
                                        Type *IntTy,
                                        Type *&TruncTy,
                                        bool &InvertStep) {
  assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");

  // Reuse a previously-inserted PHI, if present.
  BasicBlock *LatchBlock = L->getLoopLatch();
  if (LatchBlock) {
    PHINode *AddRecPhiMatch = nullptr;
    Instruction *IncV = nullptr;
    TruncTy = nullptr;
    InvertStep = false;

    // Only try partially matching scevs that need truncation and/or
    // step-inversion if we know this loop is outside the current loop.
    bool TryNonMatchingSCEV =
        IVIncInsertLoop &&
        SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());

    for (PHINode &PN : L->getHeader()->phis()) {
      if (!SE.isSCEVable(PN.getType()))
        continue;

      const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
      if (!PhiSCEV)
        continue;

      bool IsMatchingSCEV = PhiSCEV == Normalized;
      // We only handle truncation and inversion of phi recurrences for the
      // expanded expression if the expanded expression's loop dominates the
      // loop we insert to. Check now, so we can bail out early.
      if (!IsMatchingSCEV && !TryNonMatchingSCEV)
          continue;

      Instruction *TempIncV =
          cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));

      // Check whether we can reuse this PHI node.
      if (LSRMode) {
        if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
          continue;
        if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
          continue;
      } else {
        if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
          continue;
      }

      // Stop if we have found an exact match SCEV.
      if (IsMatchingSCEV) {
        IncV = TempIncV;
        TruncTy = nullptr;
        InvertStep = false;
        AddRecPhiMatch = &PN;
        break;
      }

      // Try whether the phi can be translated into the requested form
      // (truncated and/or offset by a constant).
      if ((!TruncTy || InvertStep) &&
          canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
        // Record the phi node. But don't stop we might find an exact match
        // later.
        AddRecPhiMatch = &PN;
        IncV = TempIncV;
        TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
      }
    }

    if (AddRecPhiMatch) {
      // Potentially, move the increment. We have made sure in
      // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
      if (L == IVIncInsertLoop)
        hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);

      // Ok, the add recurrence looks usable.
      // Remember this PHI, even in post-inc mode.
      InsertedValues.insert(AddRecPhiMatch);
      // Remember the increment.
      rememberInstruction(IncV);
      return AddRecPhiMatch;
    }
  }

  // Save the original insertion point so we can restore it when we're done.
  SCEVInsertPointGuard Guard(Builder, this);

  // Another AddRec may need to be recursively expanded below. For example, if
  // this AddRec is quadratic, the StepV may itself be an AddRec in this
  // loop. Remove this loop from the PostIncLoops set before expanding such
  // AddRecs. Otherwise, we cannot find a valid position for the step
  // (i.e. StepV can never dominate its loop header).  Ideally, we could do
  // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
  // so it's not worth implementing SmallPtrSet::swap.
  PostIncLoopSet SavedPostIncLoops = PostIncLoops;
  PostIncLoops.clear();

  // Expand code for the start value into the loop preheader.
  assert(L->getLoopPreheader() &&
         "Can't expand add recurrences without a loop preheader!");
  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
                                L->getLoopPreheader()->getTerminator());

  // StartV must have been be inserted into L's preheader to dominate the new
  // phi.
  assert(!isa<Instruction>(StartV) ||
         SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
                                 L->getHeader()));

  // Expand code for the step value. Do this before creating the PHI so that PHI
  // reuse code doesn't see an incomplete PHI.
  const SCEV *Step = Normalized->getStepRecurrence(SE);
  // If the stride is negative, insert a sub instead of an add for the increment
  // (unless it's a constant, because subtracts of constants are canonicalized
  // to adds).
  bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
  if (useSubtract)
    Step = SE.getNegativeSCEV(Step);
  // Expand the step somewhere that dominates the loop header.
  Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());

  // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
  // we actually do emit an addition.  It does not apply if we emit a
  // subtraction.
  bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
  bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);

  // Create the PHI.
  BasicBlock *Header = L->getHeader();
  Builder.SetInsertPoint(Header, Header->begin());
  pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
  PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
                                  Twine(IVName) + ".iv");
  rememberInstruction(PN);

  // Create the step instructions and populate the PHI.
  for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
    BasicBlock *Pred = *HPI;

    // Add a start value.
    if (!L->contains(Pred)) {
      PN->addIncoming(StartV, Pred);
      continue;
    }

    // Create a step value and add it to the PHI.
    // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
    // instructions at IVIncInsertPos.
    Instruction *InsertPos = L == IVIncInsertLoop ?
      IVIncInsertPos : Pred->getTerminator();
    Builder.SetInsertPoint(InsertPos);
    Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);

    if (isa<OverflowingBinaryOperator>(IncV)) {
      if (IncrementIsNUW)
        cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
      if (IncrementIsNSW)
        cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
    }
    PN->addIncoming(IncV, Pred);
  }

  // After expanding subexpressions, restore the PostIncLoops set so the caller
  // can ensure that IVIncrement dominates the current uses.
  PostIncLoops = SavedPostIncLoops;

  // Remember this PHI, even in post-inc mode.
  InsertedValues.insert(PN);

  return PN;
}

Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
  Type *STy = S->getType();
  Type *IntTy = SE.getEffectiveSCEVType(STy);
  const Loop *L = S->getLoop();

  // Determine a normalized form of this expression, which is the expression
  // before any post-inc adjustment is made.
  const SCEVAddRecExpr *Normalized = S;
  if (PostIncLoops.count(L)) {
    PostIncLoopSet Loops;
    Loops.insert(L);
    Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
  }

  // Strip off any non-loop-dominating component from the addrec start.
  const SCEV *Start = Normalized->getStart();
  const SCEV *PostLoopOffset = nullptr;
  if (!SE.properlyDominates(Start, L->getHeader())) {
    PostLoopOffset = Start;
    Start = SE.getConstant(Normalized->getType(), 0);
    Normalized = cast<SCEVAddRecExpr>(
      SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
                       Normalized->getLoop(),
                       Normalized->getNoWrapFlags(SCEV::FlagNW)));
  }

  // Strip off any non-loop-dominating component from the addrec step.
  const SCEV *Step = Normalized->getStepRecurrence(SE);
  const SCEV *PostLoopScale = nullptr;
  if (!SE.dominates(Step, L->getHeader())) {
    PostLoopScale = Step;
    Step = SE.getConstant(Normalized->getType(), 1);
    if (!Start->isZero()) {
        // The normalization below assumes that Start is constant zero, so if
        // it isn't re-associate Start to PostLoopOffset.
        assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
        PostLoopOffset = Start;
        Start = SE.getConstant(Normalized->getType(), 0);
    }
    Normalized =
      cast<SCEVAddRecExpr>(SE.getAddRecExpr(
                             Start, Step, Normalized->getLoop(),
                             Normalized->getNoWrapFlags(SCEV::FlagNW)));
  }

  // Expand the core addrec. If we need post-loop scaling, force it to
  // expand to an integer type to avoid the need for additional casting.
  Type *ExpandTy = PostLoopScale ? IntTy : STy;
  // We can't use a pointer type for the addrec if the pointer type is
  // non-integral.
  Type *AddRecPHIExpandTy =
      DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;

  // In some cases, we decide to reuse an existing phi node but need to truncate
  // it and/or invert the step.
  Type *TruncTy = nullptr;
  bool InvertStep = false;
  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
                                          IntTy, TruncTy, InvertStep);

  // Accommodate post-inc mode, if necessary.
  Value *Result;
  if (!PostIncLoops.count(L))
    Result = PN;
  else {
    // In PostInc mode, use the post-incremented value.
    BasicBlock *LatchBlock = L->getLoopLatch();
    assert(LatchBlock && "PostInc mode requires a unique loop latch!");
    Result = PN->getIncomingValueForBlock(LatchBlock);

    // For an expansion to use the postinc form, the client must call
    // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
    // or dominated by IVIncInsertPos.
    if (isa<Instruction>(Result) &&
        !SE.DT.dominates(cast<Instruction>(Result),
                         &*Builder.GetInsertPoint())) {
      // The induction variable's postinc expansion does not dominate this use.
      // IVUsers tries to prevent this case, so it is rare. However, it can
      // happen when an IVUser outside the loop is not dominated by the latch
      // block. Adjusting IVIncInsertPos before expansion begins cannot handle
      // all cases. Consider a phi outide whose operand is replaced during
      // expansion with the value of the postinc user. Without fundamentally
      // changing the way postinc users are tracked, the only remedy is
      // inserting an extra IV increment. StepV might fold into PostLoopOffset,
      // but hopefully expandCodeFor handles that.
      bool useSubtract =
        !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
      if (useSubtract)
        Step = SE.getNegativeSCEV(Step);
      Value *StepV;
      {
        // Expand the step somewhere that dominates the loop header.
        SCEVInsertPointGuard Guard(Builder, this);
        StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
      }
      Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
    }
  }

  // We have decided to reuse an induction variable of a dominating loop. Apply
  // truncation and/or invertion of the step.
  if (TruncTy) {
    Type *ResTy = Result->getType();
    // Normalize the result type.
    if (ResTy != SE.getEffectiveSCEVType(ResTy))
      Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
    // Truncate the result.
    if (TruncTy != Result->getType()) {
      Result = Builder.CreateTrunc(Result, TruncTy);
      rememberInstruction(Result);
    }
    // Invert the result.
    if (InvertStep) {
      Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
                                 Result);
      rememberInstruction(Result);
    }
  }

  // Re-apply any non-loop-dominating scale.
  if (PostLoopScale) {
    assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
    Result = InsertNoopCastOfTo(Result, IntTy);
    Result = Builder.CreateMul(Result,
                               expandCodeFor(PostLoopScale, IntTy));
    rememberInstruction(Result);
  }

  // Re-apply any non-loop-dominating offset.
  if (PostLoopOffset) {
    if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
      if (Result->getType()->isIntegerTy()) {
        Value *Base = expandCodeFor(PostLoopOffset, ExpandTy);
        const SCEV *const OffsetArray[1] = {SE.getUnknown(Result)};
        Result = expandAddToGEP(OffsetArray, OffsetArray + 1, PTy, IntTy, Base);
      } else {
        const SCEV *const OffsetArray[1] = {PostLoopOffset};
        Result =
            expandAddToGEP(OffsetArray, OffsetArray + 1, PTy, IntTy, Result);
      }
    } else {
      Result = InsertNoopCastOfTo(Result, IntTy);
      Result = Builder.CreateAdd(Result,
                                 expandCodeFor(PostLoopOffset, IntTy));
      rememberInstruction(Result);
    }
  }

  return Result;
}

Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
  if (!CanonicalMode) return expandAddRecExprLiterally(S);

  Type *Ty = SE.getEffectiveSCEVType(S->getType());
  const Loop *L = S->getLoop();

  // First check for an existing canonical IV in a suitable type.
  PHINode *CanonicalIV = nullptr;
  if (PHINode *PN = L->getCanonicalInductionVariable())
    if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
      CanonicalIV = PN;

  // Rewrite an AddRec in terms of the canonical induction variable, if
  // its type is more narrow.
  if (CanonicalIV &&
      SE.getTypeSizeInBits(CanonicalIV->getType()) >
      SE.getTypeSizeInBits(Ty)) {
    SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
    for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
      NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
                                       S->getNoWrapFlags(SCEV::FlagNW)));
    BasicBlock::iterator NewInsertPt =
        findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock());
    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
                      &*NewInsertPt);
    return V;
  }

  // {X,+,F} --> X + {0,+,F}
  if (!S->getStart()->isZero()) {
    SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
    NewOps[0] = SE.getConstant(Ty, 0);
    const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
                                        S->getNoWrapFlags(SCEV::FlagNW));

    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
    // comments on expandAddToGEP for details.
    const SCEV *Base = S->getStart();
    const SCEV *RestArray[1] = { Rest };
    // Dig into the expression to find the pointer base for a GEP.
    ExposePointerBase(Base, RestArray[0], SE);
    // If we found a pointer, expand the AddRec with a GEP.
    if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
      // Make sure the Base isn't something exotic, such as a multiplied
      // or divided pointer value. In those cases, the result type isn't
      // actually a pointer type.
      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
        Value *StartV = expand(Base);
        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
      }
    }

    // Just do a normal add. Pre-expand the operands to suppress folding.
    //
    // The LHS and RHS values are factored out of the expand call to make the
    // output independent of the argument evaluation order.
    const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
    const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
    return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
  }

  // If we don't yet have a canonical IV, create one.
  if (!CanonicalIV) {
    // Create and insert the PHI node for the induction variable in the
    // specified loop.
    BasicBlock *Header = L->getHeader();
    pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
    CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
                                  &Header->front());
    rememberInstruction(CanonicalIV);

    SmallSet<BasicBlock *, 4> PredSeen;
    Constant *One = ConstantInt::get(Ty, 1);
    for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
      BasicBlock *HP = *HPI;
      if (!PredSeen.insert(HP).second) {
        // There must be an incoming value for each predecessor, even the
        // duplicates!
        CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
        continue;
      }

      if (L->contains(HP)) {
        // Insert a unit add instruction right before the terminator
        // corresponding to the back-edge.
        Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
                                                     "indvar.next",
                                                     HP->getTerminator());
        Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
        rememberInstruction(Add);
        CanonicalIV->addIncoming(Add, HP);
      } else {
        CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
      }
    }
  }

  // {0,+,1} --> Insert a canonical induction variable into the loop!
  if (S->isAffine() && S->getOperand(1)->isOne()) {
    assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
           "IVs with types different from the canonical IV should "
           "already have been handled!");
    return CanonicalIV;
  }

  // {0,+,F} --> {0,+,1} * F

  // If this is a simple linear addrec, emit it now as a special case.
  if (S->isAffine())    // {0,+,F} --> i*F
    return
      expand(SE.getTruncateOrNoop(
        SE.getMulExpr(SE.getUnknown(CanonicalIV),
                      SE.getNoopOrAnyExtend(S->getOperand(1),
                                            CanonicalIV->getType())),
        Ty));

  // If this is a chain of recurrences, turn it into a closed form, using the
  // folders, then expandCodeFor the closed form.  This allows the folders to
  // simplify the expression without having to build a bunch of special code
  // into this folder.
  const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.

  // Promote S up to the canonical IV type, if the cast is foldable.
  const SCEV *NewS = S;
  const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
  if (isa<SCEVAddRecExpr>(Ext))
    NewS = Ext;

  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";

  // Truncate the result down to the original type, if needed.
  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
  return expand(T);
}

Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
  Type *Ty = SE.getEffectiveSCEVType(S->getType());
  Value *V = expandCodeFor(S->getOperand(),
                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
  Value *I = Builder.CreateTrunc(V, Ty);
  rememberInstruction(I);
  return I;
}

Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
  Type *Ty = SE.getEffectiveSCEVType(S->getType());
  Value *V = expandCodeFor(S->getOperand(),
                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
  Value *I = Builder.CreateZExt(V, Ty);
  rememberInstruction(I);
  return I;
}

Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
  Type *Ty = SE.getEffectiveSCEVType(S->getType());
  Value *V = expandCodeFor(S->getOperand(),
                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
  Value *I = Builder.CreateSExt(V, Ty);
  rememberInstruction(I);
  return I;
}

Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
  Type *Ty = LHS->getType();
  for (int i = S->getNumOperands()-2; i >= 0; --i) {
    // In the case of mixed integer and pointer types, do the
    // rest of the comparisons as integer.
    if (S->getOperand(i)->getType() != Ty) {
      Ty = SE.getEffectiveSCEVType(Ty);
      LHS = InsertNoopCastOfTo(LHS, Ty);
    }
    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
    rememberInstruction(ICmp);
    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
    rememberInstruction(Sel);
    LHS = Sel;
  }
  // In the case of mixed integer and pointer types, cast the
  // final result back to the pointer type.
  if (LHS->getType() != S->getType())
    LHS = InsertNoopCastOfTo(LHS, S->getType());
  return LHS;
}

Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
  Type *Ty = LHS->getType();
  for (int i = S->getNumOperands()-2; i >= 0; --i) {
    // In the case of mixed integer and pointer types, do the
    // rest of the comparisons as integer.
    if (S->getOperand(i)->getType() != Ty) {
      Ty = SE.getEffectiveSCEVType(Ty);
      LHS = InsertNoopCastOfTo(LHS, Ty);
    }
    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
    rememberInstruction(ICmp);
    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
    rememberInstruction(Sel);
    LHS = Sel;
  }
  // In the case of mixed integer and pointer types, cast the
  // final result back to the pointer type.
  if (LHS->getType() != S->getType())
    LHS = InsertNoopCastOfTo(LHS, S->getType());
  return LHS;
}

Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
                                   Instruction *IP) {
  setInsertPoint(IP);
  return expandCodeFor(SH, Ty);
}

Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
  // Expand the code for this SCEV.
  Value *V = expand(SH);
  if (Ty) {
    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
           "non-trivial casts should be done with the SCEVs directly!");
    V = InsertNoopCastOfTo(V, Ty);
  }
  return V;
}

ScalarEvolution::ValueOffsetPair
SCEVExpander::FindValueInExprValueMap(const SCEV *S,
                                      const Instruction *InsertPt) {
  SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S);
  // If the expansion is not in CanonicalMode, and the SCEV contains any
  // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
  if (CanonicalMode || !SE.containsAddRecurrence(S)) {
    // If S is scConstant, it may be worse to reuse an existing Value.
    if (S->getSCEVType() != scConstant && Set) {
      // Choose a Value from the set which dominates the insertPt.
      // insertPt should be inside the Value's parent loop so as not to break
      // the LCSSA form.
      for (auto const &VOPair : *Set) {
        Value *V = VOPair.first;
        ConstantInt *Offset = VOPair.second;
        Instruction *EntInst = nullptr;
        if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) &&
            S->getType() == V->getType() &&
            EntInst->getFunction() == InsertPt->getFunction() &&
            SE.DT.dominates(EntInst, InsertPt) &&
            (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
             SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
          return {V, Offset};
      }
    }
  }
  return {nullptr, nullptr};
}

// The expansion of SCEV will either reuse a previous Value in ExprValueMap,
// or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
// and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
// literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
// the expansion will try to reuse Value from ExprValueMap, and only when it
// fails, expand the SCEV literally.
Value *SCEVExpander::expand(const SCEV *S) {
  // Compute an insertion point for this SCEV object. Hoist the instructions
  // as far out in the loop nest as possible.
  Instruction *InsertPt = &*Builder.GetInsertPoint();
  for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
       L = L->getParentLoop())
    if (SE.isLoopInvariant(S, L)) {
      if (!L) break;
      if (BasicBlock *Preheader = L->getLoopPreheader())
        InsertPt = Preheader->getTerminator();
      else {
        // LSR sets the insertion point for AddRec start/step values to the
        // block start to simplify value reuse, even though it's an invalid
        // position. SCEVExpander must correct for this in all cases.
        InsertPt = &*L->getHeader()->getFirstInsertionPt();
      }
    } else {
      // We can move insertion point only if there is no div or rem operations
      // otherwise we are risky to move it over the check for zero denominator.
      auto SafeToHoist = [](const SCEV *S) {
        return !SCEVExprContains(S, [](const SCEV *S) {
                  if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
                    if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
                      // Division by non-zero constants can be hoisted.
                      return SC->getValue()->isZero();
                    // All other divisions should not be moved as they may be
                    // divisions by zero and should be kept within the
                    // conditions of the surrounding loops that guard their
                    // execution (see PR35406).
                    return true;
                  }
                  return false;
                });
      };
      // If the SCEV is computable at this level, insert it into the header
      // after the PHIs (and after any other instructions that we've inserted
      // there) so that it is guaranteed to dominate any user inside the loop.
      if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L) &&
          SafeToHoist(S))
        InsertPt = &*L->getHeader()->getFirstInsertionPt();
      while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
             (isInsertedInstruction(InsertPt) ||
              isa<DbgInfoIntrinsic>(InsertPt))) {
        InsertPt = &*std::next(InsertPt->getIterator());
      }
      break;
    }

  // Check to see if we already expanded this here.
  auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
  if (I != InsertedExpressions.end())
    return I->second;

  SCEVInsertPointGuard Guard(Builder, this);
  Builder.SetInsertPoint(InsertPt);

  // Expand the expression into instructions.
  ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
  Value *V = VO.first;

  if (!V)
    V = visit(S);
  else if (VO.second) {
    if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
      Type *Ety = Vty->getPointerElementType();
      int64_t Offset = VO.second->getSExtValue();
      int64_t ESize = SE.getTypeSizeInBits(Ety);
      if ((Offset * 8) % ESize == 0) {
        ConstantInt *Idx =
            ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
        V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
      } else {
        ConstantInt *Idx =
            ConstantInt::getSigned(VO.second->getType(), -Offset);
        unsigned AS = Vty->getAddressSpace();
        V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
        V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
                              "uglygep");
        V = Builder.CreateBitCast(V, Vty);
      }
    } else {
      V = Builder.CreateSub(V, VO.second);
    }
  }
  // Remember the expanded value for this SCEV at this location.
  //
  // This is independent of PostIncLoops. The mapped value simply materializes
  // the expression at this insertion point. If the mapped value happened to be
  // a postinc expansion, it could be reused by a non-postinc user, but only if
  // its insertion point was already at the head of the loop.
  InsertedExpressions[std::make_pair(S, InsertPt)] = V;
  return V;
}

void SCEVExpander::rememberInstruction(Value *I) {
  if (!PostIncLoops.empty())
    InsertedPostIncValues.insert(I);
  else
    InsertedValues.insert(I);
}

/// getOrInsertCanonicalInductionVariable - This method returns the
/// canonical induction variable of the specified type for the specified
/// loop (inserting one if there is none).  A canonical induction variable
/// starts at zero and steps by one on each iteration.
PHINode *
SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
                                                    Type *Ty) {
  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");

  // Build a SCEV for {0,+,1}<L>.
  // Conservatively use FlagAnyWrap for now.
  const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
                                   SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);

  // Emit code for it.
  SCEVInsertPointGuard Guard(Builder, this);
  PHINode *V =
      cast<PHINode>(expandCodeFor(H, nullptr, &L->getHeader()->front()));

  return V;
}

/// replaceCongruentIVs - Check for congruent phis in this loop header and
/// replace them with their most canonical representative. Return the number of
/// phis eliminated.
///
/// This does not depend on any SCEVExpander state but should be used in
/// the same context that SCEVExpander is used.
unsigned
SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
                                  SmallVectorImpl<WeakTrackingVH> &DeadInsts,
                                  const TargetTransformInfo *TTI) {
  // Find integer phis in order of increasing width.
  SmallVector<PHINode*, 8> Phis;
  for (PHINode &PN : L->getHeader()->phis())
    Phis.push_back(&PN);

  if (TTI)
    std::sort(Phis.begin(), Phis.end(), [](Value *LHS, Value *RHS) {
      // Put pointers at the back and make sure pointer < pointer = false.
      if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
        return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
      return RHS->getType()->getPrimitiveSizeInBits() <
             LHS->getType()->getPrimitiveSizeInBits();
    });

  unsigned NumElim = 0;
  DenseMap<const SCEV *, PHINode *> ExprToIVMap;
  // Process phis from wide to narrow. Map wide phis to their truncation
  // so narrow phis can reuse them.
  for (PHINode *Phi : Phis) {
    auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
      if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
        return V;
      if (!SE.isSCEVable(PN->getType()))
        return nullptr;
      auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
      if (!Const)
        return nullptr;
      return Const->getValue();
    };

    // Fold constant phis. They may be congruent to other constant phis and
    // would confuse the logic below that expects proper IVs.
    if (Value *V = SimplifyPHINode(Phi)) {
      if (V->getType() != Phi->getType())
        continue;
      Phi->replaceAllUsesWith(V);
      DeadInsts.emplace_back(Phi);
      ++NumElim;
      DEBUG_WITH_TYPE(DebugType, dbgs()
                      << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
      continue;
    }

    if (!SE.isSCEVable(Phi->getType()))
      continue;

    PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
    if (!OrigPhiRef) {
      OrigPhiRef = Phi;
      if (Phi->getType()->isIntegerTy() && TTI &&
          TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
        // This phi can be freely truncated to the narrowest phi type. Map the
        // truncated expression to it so it will be reused for narrow types.
        const SCEV *TruncExpr =
          SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
        ExprToIVMap[TruncExpr] = Phi;
      }
      continue;
    }

    // Replacing a pointer phi with an integer phi or vice-versa doesn't make
    // sense.
    if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
      continue;

    if (BasicBlock *LatchBlock = L->getLoopLatch()) {
      Instruction *OrigInc = dyn_cast<Instruction>(
          OrigPhiRef->getIncomingValueForBlock(LatchBlock));
      Instruction *IsomorphicInc =
          dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));

      if (OrigInc && IsomorphicInc) {
        // If this phi has the same width but is more canonical, replace the
        // original with it. As part of the "more canonical" determination,
        // respect a prior decision to use an IV chain.
        if (OrigPhiRef->getType() == Phi->getType() &&
            !(ChainedPhis.count(Phi) ||
              isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
            (ChainedPhis.count(Phi) ||
             isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
          std::swap(OrigPhiRef, Phi);
          std::swap(OrigInc, IsomorphicInc);
        }
        // Replacing the congruent phi is sufficient because acyclic
        // redundancy elimination, CSE/GVN, should handle the
        // rest. However, once SCEV proves that a phi is congruent,
        // it's often the head of an IV user cycle that is isomorphic
        // with the original phi. It's worth eagerly cleaning up the
        // common case of a single IV increment so that DeleteDeadPHIs
        // can remove cycles that had postinc uses.
        const SCEV *TruncExpr =
            SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
        if (OrigInc != IsomorphicInc &&
            TruncExpr == SE.getSCEV(IsomorphicInc) &&
            SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
            hoistIVInc(OrigInc, IsomorphicInc)) {
          DEBUG_WITH_TYPE(DebugType,
                          dbgs() << "INDVARS: Eliminated congruent iv.inc: "
                                 << *IsomorphicInc << '\n');
          Value *NewInc = OrigInc;
          if (OrigInc->getType() != IsomorphicInc->getType()) {
            Instruction *IP = nullptr;
            if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
              IP = &*PN->getParent()->getFirstInsertionPt();
            else
              IP = OrigInc->getNextNode();

            IRBuilder<> Builder(IP);
            Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
            NewInc = Builder.CreateTruncOrBitCast(
                OrigInc, IsomorphicInc->getType(), IVName);
          }
          IsomorphicInc->replaceAllUsesWith(NewInc);
          DeadInsts.emplace_back(IsomorphicInc);
        }
      }
    }
    DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: "
                                      << *Phi << '\n');
    ++NumElim;
    Value *NewIV = OrigPhiRef;
    if (OrigPhiRef->getType() != Phi->getType()) {
      IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
      Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
      NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
    }
    Phi->replaceAllUsesWith(NewIV);
    DeadInsts.emplace_back(Phi);
  }
  return NumElim;
}

Value *SCEVExpander::getExactExistingExpansion(const SCEV *S,
                                               const Instruction *At, Loop *L) {
  Optional<ScalarEvolution::ValueOffsetPair> VO =
      getRelatedExistingExpansion(S, At, L);
  if (VO && VO.getValue().second == nullptr)
    return VO.getValue().first;
  return nullptr;
}

Optional<ScalarEvolution::ValueOffsetPair>
SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
                                          Loop *L) {
  using namespace llvm::PatternMatch;

  SmallVector<BasicBlock *, 4> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);

  // Look for suitable value in simple conditions at the loop exits.
  for (BasicBlock *BB : ExitingBlocks) {
    ICmpInst::Predicate Pred;
    Instruction *LHS, *RHS;
    BasicBlock *TrueBB, *FalseBB;

    if (!match(BB->getTerminator(),
               m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
                    TrueBB, FalseBB)))
      continue;

    if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
      return ScalarEvolution::ValueOffsetPair(LHS, nullptr);

    if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
      return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
  }

  // Use expand's logic which is used for reusing a previous Value in
  // ExprValueMap.
  ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
  if (VO.first)
    return VO;

  // There is potential to make this significantly smarter, but this simple
  // heuristic already gets some interesting cases.

  // Can not find suitable value.
  return None;
}

bool SCEVExpander::isHighCostExpansionHelper(
    const SCEV *S, Loop *L, const Instruction *At,
    SmallPtrSetImpl<const SCEV *> &Processed) {

  // If we can find an existing value for this scev available at the point "At"
  // then consider the expression cheap.
  if (At && getRelatedExistingExpansion(S, At, L))
    return false;

  // Zero/One operand expressions
  switch (S->getSCEVType()) {
  case scUnknown:
  case scConstant:
    return false;
  case scTruncate:
    return isHighCostExpansionHelper(cast<SCEVTruncateExpr>(S)->getOperand(),
                                     L, At, Processed);
  case scZeroExtend:
    return isHighCostExpansionHelper(cast<SCEVZeroExtendExpr>(S)->getOperand(),
                                     L, At, Processed);
  case scSignExtend:
    return isHighCostExpansionHelper(cast<SCEVSignExtendExpr>(S)->getOperand(),
                                     L, At, Processed);
  }

  if (!Processed.insert(S).second)
    return false;

  if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) {
    // If the divisor is a power of two and the SCEV type fits in a native
    // integer, consider the division cheap irrespective of whether it occurs in
    // the user code since it can be lowered into a right shift.
    if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS()))
      if (SC->getAPInt().isPowerOf2()) {
        const DataLayout &DL =
            L->getHeader()->getParent()->getParent()->getDataLayout();
        unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth();
        return DL.isIllegalInteger(Width);
      }

    // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
    // HowManyLessThans produced to compute a precise expression, rather than a
    // UDiv from the user's code. If we can't find a UDiv in the code with some
    // simple searching, assume the former consider UDivExpr expensive to
    // compute.
    BasicBlock *ExitingBB = L->getExitingBlock();
    if (!ExitingBB)
      return true;

    // At the beginning of this function we already tried to find existing value
    // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern
    // involving division. This is just a simple search heuristic.
    if (!At)
      At = &ExitingBB->back();
    if (!getRelatedExistingExpansion(
            SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), At, L))
      return true;
  }

  // HowManyLessThans uses a Max expression whenever the loop is not guarded by
  // the exit condition.
  if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
    return true;

  // Recurse past nary expressions, which commonly occur in the
  // BackedgeTakenCount. They may already exist in program code, and if not,
  // they are not too expensive rematerialize.
  if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) {
    for (auto *Op : NAry->operands())
      if (isHighCostExpansionHelper(Op, L, At, Processed))
        return true;
  }

  // If we haven't recognized an expensive SCEV pattern, assume it's an
  // expression produced by program code.
  return false;
}

Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
                                            Instruction *IP) {
  assert(IP);
  switch (Pred->getKind()) {
  case SCEVPredicate::P_Union:
    return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
  case SCEVPredicate::P_Equal:
    return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
  case SCEVPredicate::P_Wrap: {
    auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
    return expandWrapPredicate(AddRecPred, IP);
  }
  }
  llvm_unreachable("Unknown SCEV predicate type");
}

Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
                                          Instruction *IP) {
  Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP);
  Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP);

  Builder.SetInsertPoint(IP);
  auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
  return I;
}

Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
                                           Instruction *Loc, bool Signed) {
  assert(AR->isAffine() && "Cannot generate RT check for "
                           "non-affine expression");

  SCEVUnionPredicate Pred;
  const SCEV *ExitCount =
      SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);

  assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count");

  const SCEV *Step = AR->getStepRecurrence(SE);
  const SCEV *Start = AR->getStart();

  unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
  unsigned DstBits = SE.getTypeSizeInBits(AR->getType());

  // The expression {Start,+,Step} has nusw/nssw if
  //   Step < 0, Start - |Step| * Backedge <= Start
  //   Step >= 0, Start + |Step| * Backedge > Start
  // and |Step| * Backedge doesn't unsigned overflow.

  IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
  Builder.SetInsertPoint(Loc);
  Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc);

  IntegerType *Ty =
      IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(AR->getType()));

  Value *StepValue = expandCodeFor(Step, Ty, Loc);
  Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc);
  Value *StartValue = expandCodeFor(Start, Ty, Loc);

  ConstantInt *Zero =
      ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits));

  Builder.SetInsertPoint(Loc);
  // Compute |Step|
  Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
  Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);

  // Get the backedge taken count and truncate or extended to the AR type.
  Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
  auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
                                         Intrinsic::umul_with_overflow, Ty);

  // Compute |Step| * Backedge
  CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
  Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
  Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");

  // Compute:
  //   Start + |Step| * Backedge < Start
  //   Start - |Step| * Backedge > Start
  Value *Add = Builder.CreateAdd(StartValue, MulV);
  Value *Sub = Builder.CreateSub(StartValue, MulV);

  Value *EndCompareGT = Builder.CreateICmp(
      Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);

  Value *EndCompareLT = Builder.CreateICmp(
      Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);

  // Select the answer based on the sign of Step.
  Value *EndCheck =
      Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);

  // If the backedge taken count type is larger than the AR type,
  // check that we don't drop any bits by truncating it. If we are
  // droping bits, then we have overflow (unless the step is zero).
  if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
    auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
    auto *BackedgeCheck =
        Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
                           ConstantInt::get(Loc->getContext(), MaxVal));
    BackedgeCheck = Builder.CreateAnd(
        BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));

    EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
  }

  EndCheck = Builder.CreateOr(EndCheck, OfMul);
  return EndCheck;
}

Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
                                         Instruction *IP) {
  const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
  Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;

  // Add a check for NUSW
  if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
    NUSWCheck = generateOverflowCheck(A, IP, false);

  // Add a check for NSSW
  if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
    NSSWCheck = generateOverflowCheck(A, IP, true);

  if (NUSWCheck && NSSWCheck)
    return Builder.CreateOr(NUSWCheck, NSSWCheck);

  if (NUSWCheck)
    return NUSWCheck;

  if (NSSWCheck)
    return NSSWCheck;

  return ConstantInt::getFalse(IP->getContext());
}

Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
                                          Instruction *IP) {
  auto *BoolType = IntegerType::get(IP->getContext(), 1);
  Value *Check = ConstantInt::getNullValue(BoolType);

  // Loop over all checks in this set.
  for (auto Pred : Union->getPredicates()) {
    auto *NextCheck = expandCodeForPredicate(Pred, IP);
    Builder.SetInsertPoint(IP);
    Check = Builder.CreateOr(Check, NextCheck);
  }

  return Check;
}

namespace {
// Search for a SCEV subexpression that is not safe to expand.  Any expression
// that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
// UDiv expressions. We don't know if the UDiv is derived from an IR divide
// instruction, but the important thing is that we prove the denominator is
// nonzero before expansion.
//
// IVUsers already checks that IV-derived expressions are safe. So this check is
// only needed when the expression includes some subexpression that is not IV
// derived.
//
// Currently, we only allow division by a nonzero constant here. If this is
// inadequate, we could easily allow division by SCEVUnknown by using
// ValueTracking to check isKnownNonZero().
//
// We cannot generally expand recurrences unless the step dominates the loop
// header. The expander handles the special case of affine recurrences by
// scaling the recurrence outside the loop, but this technique isn't generally
// applicable. Expanding a nested recurrence outside a loop requires computing
// binomial coefficients. This could be done, but the recurrence has to be in a
// perfectly reduced form, which can't be guaranteed.
struct SCEVFindUnsafe {
  ScalarEvolution &SE;
  bool IsUnsafe;

  SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}

  bool follow(const SCEV *S) {
    if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
      const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
      if (!SC || SC->getValue()->isZero()) {
        IsUnsafe = true;
        return false;
      }
    }
    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
      const SCEV *Step = AR->getStepRecurrence(SE);
      if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
        IsUnsafe = true;
        return false;
      }
    }
    return true;
  }
  bool isDone() const { return IsUnsafe; }
};
}

namespace llvm {
bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
  SCEVFindUnsafe Search(SE);
  visitAll(S, Search);
  return !Search.IsUnsafe;
}

bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
                      ScalarEvolution &SE) {
  return isSafeToExpand(S, SE) && SE.dominates(S, InsertionPoint->getParent());
}
}