Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
//===-- MipsInstrFPU.td - Mips FPU Instruction Information -*- tablegen -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the Mips FPU instruction set.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Floating Point Instructions
// ------------------------
// * 64bit fp:
//    - 32 64-bit registers (default mode)
//    - 16 even 32-bit registers (32-bit compatible mode) for
//      single and double access.
// * 32bit fp:
//    - 16 even 32-bit registers - single and double (aliased)
//    - 32 32-bit registers (within single-only mode)
//===----------------------------------------------------------------------===//

// Floating Point Compare and Branch
def SDT_MipsFPBrcond : SDTypeProfile<0, 3, [SDTCisInt<0>,
                                            SDTCisVT<1, i32>,
                                            SDTCisVT<2, OtherVT>]>;
def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>,
                                         SDTCisVT<2, i32>]>;
def SDT_MipsCMovFP : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisVT<2, i32>,
                                          SDTCisSameAs<1, 3>]>;
def SDT_MipsTruncIntFP : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]>;
def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
                                                SDTCisVT<1, i32>,
                                                SDTCisSameAs<1, 2>]>;
def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
                                                     SDTCisVT<1, f64>,
                                                     SDTCisVT<2, i32>]>;

def SDT_MipsMTC1_D64 : SDTypeProfile<1, 1, [SDTCisVT<0, f64>,
                                            SDTCisVT<1, i32>]>;

def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>;
def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>;
def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>;
def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
                          [SDNPHasChain, SDNPOptInGlue]>;
def MipsTruncIntFP : SDNode<"MipsISD::TruncIntFP", SDT_MipsTruncIntFP>;
def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>;
def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64",
                                   SDT_MipsExtractElementF64>;

def MipsMTC1_D64 : SDNode<"MipsISD::MTC1_D64", SDT_MipsMTC1_D64>;

// Operand for printing out a condition code.
let PrintMethod = "printFCCOperand", DecoderMethod = "DecodeCondCode" in
  def condcode : Operand<i32>;

//===----------------------------------------------------------------------===//
// Feature predicates.
//===----------------------------------------------------------------------===//

def IsFP64bit        : Predicate<"Subtarget->isFP64bit()">,
                       AssemblerPredicate<"FeatureFP64Bit">;
def NotFP64bit       : Predicate<"!Subtarget->isFP64bit()">,
                       AssemblerPredicate<"!FeatureFP64Bit">;
def IsSingleFloat    : Predicate<"Subtarget->isSingleFloat()">,
                       AssemblerPredicate<"FeatureSingleFloat">;
def IsNotSingleFloat : Predicate<"!Subtarget->isSingleFloat()">,
                       AssemblerPredicate<"!FeatureSingleFloat">;
def IsNotSoftFloat   : Predicate<"!Subtarget->useSoftFloat()">,
                       AssemblerPredicate<"!FeatureSoftFloat">;

//===----------------------------------------------------------------------===//
// Mips FGR size adjectives.
// They are mutually exclusive.
//===----------------------------------------------------------------------===//

class FGR_32 { list<Predicate> FGRPredicates = [NotFP64bit]; }
class FGR_64 { list<Predicate> FGRPredicates = [IsFP64bit]; }
class HARDFLOAT { list<Predicate> HardFloatPredicate = [IsNotSoftFloat]; }

//===----------------------------------------------------------------------===//

// FP immediate patterns.
def fpimm0 : PatLeaf<(fpimm), [{
  return N->isExactlyValue(+0.0);
}]>;

def fpimm0neg : PatLeaf<(fpimm), [{
  return N->isExactlyValue(-0.0);
}]>;

//===----------------------------------------------------------------------===//
// Instruction Class Templates
//
// A set of multiclasses is used to address the register usage.
//
// S32 - single precision in 16 32bit even fp registers
//       single precision in 32 32bit fp registers in SingleOnly mode
// S64 - single precision in 32 64bit fp registers (In64BitMode)
// D32 - double precision in 16 32bit even fp registers
// D64 - double precision in 32 64bit fp registers (In64BitMode)
//
// Only S32 and D32 are supported right now.
//===----------------------------------------------------------------------===//
class ADDS_FT<string opstr, RegisterOperand RC, InstrItinClass Itin, bit IsComm,
              SDPatternOperator OpNode= null_frag> :
  InstSE<(outs RC:$fd), (ins RC:$fs, RC:$ft),
         !strconcat(opstr, "\t$fd, $fs, $ft"),
         [(set RC:$fd, (OpNode RC:$fs, RC:$ft))], Itin, FrmFR, opstr>,
  HARDFLOAT {
  let isCommutable = IsComm;
}

multiclass ADDS_M<string opstr, InstrItinClass Itin, bit IsComm,
                  SDPatternOperator OpNode = null_frag> {
  def _D32 : MMRel, ADDS_FT<opstr, AFGR64Opnd, Itin, IsComm, OpNode>, FGR_32;
  def _D64 : ADDS_FT<opstr, FGR64Opnd, Itin, IsComm, OpNode>, FGR_64 {
    string DecoderNamespace = "MipsFP64";
  }
}

class ABSS_FT<string opstr, RegisterOperand DstRC, RegisterOperand SrcRC,
              InstrItinClass Itin, SDPatternOperator OpNode= null_frag> :
  InstSE<(outs DstRC:$fd), (ins SrcRC:$fs), !strconcat(opstr, "\t$fd, $fs"),
         [(set DstRC:$fd, (OpNode SrcRC:$fs))], Itin, FrmFR, opstr>,
  HARDFLOAT,
  NeverHasSideEffects;

multiclass ABSS_M<string opstr, InstrItinClass Itin,
                  SDPatternOperator OpNode= null_frag> {
  def _D32 : MMRel, ABSS_FT<opstr, AFGR64Opnd, AFGR64Opnd, Itin, OpNode>,
             FGR_32;
  def _D64 : ABSS_FT<opstr, FGR64Opnd, FGR64Opnd, Itin, OpNode>, FGR_64 {
    string DecoderNamespace = "MipsFP64";
  }
}

multiclass ROUND_M<string opstr, InstrItinClass Itin> {
  def _D32 : MMRel, ABSS_FT<opstr, FGR32Opnd, AFGR64Opnd, Itin>, FGR_32;
  def _D64 : StdMMR6Rel, ABSS_FT<opstr, FGR32Opnd, FGR64Opnd, Itin>, FGR_64 {
    let DecoderNamespace = "MipsFP64";
  }
}

class MFC1_FT<string opstr, RegisterOperand DstRC, RegisterOperand SrcRC,
              InstrItinClass Itin, SDPatternOperator OpNode= null_frag> :
  InstSE<(outs DstRC:$rt), (ins SrcRC:$fs), !strconcat(opstr, "\t$rt, $fs"),
         [(set DstRC:$rt, (OpNode SrcRC:$fs))], Itin, FrmFR, opstr>, HARDFLOAT;

class MTC1_FT<string opstr, RegisterOperand DstRC, RegisterOperand SrcRC,
              InstrItinClass Itin, SDPatternOperator OpNode= null_frag> :
  InstSE<(outs DstRC:$fs), (ins SrcRC:$rt), !strconcat(opstr, "\t$rt, $fs"),
         [(set DstRC:$fs, (OpNode SrcRC:$rt))], Itin, FrmFR, opstr>, HARDFLOAT;

class MTC1_64_FT<string opstr, RegisterOperand DstRC, RegisterOperand SrcRC,
                 InstrItinClass Itin> :
  InstSE<(outs DstRC:$fs), (ins DstRC:$fs_in, SrcRC:$rt),
         !strconcat(opstr, "\t$rt, $fs"), [], Itin, FrmFR, opstr>, HARDFLOAT {
  // $fs_in is part of a white lie to work around a widespread bug in the FPU
  // implementation. See expandBuildPairF64 for details.
  let Constraints = "$fs = $fs_in";
}

class LW_FT<string opstr, RegisterOperand RC, DAGOperand MO,
            InstrItinClass Itin, SDPatternOperator OpNode = null_frag> :
  InstSE<(outs RC:$rt), (ins MO:$addr), !strconcat(opstr, "\t$rt, $addr"),
         [(set RC:$rt, (OpNode addrDefault:$addr))], Itin, FrmFI, opstr>,
  HARDFLOAT {
  let DecoderMethod = "DecodeFMem";
  let mayLoad = 1;
}

class SW_FT<string opstr, RegisterOperand RC, DAGOperand MO,
            InstrItinClass Itin, SDPatternOperator OpNode = null_frag> :
  InstSE<(outs), (ins RC:$rt, MO:$addr), !strconcat(opstr, "\t$rt, $addr"),
         [(OpNode RC:$rt, addrDefault:$addr)], Itin, FrmFI, opstr>, HARDFLOAT {
  let DecoderMethod = "DecodeFMem";
  let mayStore = 1;
}

class MADDS_FT<string opstr, RegisterOperand RC, InstrItinClass Itin,
               SDPatternOperator OpNode = null_frag> :
  InstSE<(outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
         !strconcat(opstr, "\t$fd, $fr, $fs, $ft"),
         [(set RC:$fd, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr))], Itin,
         FrmFR, opstr>, HARDFLOAT;

class NMADDS_FT<string opstr, RegisterOperand RC, InstrItinClass Itin,
                SDPatternOperator OpNode = null_frag> :
  InstSE<(outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
         !strconcat(opstr, "\t$fd, $fr, $fs, $ft"),
         [(set RC:$fd, (fsub fpimm0, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr)))],
         Itin, FrmFR, opstr>, HARDFLOAT;

class LWXC1_FT<string opstr, RegisterOperand DRC,
               InstrItinClass Itin, SDPatternOperator OpNode = null_frag> :
  InstSE<(outs DRC:$fd), (ins PtrRC:$base, PtrRC:$index),
         !strconcat(opstr, "\t$fd, ${index}(${base})"),
         [(set DRC:$fd, (OpNode (add iPTR:$base, iPTR:$index)))], Itin,
         FrmFI, opstr>, HARDFLOAT {
  let AddedComplexity = 20;
}

class SWXC1_FT<string opstr, RegisterOperand DRC,
               InstrItinClass Itin, SDPatternOperator OpNode = null_frag> :
  InstSE<(outs), (ins DRC:$fs, PtrRC:$base, PtrRC:$index),
         !strconcat(opstr, "\t$fs, ${index}(${base})"),
         [(OpNode DRC:$fs, (add iPTR:$base, iPTR:$index))], Itin,
         FrmFI, opstr>, HARDFLOAT {
  let AddedComplexity = 20;
}

class BC1F_FT<string opstr, DAGOperand opnd, InstrItinClass Itin,
              SDPatternOperator Op = null_frag> :
  InstSE<(outs), (ins FCCRegsOpnd:$fcc, opnd:$offset),
         !strconcat(opstr, "\t$fcc, $offset"),
         [(MipsFPBrcond Op, FCCRegsOpnd:$fcc, bb:$offset)], Itin,
         FrmFI, opstr>, HARDFLOAT {
  let isBranch = 1;
  let isTerminator = 1;
  let hasDelaySlot = 1;
  let Defs = [AT];
  let hasFCCRegOperand = 1;
}

class BC1XL_FT<string opstr, DAGOperand opnd, InstrItinClass Itin> :
  InstSE<(outs), (ins FCCRegsOpnd:$fcc, opnd:$offset),
         !strconcat(opstr, "\t$fcc, $offset"), [], Itin,
         FrmFI, opstr>, HARDFLOAT {
  let isBranch = 1;
  let isTerminator = 1;
  let hasDelaySlot = 1;
  let Defs = [AT];
  let hasFCCRegOperand = 1;
}

class CEQS_FT<string typestr, RegisterClass RC, InstrItinClass Itin,
              SDPatternOperator OpNode = null_frag>  :
  InstSE<(outs), (ins RC:$fs, RC:$ft, condcode:$cond),
         !strconcat("c.$cond.", typestr, "\t$fs, $ft"),
         [(OpNode RC:$fs, RC:$ft, imm:$cond)], Itin, FrmFR,
         !strconcat("c.$cond.", typestr)>, HARDFLOAT {
  let Defs = [FCC0];
  let isCodeGenOnly = 1;
  let hasFCCRegOperand = 1;
}


// Note: MIPS-IV introduced $fcc1-$fcc7 and renamed FCSR31[23] $fcc0. Rather
//       duplicating the instruction definition for MIPS1 - MIPS3, we expand
//       c.cond.ft if necessary, and reject it after constructing the
//       instruction if the ISA doesn't support it.
class C_COND_FT<string CondStr, string Typestr, RegisterOperand RC,
                InstrItinClass itin>  :
   InstSE<(outs FCCRegsOpnd:$fcc), (ins RC:$fs, RC:$ft),
          !strconcat("c.", CondStr, ".", Typestr, "\t$fcc, $fs, $ft"), [], itin,
          FrmFR>, HARDFLOAT {
  let isCompare = 1;
  let hasFCCRegOperand = 1;
}


multiclass C_COND_M<string TypeStr, RegisterOperand RC, bits<5> fmt,
                    InstrItinClass itin> {
  def C_F_#NAME : MMRel, C_COND_FT<"f", TypeStr, RC, itin>,
                  C_COND_FM<fmt, 0> {
    let BaseOpcode = "c.f."#NAME;
    let isCommutable = 1;
  }
  def C_UN_#NAME : MMRel, C_COND_FT<"un", TypeStr, RC, itin>,
                   C_COND_FM<fmt, 1> {
    let BaseOpcode = "c.un."#NAME;
    let isCommutable = 1;
  }
  def C_EQ_#NAME : MMRel, C_COND_FT<"eq", TypeStr, RC, itin>,
                   C_COND_FM<fmt, 2> {
    let BaseOpcode = "c.eq."#NAME;
    let isCommutable = 1;
  }
  def C_UEQ_#NAME : MMRel, C_COND_FT<"ueq", TypeStr, RC, itin>,
                    C_COND_FM<fmt, 3> {
    let BaseOpcode = "c.ueq."#NAME;
    let isCommutable = 1;
  }
  def C_OLT_#NAME : MMRel, C_COND_FT<"olt", TypeStr, RC, itin>,
                    C_COND_FM<fmt, 4> {
    let BaseOpcode = "c.olt."#NAME;
  }
  def C_ULT_#NAME : MMRel, C_COND_FT<"ult", TypeStr, RC, itin>,
                    C_COND_FM<fmt, 5> {
    let BaseOpcode = "c.ult."#NAME;
  }
  def C_OLE_#NAME : MMRel, C_COND_FT<"ole", TypeStr, RC, itin>,
                    C_COND_FM<fmt, 6> {
    let BaseOpcode = "c.ole."#NAME;
  }
  def C_ULE_#NAME : MMRel, C_COND_FT<"ule", TypeStr, RC, itin>,
                     C_COND_FM<fmt, 7> {
    let BaseOpcode = "c.ule."#NAME;
  }
  def C_SF_#NAME : MMRel, C_COND_FT<"sf", TypeStr, RC, itin>,
                   C_COND_FM<fmt, 8> {
    let BaseOpcode = "c.sf."#NAME;
    let isCommutable = 1;
  }
  def C_NGLE_#NAME : MMRel, C_COND_FT<"ngle", TypeStr, RC, itin>,
                     C_COND_FM<fmt, 9> {
    let BaseOpcode = "c.ngle."#NAME;
  }
  def C_SEQ_#NAME : MMRel, C_COND_FT<"seq", TypeStr, RC, itin>,
                    C_COND_FM<fmt, 10> {
    let BaseOpcode = "c.seq."#NAME;
    let isCommutable = 1;
  }
  def C_NGL_#NAME : MMRel, C_COND_FT<"ngl", TypeStr, RC, itin>,
                    C_COND_FM<fmt, 11> {
    let BaseOpcode = "c.ngl."#NAME;
  }
  def C_LT_#NAME : MMRel, C_COND_FT<"lt", TypeStr, RC, itin>,
                   C_COND_FM<fmt, 12> {
    let BaseOpcode = "c.lt."#NAME;
  }
  def C_NGE_#NAME : MMRel, C_COND_FT<"nge", TypeStr, RC, itin>,
                    C_COND_FM<fmt, 13> {
    let BaseOpcode = "c.nge."#NAME;
  }
  def C_LE_#NAME : MMRel, C_COND_FT<"le", TypeStr, RC, itin>,
                   C_COND_FM<fmt, 14> {
    let BaseOpcode = "c.le."#NAME;
  }
  def C_NGT_#NAME : MMRel, C_COND_FT<"ngt", TypeStr, RC, itin>,
                    C_COND_FM<fmt, 15> {
    let BaseOpcode = "c.ngt."#NAME;
  }
}

let AdditionalPredicates = [NotInMicroMips] in {
defm S : C_COND_M<"s", FGR32Opnd, 16, II_C_CC_S>, ISA_MIPS1_NOT_32R6_64R6;
defm D32 : C_COND_M<"d", AFGR64Opnd, 17, II_C_CC_D>, ISA_MIPS1_NOT_32R6_64R6,
           FGR_32;
let DecoderNamespace = "MipsFP64" in
defm D64 : C_COND_M<"d", FGR64Opnd, 17, II_C_CC_D>, ISA_MIPS1_NOT_32R6_64R6,
           FGR_64;
}
//===----------------------------------------------------------------------===//
// Floating Point Instructions
//===----------------------------------------------------------------------===//
def ROUND_W_S  : MMRel, StdMMR6Rel, ABSS_FT<"round.w.s", FGR32Opnd, FGR32Opnd, II_ROUND>,
                 ABSS_FM<0xc, 16>, ISA_MIPS2;
defm ROUND_W : ROUND_M<"round.w.d", II_ROUND>, ABSS_FM<0xc, 17>, ISA_MIPS2;
def TRUNC_W_S  : MMRel, StdMMR6Rel, ABSS_FT<"trunc.w.s", FGR32Opnd, FGR32Opnd, II_TRUNC>,
                 ABSS_FM<0xd, 16>, ISA_MIPS2;
def CEIL_W_S   : MMRel, StdMMR6Rel, ABSS_FT<"ceil.w.s", FGR32Opnd, FGR32Opnd, II_CEIL>,
                 ABSS_FM<0xe, 16>, ISA_MIPS2;
def FLOOR_W_S  : MMRel, StdMMR6Rel, ABSS_FT<"floor.w.s", FGR32Opnd, FGR32Opnd, II_FLOOR>,
                 ABSS_FM<0xf, 16>, ISA_MIPS2;
def CVT_W_S    : MMRel, ABSS_FT<"cvt.w.s", FGR32Opnd, FGR32Opnd, II_CVT>,
                 ABSS_FM<0x24, 16>;

defm TRUNC_W : ROUND_M<"trunc.w.d", II_TRUNC>, ABSS_FM<0xd, 17>, ISA_MIPS2;
defm CEIL_W  : ROUND_M<"ceil.w.d", II_CEIL>, ABSS_FM<0xe, 17>, ISA_MIPS2;
defm FLOOR_W : ROUND_M<"floor.w.d", II_FLOOR>, ABSS_FM<0xf, 17>, ISA_MIPS2;
defm CVT_W   : ROUND_M<"cvt.w.d", II_CVT>, ABSS_FM<0x24, 17>;

let AdditionalPredicates = [NotInMicroMips] in {
  def RECIP_S : MMRel, ABSS_FT<"recip.s", FGR32Opnd, FGR32Opnd, II_RECIP_S>,
                ABSS_FM<0b010101, 0x10>, INSN_MIPS4_32R2;
  def RECIP_D32 : MMRel, ABSS_FT<"recip.d", AFGR64Opnd, AFGR64Opnd, II_RECIP_D>,
                  ABSS_FM<0b010101, 0x11>, INSN_MIPS4_32R2, FGR_32 {
    let BaseOpcode = "RECIP_D32";
  }
  let DecoderNamespace = "MipsFP64" in
    def RECIP_D64 : MMRel, ABSS_FT<"recip.d", FGR64Opnd, FGR64Opnd,
                                   II_RECIP_D>, ABSS_FM<0b010101, 0x11>,
                    INSN_MIPS4_32R2, FGR_64;
  def RSQRT_S : MMRel, ABSS_FT<"rsqrt.s", FGR32Opnd, FGR32Opnd, II_RSQRT_S>,
                ABSS_FM<0b010110, 0x10>, INSN_MIPS4_32R2;
  def RSQRT_D32 : MMRel, ABSS_FT<"rsqrt.d", AFGR64Opnd, AFGR64Opnd, II_RSQRT_D>,
                  ABSS_FM<0b010110, 0x11>, INSN_MIPS4_32R2, FGR_32 {
    let BaseOpcode = "RSQRT_D32";
  }
  let DecoderNamespace = "MipsFP64" in
    def RSQRT_D64 : MMRel, ABSS_FT<"rsqrt.d", FGR64Opnd, FGR64Opnd,
                                   II_RSQRT_D>, ABSS_FM<0b010110, 0x11>,
                    INSN_MIPS4_32R2, FGR_64;
}
let DecoderNamespace = "MipsFP64" in {
  let AdditionalPredicates = [NotInMicroMips] in {
  def ROUND_L_S : ABSS_FT<"round.l.s", FGR64Opnd, FGR32Opnd, II_ROUND>,
                  ABSS_FM<0x8, 16>, FGR_64;
  def ROUND_L_D64 : ABSS_FT<"round.l.d", FGR64Opnd, FGR64Opnd, II_ROUND>,
                    ABSS_FM<0x8, 17>, FGR_64;
  def TRUNC_L_S : ABSS_FT<"trunc.l.s", FGR64Opnd, FGR32Opnd, II_TRUNC>,
                  ABSS_FM<0x9, 16>, FGR_64;
  def TRUNC_L_D64 : ABSS_FT<"trunc.l.d", FGR64Opnd, FGR64Opnd, II_TRUNC>,
                    ABSS_FM<0x9, 17>, FGR_64;
  def CEIL_L_S  : ABSS_FT<"ceil.l.s", FGR64Opnd, FGR32Opnd, II_CEIL>,
                  ABSS_FM<0xa, 16>, FGR_64;
  def CEIL_L_D64 : ABSS_FT<"ceil.l.d", FGR64Opnd, FGR64Opnd, II_CEIL>,
                   ABSS_FM<0xa, 17>, FGR_64;
  def FLOOR_L_S : ABSS_FT<"floor.l.s", FGR64Opnd, FGR32Opnd, II_FLOOR>,
                  ABSS_FM<0xb, 16>, FGR_64;
  def FLOOR_L_D64 : ABSS_FT<"floor.l.d", FGR64Opnd, FGR64Opnd, II_FLOOR>,
                    ABSS_FM<0xb, 17>, FGR_64;
  }
}

def CVT_S_W : MMRel, ABSS_FT<"cvt.s.w", FGR32Opnd, FGR32Opnd, II_CVT>,
              ABSS_FM<0x20, 20>;
let AdditionalPredicates = [NotInMicroMips] in{
  def CVT_L_S : MMRel, ABSS_FT<"cvt.l.s", FGR64Opnd, FGR32Opnd, II_CVT>,
                ABSS_FM<0x25, 16>, INSN_MIPS3_32R2;
  def CVT_L_D64: MMRel, ABSS_FT<"cvt.l.d", FGR64Opnd, FGR64Opnd, II_CVT>,
                 ABSS_FM<0x25, 17>, INSN_MIPS3_32R2;
}

def CVT_S_D32 : MMRel, ABSS_FT<"cvt.s.d", FGR32Opnd, AFGR64Opnd, II_CVT>,
                ABSS_FM<0x20, 17>, FGR_32;
def CVT_D32_W : MMRel, ABSS_FT<"cvt.d.w", AFGR64Opnd, FGR32Opnd, II_CVT>,
                ABSS_FM<0x21, 20>, FGR_32;
def CVT_D32_S : MMRel, ABSS_FT<"cvt.d.s", AFGR64Opnd, FGR32Opnd, II_CVT>,
                ABSS_FM<0x21, 16>, FGR_32;

let DecoderNamespace = "MipsFP64" in {
  def CVT_S_D64 : ABSS_FT<"cvt.s.d", FGR32Opnd, FGR64Opnd, II_CVT>,
                  ABSS_FM<0x20, 17>, FGR_64;
  let AdditionalPredicates = [NotInMicroMips] in{
    def CVT_S_L   : ABSS_FT<"cvt.s.l", FGR32Opnd, FGR64Opnd, II_CVT>,
                    ABSS_FM<0x20, 21>, FGR_64;
  }
  def CVT_D64_W : ABSS_FT<"cvt.d.w", FGR64Opnd, FGR32Opnd, II_CVT>,
                  ABSS_FM<0x21, 20>, FGR_64;
  def CVT_D64_S : ABSS_FT<"cvt.d.s", FGR64Opnd, FGR32Opnd, II_CVT>,
                  ABSS_FM<0x21, 16>, FGR_64;
  def CVT_D64_L : ABSS_FT<"cvt.d.l", FGR64Opnd, FGR64Opnd, II_CVT>,
                  ABSS_FM<0x21, 21>, FGR_64;
}

let isPseudo = 1, isCodeGenOnly = 1 in {
  def PseudoCVT_S_W : ABSS_FT<"", FGR32Opnd, GPR32Opnd, II_CVT>;
  def PseudoCVT_D32_W : ABSS_FT<"", AFGR64Opnd, GPR32Opnd, II_CVT>;
  def PseudoCVT_S_L : ABSS_FT<"", FGR64Opnd, GPR64Opnd, II_CVT>;
  def PseudoCVT_D64_W : ABSS_FT<"", FGR64Opnd, GPR32Opnd, II_CVT>;
  def PseudoCVT_D64_L : ABSS_FT<"", FGR64Opnd, GPR64Opnd, II_CVT>;
}

let AdditionalPredicates = [NotInMicroMips] in {
  def FABS_S : MMRel, ABSS_FT<"abs.s", FGR32Opnd, FGR32Opnd, II_ABS, fabs>,
               ABSS_FM<0x5, 16>;
  defm FABS : ABSS_M<"abs.d", II_ABS, fabs>, ABSS_FM<0x5, 17>;
}

def FNEG_S : MMRel, ABSS_FT<"neg.s", FGR32Opnd, FGR32Opnd, II_NEG, fneg>,
             ABSS_FM<0x7, 16>;
defm FNEG : ABSS_M<"neg.d", II_NEG, fneg>, ABSS_FM<0x7, 17>;

def FSQRT_S : MMRel, StdMMR6Rel, ABSS_FT<"sqrt.s", FGR32Opnd, FGR32Opnd,
              II_SQRT_S, fsqrt>, ABSS_FM<0x4, 16>, ISA_MIPS2;
defm FSQRT : ABSS_M<"sqrt.d", II_SQRT_D, fsqrt>, ABSS_FM<0x4, 17>, ISA_MIPS2;

// The odd-numbered registers are only referenced when doing loads,
// stores, and moves between floating-point and integer registers.
// When defining instructions, we reference all 32-bit registers,
// regardless of register aliasing.

/// Move Control Registers From/To CPU Registers
let AdditionalPredicates = [NotInMicroMips] in {
  def CFC1 : MMRel, MFC1_FT<"cfc1", GPR32Opnd, CCROpnd, II_CFC1>, MFC1_FM<2>;
  def CTC1 : MMRel, MTC1_FT<"ctc1", CCROpnd, GPR32Opnd, II_CTC1>, MFC1_FM<6>;
}
def MFC1 : MMRel, MFC1_FT<"mfc1", GPR32Opnd, FGR32Opnd, II_MFC1,
                          bitconvert>, MFC1_FM<0>;
def MFC1_D64 : MFC1_FT<"mfc1", GPR32Opnd, FGR64Opnd, II_MFC1>, MFC1_FM<0>,
               FGR_64 {
  let DecoderNamespace = "MipsFP64";
}
def MTC1 : MMRel, MTC1_FT<"mtc1", FGR32Opnd, GPR32Opnd, II_MTC1,
                          bitconvert>, MFC1_FM<4>;
def MTC1_D64 : MTC1_FT<"mtc1", FGR64Opnd, GPR32Opnd, II_MTC1>, MFC1_FM<4>,
               FGR_64 {
  let DecoderNamespace = "MipsFP64";
}

let AdditionalPredicates = [NotInMicroMips] in {
  def MFHC1_D32 : MMRel, MFC1_FT<"mfhc1", GPR32Opnd, AFGR64Opnd, II_MFHC1>,
                  MFC1_FM<3>, ISA_MIPS32R2, FGR_32;
  def MFHC1_D64 : MFC1_FT<"mfhc1", GPR32Opnd, FGR64Opnd, II_MFHC1>,
                  MFC1_FM<3>, ISA_MIPS32R2, FGR_64 {
    let DecoderNamespace = "MipsFP64";
  }
}
let AdditionalPredicates = [NotInMicroMips] in {
  def MTHC1_D32 : MMRel, StdMMR6Rel, MTC1_64_FT<"mthc1", AFGR64Opnd, GPR32Opnd, II_MTHC1>,
                  MFC1_FM<7>, ISA_MIPS32R2, FGR_32;
  def MTHC1_D64 : MTC1_64_FT<"mthc1", FGR64Opnd, GPR32Opnd, II_MTHC1>,
                  MFC1_FM<7>, ISA_MIPS32R2, FGR_64 {
    let DecoderNamespace = "MipsFP64";
  }
}
let AdditionalPredicates = [NotInMicroMips] in {
  def DMTC1 : MTC1_FT<"dmtc1", FGR64Opnd, GPR64Opnd, II_DMTC1,
              bitconvert>, MFC1_FM<5>, ISA_MIPS3;
  def DMFC1 : MFC1_FT<"dmfc1", GPR64Opnd, FGR64Opnd, II_DMFC1,
                      bitconvert>, MFC1_FM<1>, ISA_MIPS3;
}

def FMOV_S   : MMRel, ABSS_FT<"mov.s", FGR32Opnd, FGR32Opnd, II_MOV_S>,
               ABSS_FM<0x6, 16>;
def FMOV_D32 : MMRel, ABSS_FT<"mov.d", AFGR64Opnd, AFGR64Opnd, II_MOV_D>,
               ABSS_FM<0x6, 17>, FGR_32;
def FMOV_D64 : ABSS_FT<"mov.d", FGR64Opnd, FGR64Opnd, II_MOV_D>,
               ABSS_FM<0x6, 17>, FGR_64 {
                 let DecoderNamespace = "MipsFP64";
}

/// Floating Point Memory Instructions
let AdditionalPredicates = [NotInMicroMips] in {
  def LWC1 : MMRel, LW_FT<"lwc1", FGR32Opnd, mem_simm16, II_LWC1, load>,
             LW_FM<0x31>;
  def SWC1 : MMRel, SW_FT<"swc1", FGR32Opnd, mem_simm16, II_SWC1, store>,
             LW_FM<0x39>;
}

let DecoderNamespace = "MipsFP64", AdditionalPredicates = [NotInMicroMips] in {
  def LDC164 : StdMMR6Rel, LW_FT<"ldc1", FGR64Opnd, mem_simm16, II_LDC1, load>,
               LW_FM<0x35>, ISA_MIPS2, FGR_64 {
    let BaseOpcode = "LDC164";
  }
  def SDC164 : StdMMR6Rel, SW_FT<"sdc1", FGR64Opnd, mem_simm16, II_SDC1, store>,
               LW_FM<0x3d>, ISA_MIPS2, FGR_64;
}

let AdditionalPredicates = [NotInMicroMips] in {
  def LDC1 : MMRel, StdMMR6Rel, LW_FT<"ldc1", AFGR64Opnd, mem_simm16, II_LDC1,
                                      load>, LW_FM<0x35>, ISA_MIPS2, FGR_32 {
    let BaseOpcode = "LDC132";
  }
  def SDC1 : MMRel, SW_FT<"sdc1", AFGR64Opnd, mem_simm16, II_SDC1, store>,
             LW_FM<0x3d>, ISA_MIPS2, FGR_32;
}

// Indexed loads and stores.
// Base register + offset register addressing mode (indicated by "x" in the
// instruction mnemonic) is disallowed under NaCl.
let AdditionalPredicates = [IsNotNaCl] in {
  def LWXC1 : MMRel, LWXC1_FT<"lwxc1", FGR32Opnd, II_LWXC1, load>, LWXC1_FM<0>,
              INSN_MIPS4_32R2_NOT_32R6_64R6;
  def SWXC1 : MMRel, SWXC1_FT<"swxc1", FGR32Opnd, II_SWXC1, store>, SWXC1_FM<8>,
              INSN_MIPS4_32R2_NOT_32R6_64R6;
}

let AdditionalPredicates = [NotInMicroMips, IsNotNaCl] in {
  def LDXC1 : LWXC1_FT<"ldxc1", AFGR64Opnd, II_LDXC1, load>, LWXC1_FM<1>,
              INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32;
  def SDXC1 : SWXC1_FT<"sdxc1", AFGR64Opnd, II_SDXC1, store>, SWXC1_FM<9>,
              INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32;
}

let DecoderNamespace="MipsFP64" in {
  def LDXC164 : LWXC1_FT<"ldxc1", FGR64Opnd, II_LDXC1, load>, LWXC1_FM<1>,
                INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64;
  def SDXC164 : SWXC1_FT<"sdxc1", FGR64Opnd, II_SDXC1, store>, SWXC1_FM<9>,
                INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64;
}

// Load/store doubleword indexed unaligned.
// FIXME: This instruction should not be defined for FGR_32.
let AdditionalPredicates = [IsNotNaCl] in {
  def LUXC1 : MMRel, LWXC1_FT<"luxc1", AFGR64Opnd, II_LUXC1>, LWXC1_FM<0x5>,
              INSN_MIPS5_32R2_NOT_32R6_64R6, FGR_32;
  def SUXC1 : MMRel, SWXC1_FT<"suxc1", AFGR64Opnd, II_SUXC1>, SWXC1_FM<0xd>,
              INSN_MIPS5_32R2_NOT_32R6_64R6, FGR_32;
}

let DecoderNamespace="MipsFP64" in {
  def LUXC164 : LWXC1_FT<"luxc1", FGR64Opnd, II_LUXC1>, LWXC1_FM<0x5>,
                INSN_MIPS5_32R2_NOT_32R6_64R6, FGR_64;
  def SUXC164 : SWXC1_FT<"suxc1", FGR64Opnd, II_SUXC1>, SWXC1_FM<0xd>,
                INSN_MIPS5_32R2_NOT_32R6_64R6, FGR_64;
}

/// Floating-point Aritmetic
def FADD_S : MMRel, ADDS_FT<"add.s", FGR32Opnd, II_ADD_S, 1, fadd>,
             ADDS_FM<0x00, 16>;
defm FADD :  ADDS_M<"add.d", II_ADD_D, 1, fadd>, ADDS_FM<0x00, 17>;
def FDIV_S : MMRel, ADDS_FT<"div.s", FGR32Opnd, II_DIV_S, 0, fdiv>,
             ADDS_FM<0x03, 16>;
defm FDIV :  ADDS_M<"div.d", II_DIV_D, 0, fdiv>, ADDS_FM<0x03, 17>;
def FMUL_S : MMRel, ADDS_FT<"mul.s", FGR32Opnd, II_MUL_S, 1, fmul>,
             ADDS_FM<0x02, 16>;
defm FMUL :  ADDS_M<"mul.d", II_MUL_D, 1, fmul>, ADDS_FM<0x02, 17>;
def FSUB_S : MMRel, ADDS_FT<"sub.s", FGR32Opnd, II_SUB_S, 0, fsub>,
             ADDS_FM<0x01, 16>;
defm FSUB :  ADDS_M<"sub.d", II_SUB_D, 0, fsub>, ADDS_FM<0x01, 17>;

def MADD_S : MMRel, MADDS_FT<"madd.s", FGR32Opnd, II_MADD_S, fadd>,
             MADDS_FM<4, 0>, INSN_MIPS4_32R2_NOT_32R6_64R6, MADD4;
def MSUB_S : MMRel, MADDS_FT<"msub.s", FGR32Opnd, II_MSUB_S, fsub>,
             MADDS_FM<5, 0>, INSN_MIPS4_32R2_NOT_32R6_64R6, MADD4;

let AdditionalPredicates = [NoNaNsFPMath, HasMadd4] in {
  def NMADD_S : MMRel, NMADDS_FT<"nmadd.s", FGR32Opnd, II_NMADD_S, fadd>,
                MADDS_FM<6, 0>, INSN_MIPS4_32R2_NOT_32R6_64R6;
  def NMSUB_S : MMRel, NMADDS_FT<"nmsub.s", FGR32Opnd, II_NMSUB_S, fsub>,
                MADDS_FM<7, 0>, INSN_MIPS4_32R2_NOT_32R6_64R6;
}

def MADD_D32 : MMRel, MADDS_FT<"madd.d", AFGR64Opnd, II_MADD_D, fadd>,
               MADDS_FM<4, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32, MADD4;
def MSUB_D32 : MMRel, MADDS_FT<"msub.d", AFGR64Opnd, II_MSUB_D, fsub>,
               MADDS_FM<5, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32, MADD4;

let AdditionalPredicates = [NoNaNsFPMath, HasMadd4] in {
  def NMADD_D32 : MMRel, NMADDS_FT<"nmadd.d", AFGR64Opnd, II_NMADD_D, fadd>,
                  MADDS_FM<6, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32;
  def NMSUB_D32 : MMRel, NMADDS_FT<"nmsub.d", AFGR64Opnd, II_NMSUB_D, fsub>,
                  MADDS_FM<7, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32;
}

let DecoderNamespace = "MipsFP64" in {
  def MADD_D64 : MADDS_FT<"madd.d", FGR64Opnd, II_MADD_D, fadd>,
                 MADDS_FM<4, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64, MADD4;
  def MSUB_D64 : MADDS_FT<"msub.d", FGR64Opnd, II_MSUB_D, fsub>,
                 MADDS_FM<5, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64, MADD4;
}

let AdditionalPredicates = [NoNaNsFPMath, HasMadd4],
    DecoderNamespace = "MipsFP64" in {
  def NMADD_D64 : NMADDS_FT<"nmadd.d", FGR64Opnd, II_NMADD_D, fadd>,
                  MADDS_FM<6, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64;
  def NMSUB_D64 : NMADDS_FT<"nmsub.d", FGR64Opnd, II_NMSUB_D, fsub>,
                  MADDS_FM<7, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64;
}

//===----------------------------------------------------------------------===//
// Floating Point Branch Codes
//===----------------------------------------------------------------------===//
// Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
// They must be kept in synch.
def MIPS_BRANCH_F  : PatLeaf<(i32 0)>;
def MIPS_BRANCH_T  : PatLeaf<(i32 1)>;

let AdditionalPredicates = [NotInMicroMips] in {
  def BC1F : MMRel, BC1F_FT<"bc1f", brtarget, II_BC1F, MIPS_BRANCH_F>,
             BC1F_FM<0, 0>, ISA_MIPS1_NOT_32R6_64R6;
  def BC1FL : MMRel, BC1XL_FT<"bc1fl", brtarget, II_BC1FL>,
              BC1F_FM<1, 0>, ISA_MIPS2_NOT_32R6_64R6;
  def BC1T : MMRel, BC1F_FT<"bc1t", brtarget, II_BC1T, MIPS_BRANCH_T>,
             BC1F_FM<0, 1>, ISA_MIPS1_NOT_32R6_64R6;
  def BC1TL : MMRel, BC1XL_FT<"bc1tl", brtarget, II_BC1TL>,
              BC1F_FM<1, 1>, ISA_MIPS2_NOT_32R6_64R6;

/// Floating Point Compare
  def FCMP_S32 : MMRel, CEQS_FT<"s", FGR32, II_C_CC_S, MipsFPCmp>, CEQS_FM<16>,
                 ISA_MIPS1_NOT_32R6_64R6 {

  // FIXME: This is a required to work around the fact that these instructions
  //        only use $fcc0. Ideally, MipsFPCmp nodes could be removed and the
  //        fcc register set is used directly.
  bits<3> fcc = 0;
  }
  def FCMP_D32 : MMRel, CEQS_FT<"d", AFGR64, II_C_CC_D, MipsFPCmp>, CEQS_FM<17>,
                 ISA_MIPS1_NOT_32R6_64R6, FGR_32 {
  // FIXME: This is a required to work around the fact that these instructions
  //        only use $fcc0. Ideally, MipsFPCmp nodes could be removed and the
  //        fcc register set is used directly.
  bits<3> fcc = 0;
  }
}
let DecoderNamespace = "MipsFP64" in
def FCMP_D64 : CEQS_FT<"d", FGR64, II_C_CC_D, MipsFPCmp>, CEQS_FM<17>,
               ISA_MIPS1_NOT_32R6_64R6, FGR_64 {
  // FIXME: This is a required to work around the fact that thiese instructions
  //        only use $fcc0. Ideally, MipsFPCmp nodes could be removed and the
  //        fcc register set is used directly.
  bits<3> fcc = 0;
}

//===----------------------------------------------------------------------===//
// Floating Point Pseudo-Instructions
//===----------------------------------------------------------------------===//

// This pseudo instr gets expanded into 2 mtc1 instrs after register
// allocation.
class BuildPairF64Base<RegisterOperand RO> :
  PseudoSE<(outs RO:$dst), (ins GPR32Opnd:$lo, GPR32Opnd:$hi),
           [(set RO:$dst, (MipsBuildPairF64 GPR32Opnd:$lo, GPR32Opnd:$hi))],
           II_MTC1>;

def BuildPairF64 : BuildPairF64Base<AFGR64Opnd>, FGR_32, HARDFLOAT;
def BuildPairF64_64 : BuildPairF64Base<FGR64Opnd>, FGR_64, HARDFLOAT;

// This pseudo instr gets expanded into 2 mfc1 instrs after register
// allocation.
// if n is 0, lower part of src is extracted.
// if n is 1, higher part of src is extracted.
// This node has associated scheduling information as the pre RA scheduler
// asserts otherwise.
class ExtractElementF64Base<RegisterOperand RO> :
  PseudoSE<(outs GPR32Opnd:$dst), (ins RO:$src, i32imm:$n),
           [(set GPR32Opnd:$dst, (MipsExtractElementF64 RO:$src, imm:$n))],
           II_MFC1>;

def ExtractElementF64 : ExtractElementF64Base<AFGR64Opnd>, FGR_32, HARDFLOAT;
def ExtractElementF64_64 : ExtractElementF64Base<FGR64Opnd>, FGR_64, HARDFLOAT;

def PseudoTRUNC_W_S : MipsAsmPseudoInst<(outs FGR32Opnd:$fd),
                                        (ins FGR32Opnd:$fs, GPR32Opnd:$rs),
                                        "trunc.w.s\t$fd, $fs, $rs">;

def PseudoTRUNC_W_D32 : MipsAsmPseudoInst<(outs FGR32Opnd:$fd),
                                          (ins AFGR64Opnd:$fs, GPR32Opnd:$rs),
                                          "trunc.w.d\t$fd, $fs, $rs">,
                        FGR_32, HARDFLOAT;

def PseudoTRUNC_W_D : MipsAsmPseudoInst<(outs FGR32Opnd:$fd),
                                        (ins FGR64Opnd:$fs, GPR32Opnd:$rs),
                                        "trunc.w.d\t$fd, $fs, $rs">,
                      FGR_64, HARDFLOAT;

def LoadImmSingleGPR : MipsAsmPseudoInst<(outs GPR32Opnd:$rd),
                                         (ins imm64:$fpimm),
                                         "li.s\t$rd, $fpimm">;

def LoadImmSingleFGR : MipsAsmPseudoInst<(outs StrictlyFGR32Opnd:$rd),
                                         (ins imm64:$fpimm),
                                         "li.s\t$rd, $fpimm">,
                       HARDFLOAT;

def LoadImmDoubleGPR : MipsAsmPseudoInst<(outs GPR32Opnd:$rd),
                                         (ins imm64:$fpimm),
                                         "li.d\t$rd, $fpimm">;

def LoadImmDoubleFGR_32 : MipsAsmPseudoInst<(outs StrictlyAFGR64Opnd:$rd),
                                            (ins imm64:$fpimm),
                                            "li.d\t$rd, $fpimm">,
                          FGR_32, HARDFLOAT;

def LoadImmDoubleFGR : MipsAsmPseudoInst<(outs StrictlyFGR64Opnd:$rd),
                                         (ins imm64:$fpimm),
                                         "li.d\t$rd, $fpimm">,
                       FGR_64, HARDFLOAT;

//===----------------------------------------------------------------------===//
// InstAliases.
//===----------------------------------------------------------------------===//
def : MipsInstAlias
        <"s.s $fd, $addr", (SWC1 FGR32Opnd:$fd, mem_simm16:$addr), 0>,
      ISA_MIPS2, HARDFLOAT;
def : MipsInstAlias
        <"s.d $fd, $addr", (SDC1 AFGR64Opnd:$fd, mem_simm16:$addr), 0>,
      FGR_32, ISA_MIPS2, HARDFLOAT;
def : MipsInstAlias
        <"s.d $fd, $addr", (SDC164 FGR64Opnd:$fd, mem_simm16:$addr), 0>,
      FGR_64, ISA_MIPS2, HARDFLOAT;

def : MipsInstAlias
        <"l.s $fd, $addr", (LWC1 FGR32Opnd:$fd, mem_simm16:$addr), 0>,
      ISA_MIPS2, HARDFLOAT;
def : MipsInstAlias
        <"l.d $fd, $addr", (LDC1 AFGR64Opnd:$fd, mem_simm16:$addr), 0>,
      FGR_32, ISA_MIPS2, HARDFLOAT;
def : MipsInstAlias
        <"l.d $fd, $addr", (LDC164 FGR64Opnd:$fd, mem_simm16:$addr), 0>,
      FGR_64, ISA_MIPS2, HARDFLOAT;

multiclass C_COND_ALIASES<string TypeStr, RegisterOperand RC> {
  def : MipsInstAlias<!strconcat("c.f.", TypeStr, " $fs, $ft"),
                      (!cast<Instruction>("C_F_"#NAME) FCC0,
                                                       RC:$fs, RC:$ft), 1>;
  def : MipsInstAlias<!strconcat("c.un.", TypeStr, " $fs, $ft"),
                      (!cast<Instruction>("C_UN_"#NAME) FCC0,
                                                        RC:$fs, RC:$ft), 1>;
  def : MipsInstAlias<!strconcat("c.eq.", TypeStr, " $fs, $ft"),
                      (!cast<Instruction>("C_EQ_"#NAME) FCC0,
                                                        RC:$fs, RC:$ft), 1>;
  def : MipsInstAlias<!strconcat("c.ueq.", TypeStr, " $fs, $ft"),
                      (!cast<Instruction>("C_UEQ_"#NAME) FCC0,
                                                         RC:$fs, RC:$ft), 1>;
  def : MipsInstAlias<!strconcat("c.olt.", TypeStr, " $fs, $ft"),
                      (!cast<Instruction>("C_OLT_"#NAME) FCC0,
                                                         RC:$fs, RC:$ft), 1>;
  def : MipsInstAlias<!strconcat("c.ult.", TypeStr, " $fs, $ft"),
                      (!cast<Instruction>("C_ULT_"#NAME) FCC0,
                                                         RC:$fs, RC:$ft), 1>;
  def : MipsInstAlias<!strconcat("c.ole.", TypeStr, " $fs, $ft"),
                      (!cast<Instruction>("C_OLE_"#NAME) FCC0,
                                                         RC:$fs, RC:$ft), 1>;
  def : MipsInstAlias<!strconcat("c.ule.", TypeStr, " $fs, $ft"),
                      (!cast<Instruction>("C_ULE_"#NAME) FCC0,
                                                         RC:$fs, RC:$ft), 1>;
  def : MipsInstAlias<!strconcat("c.sf.", TypeStr, " $fs, $ft"),
                      (!cast<Instruction>("C_SF_"#NAME) FCC0,
                                                        RC:$fs, RC:$ft), 1>;
  def : MipsInstAlias<!strconcat("c.ngle.", TypeStr, " $fs, $ft"),
                      (!cast<Instruction>("C_NGLE_"#NAME) FCC0,
                                                          RC:$fs, RC:$ft), 1>;
  def : MipsInstAlias<!strconcat("c.seq.", TypeStr, " $fs, $ft"),
                      (!cast<Instruction>("C_SEQ_"#NAME) FCC0,
                                                         RC:$fs, RC:$ft), 1>;
  def : MipsInstAlias<!strconcat("c.ngl.", TypeStr, " $fs, $ft"),
                      (!cast<Instruction>("C_NGL_"#NAME) FCC0,
                                                         RC:$fs, RC:$ft), 1>;
  def : MipsInstAlias<!strconcat("c.lt.", TypeStr, " $fs, $ft"),
                      (!cast<Instruction>("C_LT_"#NAME) FCC0,
                                                        RC:$fs, RC:$ft), 1>;
  def : MipsInstAlias<!strconcat("c.nge.", TypeStr, " $fs, $ft"),
                      (!cast<Instruction>("C_NGE_"#NAME) FCC0,
                                                         RC:$fs, RC:$ft), 1>;
  def : MipsInstAlias<!strconcat("c.le.", TypeStr, " $fs, $ft"),
                      (!cast<Instruction>("C_LE_"#NAME) FCC0,
                                                        RC:$fs, RC:$ft), 1>;
  def : MipsInstAlias<!strconcat("c.ngt.", TypeStr, " $fs, $ft"),
                      (!cast<Instruction>("C_NGT_"#NAME) FCC0,
                                                         RC:$fs, RC:$ft), 1>;
}

multiclass BC1_ALIASES<Instruction BCTrue, string BCTrueString,
                       Instruction BCFalse, string BCFalseString> {
  def : MipsInstAlias<!strconcat(BCTrueString, " $offset"),
                                (BCTrue FCC0, brtarget:$offset), 1>;

  def : MipsInstAlias<!strconcat(BCFalseString, " $offset"),
                                (BCFalse FCC0, brtarget:$offset), 1>;
}

let AdditionalPredicates = [NotInMicroMips] in {
  defm S   : C_COND_ALIASES<"s", FGR32Opnd>, HARDFLOAT,
             ISA_MIPS1_NOT_32R6_64R6;
  defm D32 : C_COND_ALIASES<"d", AFGR64Opnd>, HARDFLOAT,
             ISA_MIPS1_NOT_32R6_64R6, FGR_32;
  defm D64 : C_COND_ALIASES<"d", FGR64Opnd>, HARDFLOAT,
             ISA_MIPS1_NOT_32R6_64R6, FGR_64;

  defm : BC1_ALIASES<BC1T, "bc1t", BC1F, "bc1f">, ISA_MIPS1_NOT_32R6_64R6,
         HARDFLOAT;
  defm : BC1_ALIASES<BC1TL, "bc1tl", BC1FL, "bc1fl">, ISA_MIPS2_NOT_32R6_64R6,
         HARDFLOAT;
}
//===----------------------------------------------------------------------===//
// Floating Point Patterns
//===----------------------------------------------------------------------===//
def : MipsPat<(f32 fpimm0), (MTC1 ZERO)>;
def : MipsPat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>;

def : MipsPat<(f32 (sint_to_fp GPR32Opnd:$src)),
              (PseudoCVT_S_W GPR32Opnd:$src)>;
def : MipsPat<(MipsTruncIntFP FGR32Opnd:$src),
              (TRUNC_W_S FGR32Opnd:$src)>;

def : MipsPat<(MipsMTC1_D64 GPR32Opnd:$src),
              (MTC1_D64 GPR32Opnd:$src)>, FGR_64;

def : MipsPat<(f64 (sint_to_fp GPR32Opnd:$src)),
              (PseudoCVT_D32_W GPR32Opnd:$src)>, FGR_32;
def : MipsPat<(MipsTruncIntFP AFGR64Opnd:$src),
              (TRUNC_W_D32 AFGR64Opnd:$src)>, FGR_32;
def : MipsPat<(f32 (fpround AFGR64Opnd:$src)),
              (CVT_S_D32 AFGR64Opnd:$src)>, FGR_32;
def : MipsPat<(f64 (fpextend FGR32Opnd:$src)),
              (CVT_D32_S FGR32Opnd:$src)>, FGR_32;

def : MipsPat<(f64 fpimm0), (DMTC1 ZERO_64)>, FGR_64;
def : MipsPat<(f64 fpimm0neg), (FNEG_D64 (DMTC1 ZERO_64))>, FGR_64;

def : MipsPat<(f64 (sint_to_fp GPR32Opnd:$src)),
              (PseudoCVT_D64_W GPR32Opnd:$src)>, FGR_64;
def : MipsPat<(f32 (sint_to_fp GPR64Opnd:$src)),
              (EXTRACT_SUBREG (PseudoCVT_S_L GPR64Opnd:$src), sub_lo)>, FGR_64;
def : MipsPat<(f64 (sint_to_fp GPR64Opnd:$src)),
              (PseudoCVT_D64_L GPR64Opnd:$src)>, FGR_64;

def : MipsPat<(MipsTruncIntFP FGR64Opnd:$src),
              (TRUNC_W_D64 FGR64Opnd:$src)>, FGR_64;
def : MipsPat<(MipsTruncIntFP FGR32Opnd:$src),
              (TRUNC_L_S FGR32Opnd:$src)>, FGR_64;
def : MipsPat<(MipsTruncIntFP FGR64Opnd:$src),
              (TRUNC_L_D64 FGR64Opnd:$src)>, FGR_64;

def : MipsPat<(f32 (fpround FGR64Opnd:$src)),
              (CVT_S_D64 FGR64Opnd:$src)>, FGR_64;
def : MipsPat<(f64 (fpextend FGR32Opnd:$src)),
              (CVT_D64_S FGR32Opnd:$src)>, FGR_64;

// To generate NMADD and NMSUB instructions when fneg node is present
multiclass NMADD_NMSUB<Instruction Nmadd, Instruction Nmsub, RegisterOperand RC> {
  def : MipsPat<(fneg (fadd (fmul RC:$fs, RC:$ft), RC:$fr)),
                (Nmadd RC:$fr, RC:$fs, RC:$ft)>;
  def : MipsPat<(fneg (fsub (fmul RC:$fs, RC:$ft), RC:$fr)),
                (Nmsub RC:$fr, RC:$fs, RC:$ft)>;
}

let AdditionalPredicates = [NoNaNsFPMath, HasMadd4, NotInMicroMips] in {
  defm : NMADD_NMSUB<NMADD_S, NMSUB_S, FGR32Opnd>, INSN_MIPS4_32R2_NOT_32R6_64R6;
  defm : NMADD_NMSUB<NMADD_D32, NMSUB_D32, AFGR64Opnd>, FGR_32, INSN_MIPS4_32R2_NOT_32R6_64R6;
  defm : NMADD_NMSUB<NMADD_D64, NMSUB_D64, FGR64Opnd>, FGR_64, INSN_MIPS4_32R2_NOT_32R6_64R6;
}

// Patterns for loads/stores with a reg+imm operand.
let AdditionalPredicates = [NotInMicroMips] in {
  let AddedComplexity = 40 in {
    def : LoadRegImmPat<LWC1, f32, load>;
    def : StoreRegImmPat<SWC1, f32>;

    def : LoadRegImmPat<LDC164, f64, load>, FGR_64;
    def : StoreRegImmPat<SDC164, f64>, FGR_64;

    def : LoadRegImmPat<LDC1, f64, load>, FGR_32;
    def : StoreRegImmPat<SDC1, f64>, FGR_32;
  }
}