Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86MCCodeEmitter class.
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86FixupKinds.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <cstdlib>

using namespace llvm;

#define DEBUG_TYPE "mccodeemitter"

namespace {

class X86MCCodeEmitter : public MCCodeEmitter {
  const MCInstrInfo &MCII;
  MCContext &Ctx;

public:
  X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
    : MCII(mcii), Ctx(ctx) {
  }
  X86MCCodeEmitter(const X86MCCodeEmitter &) = delete;
  X86MCCodeEmitter &operator=(const X86MCCodeEmitter &) = delete;
  ~X86MCCodeEmitter() override = default;

  bool is64BitMode(const MCSubtargetInfo &STI) const {
    return STI.getFeatureBits()[X86::Mode64Bit];
  }

  bool is32BitMode(const MCSubtargetInfo &STI) const {
    return STI.getFeatureBits()[X86::Mode32Bit];
  }

  bool is16BitMode(const MCSubtargetInfo &STI) const {
    return STI.getFeatureBits()[X86::Mode16Bit];
  }

  /// Is16BitMemOperand - Return true if the specified instruction has
  /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
  bool Is16BitMemOperand(const MCInst &MI, unsigned Op,
                         const MCSubtargetInfo &STI) const {
    const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
    const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);

    if (is16BitMode(STI) && BaseReg.getReg() == 0 &&
        Disp.isImm() && Disp.getImm() < 0x10000)
      return true;
    if ((BaseReg.getReg() != 0 &&
         X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
        (IndexReg.getReg() != 0 &&
         X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
      return true;
    return false;
  }

  unsigned GetX86RegNum(const MCOperand &MO) const {
    return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
  }

  unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const {
    return Ctx.getRegisterInfo()->getEncodingValue(
                                                 MI.getOperand(OpNum).getReg());
  }

  // Does this register require a bit to be set in REX prefix.
  bool isREXExtendedReg(const MCInst &MI, unsigned OpNum) const {
    return (getX86RegEncoding(MI, OpNum) >> 3) & 1;
  }

  void EmitByte(uint8_t C, unsigned &CurByte, raw_ostream &OS) const {
    OS << (char)C;
    ++CurByte;
  }

  void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
                    raw_ostream &OS) const {
    // Output the constant in little endian byte order.
    for (unsigned i = 0; i != Size; ++i) {
      EmitByte(Val & 255, CurByte, OS);
      Val >>= 8;
    }
  }

  void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
                     unsigned ImmSize, MCFixupKind FixupKind,
                     unsigned &CurByte, raw_ostream &OS,
                     SmallVectorImpl<MCFixup> &Fixups,
                     int ImmOffset = 0) const;

  static uint8_t ModRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) {
    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
    return RM | (RegOpcode << 3) | (Mod << 6);
  }

  void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
                        unsigned &CurByte, raw_ostream &OS) const {
    EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
  }

  void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
                   unsigned &CurByte, raw_ostream &OS) const {
    // SIB byte is in the same format as the ModRMByte.
    EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
  }

  void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField,
                        uint64_t TSFlags, bool Rex, unsigned &CurByte,
                        raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups,
                        const MCSubtargetInfo &STI) const;

  void encodeInstruction(const MCInst &MI, raw_ostream &OS,
                         SmallVectorImpl<MCFixup> &Fixups,
                         const MCSubtargetInfo &STI) const override;

  void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
                           const MCInst &MI, const MCInstrDesc &Desc,
                           raw_ostream &OS) const;

  void EmitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand,
                                 const MCInst &MI, raw_ostream &OS) const;

  bool emitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
                        const MCInst &MI, const MCInstrDesc &Desc,
                        const MCSubtargetInfo &STI, raw_ostream &OS) const;

  uint8_t DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
                             int MemOperand, const MCInstrDesc &Desc) const;
};

} // end anonymous namespace

/// isDisp8 - Return true if this signed displacement fits in a 8-bit
/// sign-extended field.
static bool isDisp8(int Value) {
  return Value == (int8_t)Value;
}

/// isCDisp8 - Return true if this signed displacement fits in a 8-bit
/// compressed dispacement field.
static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
  assert(((TSFlags & X86II::EncodingMask) == X86II::EVEX) &&
         "Compressed 8-bit displacement is only valid for EVEX inst.");

  unsigned CD8_Scale =
    (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
  if (CD8_Scale == 0) {
    CValue = Value;
    return isDisp8(Value);
  }

  unsigned Mask = CD8_Scale - 1;
  assert((CD8_Scale & Mask) == 0 && "Invalid memory object size.");
  if (Value & Mask) // Unaligned offset
    return false;
  Value /= (int)CD8_Scale;
  bool Ret = (Value == (int8_t)Value);

  if (Ret)
    CValue = Value;
  return Ret;
}

/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
/// in an instruction with the specified TSFlags.
static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
  unsigned Size = X86II::getSizeOfImm(TSFlags);
  bool isPCRel = X86II::isImmPCRel(TSFlags);

  if (X86II::isImmSigned(TSFlags)) {
    switch (Size) {
    default: llvm_unreachable("Unsupported signed fixup size!");
    case 4: return MCFixupKind(X86::reloc_signed_4byte);
    }
  }
  return MCFixup::getKindForSize(Size, isPCRel);
}

/// Is32BitMemOperand - Return true if the specified instruction has
/// a 32-bit memory operand. Op specifies the operand # of the memoperand.
static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);

  if ((BaseReg.getReg() != 0 &&
       X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
      (IndexReg.getReg() != 0 &&
       X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
    return true;
  if (BaseReg.getReg() == X86::EIP) {
    assert(IndexReg.getReg() == 0 && "Invalid eip-based address.");
    return true;
  }
  return false;
}

/// Is64BitMemOperand - Return true if the specified instruction has
/// a 64-bit memory operand. Op specifies the operand # of the memoperand.
#ifndef NDEBUG
static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);

  if ((BaseReg.getReg() != 0 &&
       X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
      (IndexReg.getReg() != 0 &&
       X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
    return true;
  return false;
}
#endif

/// StartsWithGlobalOffsetTable - Check if this expression starts with
///  _GLOBAL_OFFSET_TABLE_ and if it is of the form
///  _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
/// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
/// of a binary expression.
enum GlobalOffsetTableExprKind {
  GOT_None,
  GOT_Normal,
  GOT_SymDiff
};
static GlobalOffsetTableExprKind
StartsWithGlobalOffsetTable(const MCExpr *Expr) {
  const MCExpr *RHS = nullptr;
  if (Expr->getKind() == MCExpr::Binary) {
    const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
    Expr = BE->getLHS();
    RHS = BE->getRHS();
  }

  if (Expr->getKind() != MCExpr::SymbolRef)
    return GOT_None;

  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
  const MCSymbol &S = Ref->getSymbol();
  if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
    return GOT_None;
  if (RHS && RHS->getKind() == MCExpr::SymbolRef)
    return GOT_SymDiff;
  return GOT_Normal;
}

static bool HasSecRelSymbolRef(const MCExpr *Expr) {
  if (Expr->getKind() == MCExpr::SymbolRef) {
    const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
    return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
  }
  return false;
}

void X86MCCodeEmitter::
EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
              MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
              SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
  const MCExpr *Expr = nullptr;
  if (DispOp.isImm()) {
    // If this is a simple integer displacement that doesn't require a
    // relocation, emit it now.
    if (FixupKind != FK_PCRel_1 &&
        FixupKind != FK_PCRel_2 &&
        FixupKind != FK_PCRel_4) {
      EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
      return;
    }
    Expr = MCConstantExpr::create(DispOp.getImm(), Ctx);
  } else {
    Expr = DispOp.getExpr();
  }

  // If we have an immoffset, add it to the expression.
  if ((FixupKind == FK_Data_4 ||
       FixupKind == FK_Data_8 ||
       FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
    GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
    if (Kind != GOT_None) {
      assert(ImmOffset == 0);

      if (Size == 8) {
        FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
      } else {
        assert(Size == 4);
        FixupKind = MCFixupKind(X86::reloc_global_offset_table);
      }

      if (Kind == GOT_Normal)
        ImmOffset = CurByte;
    } else if (Expr->getKind() == MCExpr::SymbolRef) {
      if (HasSecRelSymbolRef(Expr)) {
        FixupKind = MCFixupKind(FK_SecRel_4);
      }
    } else if (Expr->getKind() == MCExpr::Binary) {
      const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr);
      if (HasSecRelSymbolRef(Bin->getLHS())
          || HasSecRelSymbolRef(Bin->getRHS())) {
        FixupKind = MCFixupKind(FK_SecRel_4);
      }
    }
  }

  // If the fixup is pc-relative, we need to bias the value to be relative to
  // the start of the field, not the end of the field.
  if (FixupKind == FK_PCRel_4 ||
      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load) ||
      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax) ||
      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex))
    ImmOffset -= 4;
  if (FixupKind == FK_PCRel_2)
    ImmOffset -= 2;
  if (FixupKind == FK_PCRel_1)
    ImmOffset -= 1;

  if (ImmOffset)
    Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx),
                                   Ctx);

  // Emit a symbolic constant as a fixup and 4 zeros.
  Fixups.push_back(MCFixup::create(CurByte, Expr, FixupKind, Loc));
  EmitConstant(0, Size, CurByte, OS);
}

void X86MCCodeEmitter::emitMemModRMByte(const MCInst &MI, unsigned Op,
                                        unsigned RegOpcodeField,
                                        uint64_t TSFlags, bool Rex,
                                        unsigned &CurByte, raw_ostream &OS,
                                        SmallVectorImpl<MCFixup> &Fixups,
                                        const MCSubtargetInfo &STI) const {
  const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
  const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
  const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
  unsigned BaseReg = Base.getReg();
  bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;

  // Handle %rip relative addressing.
  if (BaseReg == X86::RIP ||
      BaseReg == X86::EIP) {    // [disp32+rIP] in X86-64 mode
    assert(is64BitMode(STI) && "Rip-relative addressing requires 64-bit mode");
    assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
    EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);

    unsigned Opcode = MI.getOpcode();
    // movq loads are handled with a special relocation form which allows the
    // linker to eliminate some loads for GOT references which end up in the
    // same linkage unit.
    unsigned FixupKind = [=]() {
      switch (Opcode) {
      default:
        return X86::reloc_riprel_4byte;
      case X86::MOV64rm:
        assert(Rex);
        return X86::reloc_riprel_4byte_movq_load;
      case X86::CALL64m:
      case X86::JMP64m:
      case X86::TEST64mr:
      case X86::ADC64rm:
      case X86::ADD64rm:
      case X86::AND64rm:
      case X86::CMP64rm:
      case X86::OR64rm:
      case X86::SBB64rm:
      case X86::SUB64rm:
      case X86::XOR64rm:
        return Rex ? X86::reloc_riprel_4byte_relax_rex
                   : X86::reloc_riprel_4byte_relax;
      }
    }();

    // rip-relative addressing is actually relative to the *next* instruction.
    // Since an immediate can follow the mod/rm byte for an instruction, this
    // means that we need to bias the displacement field of the instruction with
    // the size of the immediate field. If we have this case, add it into the
    // expression to emit.
    // Note: rip-relative addressing using immediate displacement values should
    // not be adjusted, assuming it was the user's intent.
    int ImmSize = !Disp.isImm() && X86II::hasImm(TSFlags)
                      ? X86II::getSizeOfImm(TSFlags)
                      : 0;

    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
                  CurByte, OS, Fixups, -ImmSize);
    return;
  }

  unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;

  // 16-bit addressing forms of the ModR/M byte have a different encoding for
  // the R/M field and are far more limited in which registers can be used.
  if (Is16BitMemOperand(MI, Op, STI)) {
    if (BaseReg) {
      // For 32-bit addressing, the row and column values in Table 2-2 are
      // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
      // some special cases. And GetX86RegNum reflects that numbering.
      // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
      // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
      // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
      // while values 0-3 indicate the allowed combinations (base+index) of
      // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
      //
      // R16Table[] is a lookup from the normal RegNo, to the row values from
      // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
      static const unsigned R16Table[] = { 0, 0, 0, 7, 0, 6, 4, 5 };
      unsigned RMfield = R16Table[BaseRegNo];

      assert(RMfield && "invalid 16-bit base register");

      if (IndexReg.getReg()) {
        unsigned IndexReg16 = R16Table[GetX86RegNum(IndexReg)];

        assert(IndexReg16 && "invalid 16-bit index register");
        // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
        assert(((IndexReg16 ^ RMfield) & 2) &&
               "invalid 16-bit base/index register combination");
        assert(Scale.getImm() == 1 &&
               "invalid scale for 16-bit memory reference");

        // Allow base/index to appear in either order (although GAS doesn't).
        if (IndexReg16 & 2)
          RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
        else
          RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
      }

      if (Disp.isImm() && isDisp8(Disp.getImm())) {
        if (Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
          // There is no displacement; just the register.
          EmitByte(ModRMByte(0, RegOpcodeField, RMfield), CurByte, OS);
          return;
        }
        // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
        EmitByte(ModRMByte(1, RegOpcodeField, RMfield), CurByte, OS);
        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
        return;
      }
      // This is the [REG]+disp16 case.
      EmitByte(ModRMByte(2, RegOpcodeField, RMfield), CurByte, OS);
    } else {
      // There is no BaseReg; this is the plain [disp16] case.
      EmitByte(ModRMByte(0, RegOpcodeField, 6), CurByte, OS);
    }

    // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
    EmitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups);
    return;
  }

  // Determine whether a SIB byte is needed.
  // If no BaseReg, issue a RIP relative instruction only if the MCE can
  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
  // 2-7) and absolute references.

  if (// The SIB byte must be used if there is an index register.
      IndexReg.getReg() == 0 &&
      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
      // encode to an R/M value of 4, which indicates that a SIB byte is
      // present.
      BaseRegNo != N86::ESP &&
      // If there is no base register and we're in 64-bit mode, we need a SIB
      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
      (!is64BitMode(STI) || BaseReg != 0)) {

    if (BaseReg == 0) {          // [disp32]     in X86-32 mode
      EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
      EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
      return;
    }

    // If the base is not EBP/ESP and there is no displacement, use simple
    // indirect register encoding, this handles addresses like [EAX].  The
    // encoding for [EBP] with no displacement means [disp32] so we handle it
    // by emitting a displacement of 0 below.
    if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
      EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
      return;
    }

    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
    if (Disp.isImm()) {
      if (!HasEVEX && isDisp8(Disp.getImm())) {
        EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
        return;
      }
      // Try EVEX compressed 8-bit displacement first; if failed, fall back to
      // 32-bit displacement.
      int CDisp8 = 0;
      if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
        EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
                      CDisp8 - Disp.getImm());
        return;
      }
    }

    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
    EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
    unsigned Opcode = MI.getOpcode();
    unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax
                                                : X86::reloc_signed_4byte;
    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), CurByte, OS,
                  Fixups);
    return;
  }

  // We need a SIB byte, so start by outputting the ModR/M byte first
  assert(IndexReg.getReg() != X86::ESP &&
         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");

  bool ForceDisp32 = false;
  bool ForceDisp8  = false;
  int CDisp8 = 0;
  int ImmOffset = 0;
  if (BaseReg == 0) {
    // If there is no base register, we emit the special case SIB byte with
    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
    ForceDisp32 = true;
  } else if (!Disp.isImm()) {
    // Emit the normal disp32 encoding.
    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
    ForceDisp32 = true;
  } else if (Disp.getImm() == 0 &&
             // Base reg can't be anything that ends up with '5' as the base
             // reg, it is the magic [*] nomenclature that indicates no base.
             BaseRegNo != N86::EBP) {
    // Emit no displacement ModR/M byte
    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
  } else if (!HasEVEX && isDisp8(Disp.getImm())) {
    // Emit the disp8 encoding.
    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
  } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
    // Emit the disp8 encoding.
    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
    ImmOffset = CDisp8 - Disp.getImm();
  } else {
    // Emit the normal disp32 encoding.
    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
  }

  // Calculate what the SS field value should be...
  static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
  unsigned SS = SSTable[Scale.getImm()];

  if (BaseReg == 0) {
    // Handle the SIB byte for the case where there is no base, see Intel
    // Manual 2A, table 2-7. The displacement has already been output.
    unsigned IndexRegNo;
    if (IndexReg.getReg())
      IndexRegNo = GetX86RegNum(IndexReg);
    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
      IndexRegNo = 4;
    EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
  } else {
    unsigned IndexRegNo;
    if (IndexReg.getReg())
      IndexRegNo = GetX86RegNum(IndexReg);
    else
      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
    EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
  }

  // Do we need to output a displacement?
  if (ForceDisp8)
    EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, ImmOffset);
  else if (ForceDisp32 || Disp.getImm() != 0)
    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
                  CurByte, OS, Fixups);
}

/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
/// called VEX.
void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
                                           int MemOperand, const MCInst &MI,
                                           const MCInstrDesc &Desc,
                                           raw_ostream &OS) const {
  assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");

  uint64_t Encoding = TSFlags & X86II::EncodingMask;
  bool HasEVEX_K = TSFlags & X86II::EVEX_K;
  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
  bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;

  // VEX_R: opcode externsion equivalent to REX.R in
  // 1's complement (inverted) form
  //
  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
  //  0: Same as REX_R=1 (64 bit mode only)
  //
  uint8_t VEX_R = 0x1;
  uint8_t EVEX_R2 = 0x1;

  // VEX_X: equivalent to REX.X, only used when a
  // register is used for index in SIB Byte.
  //
  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
  //  0: Same as REX.X=1 (64-bit mode only)
  uint8_t VEX_X = 0x1;

  // VEX_B:
  //
  //  1: Same as REX_B=0 (ignored in 32-bit mode)
  //  0: Same as REX_B=1 (64 bit mode only)
  //
  uint8_t VEX_B = 0x1;

  // VEX_W: opcode specific (use like REX.W, or used for
  // opcode extension, or ignored, depending on the opcode byte)
  uint8_t VEX_W = (TSFlags & X86II::VEX_W) ? 1 : 0;

  // VEX_5M (VEX m-mmmmm field):
  //
  //  0b00000: Reserved for future use
  //  0b00001: implied 0F leading opcode
  //  0b00010: implied 0F 38 leading opcode bytes
  //  0b00011: implied 0F 3A leading opcode bytes
  //  0b00100-0b11111: Reserved for future use
  //  0b01000: XOP map select - 08h instructions with imm byte
  //  0b01001: XOP map select - 09h instructions with no imm byte
  //  0b01010: XOP map select - 0Ah instructions with imm dword
  uint8_t VEX_5M;
  switch (TSFlags & X86II::OpMapMask) {
  default: llvm_unreachable("Invalid prefix!");
  case X86II::TB:   VEX_5M = 0x1; break; // 0F
  case X86II::T8:   VEX_5M = 0x2; break; // 0F 38
  case X86II::TA:   VEX_5M = 0x3; break; // 0F 3A
  case X86II::XOP8: VEX_5M = 0x8; break;
  case X86II::XOP9: VEX_5M = 0x9; break;
  case X86II::XOPA: VEX_5M = 0xA; break;
  }

  // VEX_4V (VEX vvvv field): a register specifier
  // (in 1's complement form) or 1111 if unused.
  uint8_t VEX_4V = 0xf;
  uint8_t EVEX_V2 = 0x1;

  // EVEX_L2/VEX_L (Vector Length):
  //
  // L2 L
  //  0 0: scalar or 128-bit vector
  //  0 1: 256-bit vector
  //  1 0: 512-bit vector
  //
  uint8_t VEX_L = (TSFlags & X86II::VEX_L) ? 1 : 0;
  uint8_t EVEX_L2 = (TSFlags & X86II::EVEX_L2) ? 1 : 0;

  // VEX_PP: opcode extension providing equivalent
  // functionality of a SIMD prefix
  //
  //  0b00: None
  //  0b01: 66
  //  0b10: F3
  //  0b11: F2
  //
  uint8_t VEX_PP;
  switch (TSFlags & X86II::OpPrefixMask) {
  default: llvm_unreachable("Invalid op prefix!");
  case X86II::PS: VEX_PP = 0x0; break; // none
  case X86II::PD: VEX_PP = 0x1; break; // 66
  case X86II::XS: VEX_PP = 0x2; break; // F3
  case X86II::XD: VEX_PP = 0x3; break; // F2
  }

  // EVEX_U
  uint8_t EVEX_U = 1; // Always '1' so far

  // EVEX_z
  uint8_t EVEX_z = (HasEVEX_K && (TSFlags & X86II::EVEX_Z)) ? 1 : 0;

  // EVEX_b
  uint8_t EVEX_b = (TSFlags & X86II::EVEX_B) ? 1 : 0;

  // EVEX_rc
  uint8_t EVEX_rc = 0;

  // EVEX_aaa
  uint8_t EVEX_aaa = 0;

  bool EncodeRC = false;

  // Classify VEX_B, VEX_4V, VEX_R, VEX_X
  unsigned NumOps = Desc.getNumOperands();
  unsigned CurOp = X86II::getOperandBias(Desc);

  switch (TSFlags & X86II::FormMask) {
  default: llvm_unreachable("Unexpected form in EmitVEXOpcodePrefix!");
  case X86II::RawFrm:
    break;
  case X86II::MRMDestMem: {
    // MRMDestMem instructions forms:
    //  MemAddr, src1(ModR/M)
    //  MemAddr, src1(VEX_4V), src2(ModR/M)
    //  MemAddr, src1(ModR/M), imm8
    //
    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
    VEX_B = ~(BaseRegEnc >> 3) & 1;
    unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
    VEX_X = ~(IndexRegEnc >> 3) & 1;
    if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
      EVEX_V2 = ~(IndexRegEnc >> 4) & 1;

    CurOp += X86::AddrNumOperands;

    if (HasEVEX_K)
      EVEX_aaa = getX86RegEncoding(MI, CurOp++);

    if (HasVEX_4V) {
      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
      VEX_4V = ~VRegEnc & 0xf;
      EVEX_V2 = ~(VRegEnc >> 4) & 1;
    }

    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;
    EVEX_R2 = ~(RegEnc >> 4) & 1;
    break;
  }
  case X86II::MRMSrcMem: {
    // MRMSrcMem instructions forms:
    //  src1(ModR/M), MemAddr
    //  src1(ModR/M), src2(VEX_4V), MemAddr
    //  src1(ModR/M), MemAddr, imm8
    //  src1(ModR/M), MemAddr, src2(Imm[7:4])
    //
    //  FMA4:
    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;
    EVEX_R2 = ~(RegEnc >> 4) & 1;

    if (HasEVEX_K)
      EVEX_aaa = getX86RegEncoding(MI, CurOp++);

    if (HasVEX_4V) {
      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
      VEX_4V = ~VRegEnc & 0xf;
      EVEX_V2 = ~(VRegEnc >> 4) & 1;
    }

    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
    VEX_B = ~(BaseRegEnc >> 3) & 1;
    unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
    VEX_X = ~(IndexRegEnc >> 3) & 1;
    if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
      EVEX_V2 = ~(IndexRegEnc >> 4) & 1;

    break;
  }
  case X86II::MRMSrcMem4VOp3: {
    // Instruction format for 4VOp3:
    //   src1(ModR/M), MemAddr, src3(VEX_4V)
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;

    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
    VEX_B = ~(BaseRegEnc >> 3) & 1;
    unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
    VEX_X = ~(IndexRegEnc >> 3) & 1;

    VEX_4V = ~getX86RegEncoding(MI, CurOp + X86::AddrNumOperands) & 0xf;
    break;
  }
  case X86II::MRMSrcMemOp4: {
    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;

    unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_4V = ~VRegEnc & 0xf;

    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
    VEX_B = ~(BaseRegEnc >> 3) & 1;
    unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
    VEX_X = ~(IndexRegEnc >> 3) & 1;
    break;
  }
  case X86II::MRM0m: case X86II::MRM1m:
  case X86II::MRM2m: case X86II::MRM3m:
  case X86II::MRM4m: case X86II::MRM5m:
  case X86II::MRM6m: case X86II::MRM7m: {
    // MRM[0-9]m instructions forms:
    //  MemAddr
    //  src1(VEX_4V), MemAddr
    if (HasVEX_4V) {
      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
      VEX_4V = ~VRegEnc & 0xf;
      EVEX_V2 = ~(VRegEnc >> 4) & 1;
    }

    if (HasEVEX_K)
      EVEX_aaa = getX86RegEncoding(MI, CurOp++);

    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
    VEX_B = ~(BaseRegEnc >> 3) & 1;
    unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
    VEX_X = ~(IndexRegEnc >> 3) & 1;
    break;
  }
  case X86II::MRMSrcReg: {
    // MRMSrcReg instructions forms:
    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
    //  dst(ModR/M), src1(ModR/M)
    //  dst(ModR/M), src1(ModR/M), imm8
    //
    //  FMA4:
    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;
    EVEX_R2 = ~(RegEnc >> 4) & 1;

    if (HasEVEX_K)
      EVEX_aaa = getX86RegEncoding(MI, CurOp++);

    if (HasVEX_4V) {
      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
      VEX_4V = ~VRegEnc & 0xf;
      EVEX_V2 = ~(VRegEnc >> 4) & 1;
    }

    RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_B = ~(RegEnc >> 3) & 1;
    VEX_X = ~(RegEnc >> 4) & 1;

    if (EVEX_b) {
      if (HasEVEX_RC) {
        unsigned RcOperand = NumOps-1;
        assert(RcOperand >= CurOp);
        EVEX_rc = MI.getOperand(RcOperand).getImm() & 0x3;
      }
      EncodeRC = true;
    }
    break;
  }
  case X86II::MRMSrcReg4VOp3: {
    // Instruction format for 4VOp3:
    //   src1(ModR/M), src2(ModR/M), src3(VEX_4V)
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;

    RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_B = ~(RegEnc >> 3) & 1;

    VEX_4V = ~getX86RegEncoding(MI, CurOp++) & 0xf;
    break;
  }
  case X86II::MRMSrcRegOp4: {
    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;

    unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_4V = ~VRegEnc & 0xf;

    // Skip second register source (encoded in Imm[7:4])
    ++CurOp;

    RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_B = ~(RegEnc >> 3) & 1;
    VEX_X = ~(RegEnc >> 4) & 1;
    break;
  }
  case X86II::MRMDestReg: {
    // MRMDestReg instructions forms:
    //  dst(ModR/M), src(ModR/M)
    //  dst(ModR/M), src(ModR/M), imm8
    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_B = ~(RegEnc >> 3) & 1;
    VEX_X = ~(RegEnc >> 4) & 1;

    if (HasEVEX_K)
      EVEX_aaa = getX86RegEncoding(MI, CurOp++);

    if (HasVEX_4V) {
      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
      VEX_4V = ~VRegEnc & 0xf;
      EVEX_V2 = ~(VRegEnc >> 4) & 1;
    }

    RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;
    EVEX_R2 = ~(RegEnc >> 4) & 1;
    if (EVEX_b)
      EncodeRC = true;
    break;
  }
  case X86II::MRM0r: case X86II::MRM1r:
  case X86II::MRM2r: case X86II::MRM3r:
  case X86II::MRM4r: case X86II::MRM5r:
  case X86II::MRM6r: case X86II::MRM7r: {
    // MRM0r-MRM7r instructions forms:
    //  dst(VEX_4V), src(ModR/M), imm8
    if (HasVEX_4V) {
      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
      VEX_4V = ~VRegEnc & 0xf;
      EVEX_V2 = ~(VRegEnc >> 4) & 1;
    }
    if (HasEVEX_K)
      EVEX_aaa = getX86RegEncoding(MI, CurOp++);

    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_B = ~(RegEnc >> 3) & 1;
    VEX_X = ~(RegEnc >> 4) & 1;
    break;
  }
  }

  if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
    // VEX opcode prefix can have 2 or 3 bytes
    //
    //  3 bytes:
    //    +-----+ +--------------+ +-------------------+
    //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
    //    +-----+ +--------------+ +-------------------+
    //  2 bytes:
    //    +-----+ +-------------------+
    //    | C5h | | R | vvvv | L | pp |
    //    +-----+ +-------------------+
    //
    //  XOP uses a similar prefix:
    //    +-----+ +--------------+ +-------------------+
    //    | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
    //    +-----+ +--------------+ +-------------------+
    uint8_t LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);

    // Can we use the 2 byte VEX prefix?
    if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
      EmitByte(0xC5, CurByte, OS);
      EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
      return;
    }

    // 3 byte VEX prefix
    EmitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS);
    EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
    EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
  } else {
    assert(Encoding == X86II::EVEX && "unknown encoding!");
    // EVEX opcode prefix can have 4 bytes
    //
    // +-----+ +--------------+ +-------------------+ +------------------------+
    // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
    // +-----+ +--------------+ +-------------------+ +------------------------+
    assert((VEX_5M & 0x3) == VEX_5M
           && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");

    EmitByte(0x62, CurByte, OS);
    EmitByte((VEX_R   << 7) |
             (VEX_X   << 6) |
             (VEX_B   << 5) |
             (EVEX_R2 << 4) |
             VEX_5M, CurByte, OS);
    EmitByte((VEX_W   << 7) |
             (VEX_4V  << 3) |
             (EVEX_U  << 2) |
             VEX_PP, CurByte, OS);
    if (EncodeRC)
      EmitByte((EVEX_z  << 7) |
               (EVEX_rc << 5) |
               (EVEX_b  << 4) |
               (EVEX_V2 << 3) |
               EVEX_aaa, CurByte, OS);
    else
      EmitByte((EVEX_z  << 7) |
               (EVEX_L2 << 6) |
               (VEX_L   << 5) |
               (EVEX_b  << 4) |
               (EVEX_V2 << 3) |
               EVEX_aaa, CurByte, OS);
  }
}

/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
/// size, and 3) use of X86-64 extended registers.
uint8_t X86MCCodeEmitter::DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
                                             int MemOperand,
                                             const MCInstrDesc &Desc) const {
  uint8_t REX = 0;
  bool UsesHighByteReg = false;

  if (TSFlags & X86II::REX_W)
    REX |= 1 << 3; // set REX.W

  if (MI.getNumOperands() == 0) return REX;

  unsigned NumOps = MI.getNumOperands();
  unsigned CurOp = X86II::getOperandBias(Desc);

  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
  for (unsigned i = CurOp; i != NumOps; ++i) {
    const MCOperand &MO = MI.getOperand(i);
    if (!MO.isReg()) continue;
    unsigned Reg = MO.getReg();
    if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
      UsesHighByteReg = true;
    if (X86II::isX86_64NonExtLowByteReg(Reg))
      // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
      // that returns non-zero.
      REX |= 0x40; // REX fixed encoding prefix
  }

  switch (TSFlags & X86II::FormMask) {
  case X86II::AddRegFrm:
    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
    break;
  case X86II::MRMSrcReg:
    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
    break;
  case X86II::MRMSrcMem: {
    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrBaseReg) << 0; // REX.B
    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrIndexReg) << 1; // REX.X
    CurOp += X86::AddrNumOperands;
    break;
  }
  case X86II::MRMDestReg:
    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
    break;
  case X86II::MRMDestMem:
    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrBaseReg) << 0; // REX.B
    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrIndexReg) << 1; // REX.X
    CurOp += X86::AddrNumOperands;
    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
    break;
  case X86II::MRMXm:
  case X86II::MRM0m: case X86II::MRM1m:
  case X86II::MRM2m: case X86II::MRM3m:
  case X86II::MRM4m: case X86II::MRM5m:
  case X86II::MRM6m: case X86II::MRM7m:
    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrBaseReg) << 0; // REX.B
    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrIndexReg) << 1; // REX.X
    break;
  case X86II::MRMXr:
  case X86II::MRM0r: case X86II::MRM1r:
  case X86II::MRM2r: case X86II::MRM3r:
  case X86II::MRM4r: case X86II::MRM5r:
  case X86II::MRM6r: case X86II::MRM7r:
    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
    break;
  }
  if (REX && UsesHighByteReg)
    report_fatal_error("Cannot encode high byte register in REX-prefixed instruction");

  return REX;
}

/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
void X86MCCodeEmitter::EmitSegmentOverridePrefix(unsigned &CurByte,
                                                 unsigned SegOperand,
                                                 const MCInst &MI,
                                                 raw_ostream &OS) const {
  // Check for explicit segment override on memory operand.
  switch (MI.getOperand(SegOperand).getReg()) {
  default: llvm_unreachable("Unknown segment register!");
  case 0: break;
  case X86::CS: EmitByte(0x2E, CurByte, OS); break;
  case X86::SS: EmitByte(0x36, CurByte, OS); break;
  case X86::DS: EmitByte(0x3E, CurByte, OS); break;
  case X86::ES: EmitByte(0x26, CurByte, OS); break;
  case X86::FS: EmitByte(0x64, CurByte, OS); break;
  case X86::GS: EmitByte(0x65, CurByte, OS); break;
  }
}

/// Emit all instruction prefixes prior to the opcode.
///
/// MemOperand is the operand # of the start of a memory operand if present.  If
/// Not present, it is -1.
///
/// Returns true if a REX prefix was used.
bool X86MCCodeEmitter::emitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
                                        int MemOperand, const MCInst &MI,
                                        const MCInstrDesc &Desc,
                                        const MCSubtargetInfo &STI,
                                        raw_ostream &OS) const {
  bool Ret = false;
  // Emit the operand size opcode prefix as needed.
  if ((TSFlags & X86II::OpSizeMask) == (is16BitMode(STI) ? X86II::OpSize32
                                                         : X86II::OpSize16))
    EmitByte(0x66, CurByte, OS);

  // Emit the LOCK opcode prefix.
  if (TSFlags & X86II::LOCK || MI.getFlags() & X86::IP_HAS_LOCK)
    EmitByte(0xF0, CurByte, OS);

  switch (TSFlags & X86II::OpPrefixMask) {
  case X86II::PD:   // 66
    EmitByte(0x66, CurByte, OS);
    break;
  case X86II::XS:   // F3
    EmitByte(0xF3, CurByte, OS);
    break;
  case X86II::XD:   // F2
    EmitByte(0xF2, CurByte, OS);
    break;
  }

  // Handle REX prefix.
  // FIXME: Can this come before F2 etc to simplify emission?
  if (is64BitMode(STI)) {
    if (uint8_t REX = DetermineREXPrefix(MI, TSFlags, MemOperand, Desc)) {
      EmitByte(0x40 | REX, CurByte, OS);
      Ret = true;
    }
  } else {
    assert(!(TSFlags & X86II::REX_W) && "REX.W requires 64bit mode.");
  }

  // 0x0F escape code must be emitted just before the opcode.
  switch (TSFlags & X86II::OpMapMask) {
  case X86II::TB:  // Two-byte opcode map
  case X86II::T8:  // 0F 38
  case X86II::TA:  // 0F 3A
    EmitByte(0x0F, CurByte, OS);
    break;
  }

  switch (TSFlags & X86II::OpMapMask) {
  case X86II::T8:    // 0F 38
    EmitByte(0x38, CurByte, OS);
    break;
  case X86II::TA:    // 0F 3A
    EmitByte(0x3A, CurByte, OS);
    break;
  }
  return Ret;
}

void X86MCCodeEmitter::
encodeInstruction(const MCInst &MI, raw_ostream &OS,
                  SmallVectorImpl<MCFixup> &Fixups,
                  const MCSubtargetInfo &STI) const {
  unsigned Opcode = MI.getOpcode();
  const MCInstrDesc &Desc = MCII.get(Opcode);
  uint64_t TSFlags = Desc.TSFlags;
  unsigned Flags = MI.getFlags();

  // Pseudo instructions don't get encoded.
  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
    return;

  unsigned NumOps = Desc.getNumOperands();
  unsigned CurOp = X86II::getOperandBias(Desc);

  // Keep track of the current byte being emitted.
  unsigned CurByte = 0;

  // Encoding type for this instruction.
  uint64_t Encoding = TSFlags & X86II::EncodingMask;

  // It uses the VEX.VVVV field?
  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
  bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg;

  // It uses the EVEX.aaa field?
  bool HasEVEX_K = TSFlags & X86II::EVEX_K;
  bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;

  // Used if a register is encoded in 7:4 of immediate.
  unsigned I8RegNum = 0;

  // Determine where the memory operand starts, if present.
  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
  if (MemoryOperand != -1) MemoryOperand += CurOp;

  // Emit segment override opcode prefix as needed.
  if (MemoryOperand >= 0)
    EmitSegmentOverridePrefix(CurByte, MemoryOperand+X86::AddrSegmentReg,
                              MI, OS);

  // Emit the repeat opcode prefix as needed.
  if (TSFlags & X86II::REP || Flags & X86::IP_HAS_REPEAT)
    EmitByte(0xF3, CurByte, OS);
  if (Flags & X86::IP_HAS_REPEAT_NE)
    EmitByte(0xF2, CurByte, OS);

  // Emit the address size opcode prefix as needed.
  bool need_address_override;
  uint64_t AdSize = TSFlags & X86II::AdSizeMask;
  if ((is16BitMode(STI) && AdSize == X86II::AdSize32) ||
      (is32BitMode(STI) && AdSize == X86II::AdSize16) ||
      (is64BitMode(STI) && AdSize == X86II::AdSize32)) {
    need_address_override = true;
  } else if (MemoryOperand < 0) {
    need_address_override = false;
  } else if (is64BitMode(STI)) {
    assert(!Is16BitMemOperand(MI, MemoryOperand, STI));
    need_address_override = Is32BitMemOperand(MI, MemoryOperand);
  } else if (is32BitMode(STI)) {
    assert(!Is64BitMemOperand(MI, MemoryOperand));
    need_address_override = Is16BitMemOperand(MI, MemoryOperand, STI);
  } else {
    assert(is16BitMode(STI));
    assert(!Is64BitMemOperand(MI, MemoryOperand));
    need_address_override = !Is16BitMemOperand(MI, MemoryOperand, STI);
  }

  if (need_address_override)
    EmitByte(0x67, CurByte, OS);

  bool Rex = false;
  if (Encoding == 0)
    Rex = emitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
  else
    EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);

  uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);

  if (TSFlags & X86II::Has3DNow0F0FOpcode)
    BaseOpcode = 0x0F;   // Weird 3DNow! encoding.

  uint64_t Form = TSFlags & X86II::FormMask;
  switch (Form) {
  default: errs() << "FORM: " << Form << "\n";
    llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
  case X86II::Pseudo:
    llvm_unreachable("Pseudo instruction shouldn't be emitted");
  case X86II::RawFrmDstSrc: {
    unsigned siReg = MI.getOperand(1).getReg();
    assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
            (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
            (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
           "SI and DI register sizes do not match");
    // Emit segment override opcode prefix as needed (not for %ds).
    if (MI.getOperand(2).getReg() != X86::DS)
      EmitSegmentOverridePrefix(CurByte, 2, MI, OS);
    // Emit AdSize prefix as needed.
    if ((!is32BitMode(STI) && siReg == X86::ESI) ||
        (is32BitMode(STI) && siReg == X86::SI))
      EmitByte(0x67, CurByte, OS);
    CurOp += 3; // Consume operands.
    EmitByte(BaseOpcode, CurByte, OS);
    break;
  }
  case X86II::RawFrmSrc: {
    unsigned siReg = MI.getOperand(0).getReg();
    // Emit segment override opcode prefix as needed (not for %ds).
    if (MI.getOperand(1).getReg() != X86::DS)
      EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
    // Emit AdSize prefix as needed.
    if ((!is32BitMode(STI) && siReg == X86::ESI) ||
        (is32BitMode(STI) && siReg == X86::SI))
      EmitByte(0x67, CurByte, OS);
    CurOp += 2; // Consume operands.
    EmitByte(BaseOpcode, CurByte, OS);
    break;
  }
  case X86II::RawFrmDst: {
    unsigned siReg = MI.getOperand(0).getReg();
    // Emit AdSize prefix as needed.
    if ((!is32BitMode(STI) && siReg == X86::EDI) ||
        (is32BitMode(STI) && siReg == X86::DI))
      EmitByte(0x67, CurByte, OS);
    ++CurOp; // Consume operand.
    EmitByte(BaseOpcode, CurByte, OS);
    break;
  }
  case X86II::RawFrm:
    EmitByte(BaseOpcode, CurByte, OS);
    break;
  case X86II::RawFrmMemOffs:
    // Emit segment override opcode prefix as needed.
    EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
    EmitByte(BaseOpcode, CurByte, OS);
    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
                  CurByte, OS, Fixups);
    ++CurOp; // skip segment operand
    break;
  case X86II::RawFrmImm8:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
                  CurByte, OS, Fixups);
    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
                  OS, Fixups);
    break;
  case X86II::RawFrmImm16:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
                  CurByte, OS, Fixups);
    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
                  OS, Fixups);
    break;

  case X86II::AddRegFrm:
    EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
    break;

  case X86II::MRMDestReg: {
    EmitByte(BaseOpcode, CurByte, OS);
    unsigned SrcRegNum = CurOp + 1;

    if (HasEVEX_K) // Skip writemask
      ++SrcRegNum;

    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
      ++SrcRegNum;

    EmitRegModRMByte(MI.getOperand(CurOp),
                     GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
    CurOp = SrcRegNum + 1;
    break;
  }
  case X86II::MRMDestMem: {
    EmitByte(BaseOpcode, CurByte, OS);
    unsigned SrcRegNum = CurOp + X86::AddrNumOperands;

    if (HasEVEX_K) // Skip writemask
      ++SrcRegNum;

    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
      ++SrcRegNum;

    emitMemModRMByte(MI, CurOp, GetX86RegNum(MI.getOperand(SrcRegNum)), TSFlags,
                     Rex, CurByte, OS, Fixups, STI);
    CurOp = SrcRegNum + 1;
    break;
  }
  case X86II::MRMSrcReg: {
    EmitByte(BaseOpcode, CurByte, OS);
    unsigned SrcRegNum = CurOp + 1;

    if (HasEVEX_K) // Skip writemask
      ++SrcRegNum;

    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
      ++SrcRegNum;

    EmitRegModRMByte(MI.getOperand(SrcRegNum),
                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
    CurOp = SrcRegNum + 1;
    if (HasVEX_I8Reg)
      I8RegNum = getX86RegEncoding(MI, CurOp++);
    // do not count the rounding control operand
    if (HasEVEX_RC)
      --NumOps;
    break;
  }
  case X86II::MRMSrcReg4VOp3: {
    EmitByte(BaseOpcode, CurByte, OS);
    unsigned SrcRegNum = CurOp + 1;

    EmitRegModRMByte(MI.getOperand(SrcRegNum),
                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
    CurOp = SrcRegNum + 1;
    ++CurOp; // Encoded in VEX.VVVV
    break;
  }
  case X86II::MRMSrcRegOp4: {
    EmitByte(BaseOpcode, CurByte, OS);
    unsigned SrcRegNum = CurOp + 1;

    // Skip 1st src (which is encoded in VEX_VVVV)
    ++SrcRegNum;

    // Capture 2nd src (which is encoded in Imm[7:4])
    assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
    I8RegNum = getX86RegEncoding(MI, SrcRegNum++);

    EmitRegModRMByte(MI.getOperand(SrcRegNum),
                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
    CurOp = SrcRegNum + 1;
    break;
  }
  case X86II::MRMSrcMem: {
    unsigned FirstMemOp = CurOp+1;

    if (HasEVEX_K) // Skip writemask
      ++FirstMemOp;

    if (HasVEX_4V)
      ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).

    EmitByte(BaseOpcode, CurByte, OS);

    emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
                     TSFlags, Rex, CurByte, OS, Fixups, STI);
    CurOp = FirstMemOp + X86::AddrNumOperands;
    if (HasVEX_I8Reg)
      I8RegNum = getX86RegEncoding(MI, CurOp++);
    break;
  }
  case X86II::MRMSrcMem4VOp3: {
    unsigned FirstMemOp = CurOp+1;

    EmitByte(BaseOpcode, CurByte, OS);

    emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
                     TSFlags, Rex, CurByte, OS, Fixups, STI);
    CurOp = FirstMemOp + X86::AddrNumOperands;
    ++CurOp; // Encoded in VEX.VVVV.
    break;
  }
  case X86II::MRMSrcMemOp4: {
    unsigned FirstMemOp = CurOp+1;

    ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).

    // Capture second register source (encoded in Imm[7:4])
    assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
    I8RegNum = getX86RegEncoding(MI, FirstMemOp++);

    EmitByte(BaseOpcode, CurByte, OS);

    emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
                     TSFlags, Rex, CurByte, OS, Fixups, STI);
    CurOp = FirstMemOp + X86::AddrNumOperands;
    break;
  }

  case X86II::MRMXr:
  case X86II::MRM0r: case X86II::MRM1r:
  case X86II::MRM2r: case X86II::MRM3r:
  case X86II::MRM4r: case X86II::MRM5r:
  case X86II::MRM6r: case X86II::MRM7r:
    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
      ++CurOp;
    if (HasEVEX_K) // Skip writemask
      ++CurOp;
    EmitByte(BaseOpcode, CurByte, OS);
    EmitRegModRMByte(MI.getOperand(CurOp++),
                     (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r,
                     CurByte, OS);
    break;

  case X86II::MRMXm:
  case X86II::MRM0m: case X86II::MRM1m:
  case X86II::MRM2m: case X86II::MRM3m:
  case X86II::MRM4m: case X86II::MRM5m:
  case X86II::MRM6m: case X86II::MRM7m:
    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
      ++CurOp;
    if (HasEVEX_K) // Skip writemask
      ++CurOp;
    EmitByte(BaseOpcode, CurByte, OS);
    emitMemModRMByte(MI, CurOp,
                     (Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags,
                     Rex, CurByte, OS, Fixups, STI);
    CurOp += X86::AddrNumOperands;
    break;

  case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
  case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
  case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
  case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
  case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
  case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
  case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
  case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
  case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
  case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
  case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
  case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
  case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
  case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
  case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
  case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
  case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
  case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
  case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
  case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
  case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
  case X86II::MRM_FF:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitByte(0xC0 + Form - X86II::MRM_C0, CurByte, OS);
    break;
  }

  if (HasVEX_I8Reg) {
    // The last source register of a 4 operand instruction in AVX is encoded
    // in bits[7:4] of a immediate byte.
    assert(I8RegNum < 16 && "Register encoding out of range");
    I8RegNum <<= 4;
    if (CurOp != NumOps) {
      unsigned Val = MI.getOperand(CurOp++).getImm();
      assert(Val < 16 && "Immediate operand value out of range");
      I8RegNum |= Val;
    }
    EmitImmediate(MCOperand::createImm(I8RegNum), MI.getLoc(), 1, FK_Data_1,
                  CurByte, OS, Fixups);
  } else {
    // If there is a remaining operand, it must be a trailing immediate. Emit it
    // according to the right size for the instruction. Some instructions
    // (SSE4a extrq and insertq) have two trailing immediates.
    while (CurOp != NumOps && NumOps - CurOp <= 2) {
      EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
                    X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
                    CurByte, OS, Fixups);
    }
  }

  if (TSFlags & X86II::Has3DNow0F0FOpcode)
    EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);

#ifndef NDEBUG
  // FIXME: Verify.
  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
    errs() << "Cannot encode all operands of: ";
    MI.dump();
    errs() << '\n';
    abort();
  }
#endif
}

MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
                                            const MCRegisterInfo &MRI,
                                            MCContext &Ctx) {
  return new X86MCCodeEmitter(MCII, Ctx);
}