Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
//===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements semantic analysis member access expressions.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/Overload.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaInternal.h"

using namespace clang;
using namespace sema;

typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;

/// Determines if the given class is provably not derived from all of
/// the prospective base classes.
static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
                                     const BaseSet &Bases) {
  auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) {
    return !Bases.count(Base->getCanonicalDecl());
  };
  return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet);
}

enum IMAKind {
  /// The reference is definitely not an instance member access.
  IMA_Static,

  /// The reference may be an implicit instance member access.
  IMA_Mixed,

  /// The reference may be to an instance member, but it might be invalid if
  /// so, because the context is not an instance method.
  IMA_Mixed_StaticContext,

  /// The reference may be to an instance member, but it is invalid if
  /// so, because the context is from an unrelated class.
  IMA_Mixed_Unrelated,

  /// The reference is definitely an implicit instance member access.
  IMA_Instance,

  /// The reference may be to an unresolved using declaration.
  IMA_Unresolved,

  /// The reference is a contextually-permitted abstract member reference.
  IMA_Abstract,

  /// The reference may be to an unresolved using declaration and the
  /// context is not an instance method.
  IMA_Unresolved_StaticContext,

  // The reference refers to a field which is not a member of the containing
  // class, which is allowed because we're in C++11 mode and the context is
  // unevaluated.
  IMA_Field_Uneval_Context,

  /// All possible referrents are instance members and the current
  /// context is not an instance method.
  IMA_Error_StaticContext,

  /// All possible referrents are instance members of an unrelated
  /// class.
  IMA_Error_Unrelated
};

/// The given lookup names class member(s) and is not being used for
/// an address-of-member expression.  Classify the type of access
/// according to whether it's possible that this reference names an
/// instance member.  This is best-effort in dependent contexts; it is okay to
/// conservatively answer "yes", in which case some errors will simply
/// not be caught until template-instantiation.
static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
                                            const LookupResult &R) {
  assert(!R.empty() && (*R.begin())->isCXXClassMember());

  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();

  bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
    (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());

  if (R.isUnresolvableResult())
    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;

  // Collect all the declaring classes of instance members we find.
  bool hasNonInstance = false;
  bool isField = false;
  BaseSet Classes;
  for (NamedDecl *D : R) {
    // Look through any using decls.
    D = D->getUnderlyingDecl();

    if (D->isCXXInstanceMember()) {
      isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) ||
                 isa<IndirectFieldDecl>(D);

      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
      Classes.insert(R->getCanonicalDecl());
    } else
      hasNonInstance = true;
  }

  // If we didn't find any instance members, it can't be an implicit
  // member reference.
  if (Classes.empty())
    return IMA_Static;
  
  // C++11 [expr.prim.general]p12:
  //   An id-expression that denotes a non-static data member or non-static
  //   member function of a class can only be used:
  //   (...)
  //   - if that id-expression denotes a non-static data member and it
  //     appears in an unevaluated operand.
  //
  // This rule is specific to C++11.  However, we also permit this form
  // in unevaluated inline assembly operands, like the operand to a SIZE.
  IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
  assert(!AbstractInstanceResult);
  switch (SemaRef.ExprEvalContexts.back().Context) {
  case Sema::ExpressionEvaluationContext::Unevaluated:
  case Sema::ExpressionEvaluationContext::UnevaluatedList:
    if (isField && SemaRef.getLangOpts().CPlusPlus11)
      AbstractInstanceResult = IMA_Field_Uneval_Context;
    break;

  case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
    AbstractInstanceResult = IMA_Abstract;
    break;

  case Sema::ExpressionEvaluationContext::DiscardedStatement:
  case Sema::ExpressionEvaluationContext::ConstantEvaluated:
  case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
  case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
    break;
  }

  // If the current context is not an instance method, it can't be
  // an implicit member reference.
  if (isStaticContext) {
    if (hasNonInstance)
      return IMA_Mixed_StaticContext;

    return AbstractInstanceResult ? AbstractInstanceResult
                                  : IMA_Error_StaticContext;
  }

  CXXRecordDecl *contextClass;
  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
    contextClass = MD->getParent()->getCanonicalDecl();
  else
    contextClass = cast<CXXRecordDecl>(DC);

  // [class.mfct.non-static]p3: 
  // ...is used in the body of a non-static member function of class X,
  // if name lookup (3.4.1) resolves the name in the id-expression to a
  // non-static non-type member of some class C [...]
  // ...if C is not X or a base class of X, the class member access expression
  // is ill-formed.
  if (R.getNamingClass() &&
      contextClass->getCanonicalDecl() !=
        R.getNamingClass()->getCanonicalDecl()) {
    // If the naming class is not the current context, this was a qualified
    // member name lookup, and it's sufficient to check that we have the naming
    // class as a base class.
    Classes.clear();
    Classes.insert(R.getNamingClass()->getCanonicalDecl());
  }

  // If we can prove that the current context is unrelated to all the
  // declaring classes, it can't be an implicit member reference (in
  // which case it's an error if any of those members are selected).
  if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
    return hasNonInstance ? IMA_Mixed_Unrelated :
           AbstractInstanceResult ? AbstractInstanceResult :
                                    IMA_Error_Unrelated;

  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
}

/// Diagnose a reference to a field with no object available.
static void diagnoseInstanceReference(Sema &SemaRef,
                                      const CXXScopeSpec &SS,
                                      NamedDecl *Rep,
                                      const DeclarationNameInfo &nameInfo) {
  SourceLocation Loc = nameInfo.getLoc();
  SourceRange Range(Loc);
  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());

  // Look through using shadow decls and aliases.
  Rep = Rep->getUnderlyingDecl();

  DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
  CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
  CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());

  bool InStaticMethod = Method && Method->isStatic();
  bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);

  if (IsField && InStaticMethod)
    // "invalid use of member 'x' in static member function"
    SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
        << Range << nameInfo.getName();
  else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
           !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
    // Unqualified lookup in a non-static member function found a member of an
    // enclosing class.
    SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
      << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
  else if (IsField)
    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
      << nameInfo.getName() << Range;
  else
    SemaRef.Diag(Loc, diag::err_member_call_without_object)
      << Range;
}

/// Builds an expression which might be an implicit member expression.
ExprResult
Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
                                      SourceLocation TemplateKWLoc,
                                      LookupResult &R,
                                const TemplateArgumentListInfo *TemplateArgs,
                                      const Scope *S) {
  switch (ClassifyImplicitMemberAccess(*this, R)) {
  case IMA_Instance:
    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true, S);

  case IMA_Mixed:
  case IMA_Mixed_Unrelated:
  case IMA_Unresolved:
    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false,
                                   S);

  case IMA_Field_Uneval_Context:
    Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
      << R.getLookupNameInfo().getName();
    LLVM_FALLTHROUGH;
  case IMA_Static:
  case IMA_Abstract:
  case IMA_Mixed_StaticContext:
  case IMA_Unresolved_StaticContext:
    if (TemplateArgs || TemplateKWLoc.isValid())
      return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
    return BuildDeclarationNameExpr(SS, R, false);

  case IMA_Error_StaticContext:
  case IMA_Error_Unrelated:
    diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
                              R.getLookupNameInfo());
    return ExprError();
  }

  llvm_unreachable("unexpected instance member access kind");
}

/// Determine whether input char is from rgba component set.
static bool
IsRGBA(char c) {
  switch (c) {
  case 'r':
  case 'g':
  case 'b':
  case 'a':
    return true;
  default:
    return false;
  }
}

// OpenCL v1.1, s6.1.7
// The component swizzle length must be in accordance with the acceptable
// vector sizes.
static bool IsValidOpenCLComponentSwizzleLength(unsigned len)
{
  return (len >= 1 && len <= 4) || len == 8 || len == 16;
}

/// Check an ext-vector component access expression.
///
/// VK should be set in advance to the value kind of the base
/// expression.
static QualType
CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
                        SourceLocation OpLoc, const IdentifierInfo *CompName,
                        SourceLocation CompLoc) {
  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
  // see FIXME there.
  //
  // FIXME: This logic can be greatly simplified by splitting it along
  // halving/not halving and reworking the component checking.
  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();

  // The vector accessor can't exceed the number of elements.
  const char *compStr = CompName->getNameStart();

  // This flag determines whether or not the component is one of the four
  // special names that indicate a subset of exactly half the elements are
  // to be selected.
  bool HalvingSwizzle = false;

  // This flag determines whether or not CompName has an 's' char prefix,
  // indicating that it is a string of hex values to be used as vector indices.
  bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];

  bool HasRepeated = false;
  bool HasIndex[16] = {};

  int Idx;

  // Check that we've found one of the special components, or that the component
  // names must come from the same set.
  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
    HalvingSwizzle = true;
  } else if (!HexSwizzle &&
             (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
    bool HasRGBA = IsRGBA(*compStr);
    do {
      // Ensure that xyzw and rgba components don't intermingle.
      if (HasRGBA != IsRGBA(*compStr))
        break;
      if (HasIndex[Idx]) HasRepeated = true;
      HasIndex[Idx] = true;
      compStr++;
    } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);

    // Emit a warning if an rgba selector is used earlier than OpenCL 2.2
    if (HasRGBA || (*compStr && IsRGBA(*compStr))) {
      if (S.getLangOpts().OpenCL && S.getLangOpts().OpenCLVersion < 220) {
        const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr;
        S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector)
          << StringRef(DiagBegin, 1)
          << S.getLangOpts().OpenCLVersion << SourceRange(CompLoc);
      }
    }
  } else {
    if (HexSwizzle) compStr++;
    while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
      if (HasIndex[Idx]) HasRepeated = true;
      HasIndex[Idx] = true;
      compStr++;
    }
  }

  if (!HalvingSwizzle && *compStr) {
    // We didn't get to the end of the string. This means the component names
    // didn't come from the same set *or* we encountered an illegal name.
    S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
      << StringRef(compStr, 1) << SourceRange(CompLoc);
    return QualType();
  }

  // Ensure no component accessor exceeds the width of the vector type it
  // operates on.
  if (!HalvingSwizzle) {
    compStr = CompName->getNameStart();

    if (HexSwizzle)
      compStr++;

    while (*compStr) {
      if (!vecType->isAccessorWithinNumElements(*compStr++, HexSwizzle)) {
        S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
          << baseType << SourceRange(CompLoc);
        return QualType();
      }
    }
  }

  // OpenCL mode requires swizzle length to be in accordance with accepted
  // sizes. Clang however supports arbitrary lengths for other languages.
  if (S.getLangOpts().OpenCL && !HalvingSwizzle) {
    unsigned SwizzleLength = CompName->getLength();

    if (HexSwizzle)
      SwizzleLength--;

    if (IsValidOpenCLComponentSwizzleLength(SwizzleLength) == false) {
      S.Diag(OpLoc, diag::err_opencl_ext_vector_component_invalid_length)
        << SwizzleLength << SourceRange(CompLoc);
      return QualType();
    }
  }

  // The component accessor looks fine - now we need to compute the actual type.
  // The vector type is implied by the component accessor. For example,
  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
                                     : CompName->getLength();
  if (HexSwizzle)
    CompSize--;

  if (CompSize == 1)
    return vecType->getElementType();

  if (HasRepeated) VK = VK_RValue;

  QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
  // Now look up the TypeDefDecl from the vector type. Without this,
  // diagostics look bad. We want extended vector types to appear built-in.
  for (Sema::ExtVectorDeclsType::iterator 
         I = S.ExtVectorDecls.begin(S.getExternalSource()),
         E = S.ExtVectorDecls.end(); 
       I != E; ++I) {
    if ((*I)->getUnderlyingType() == VT)
      return S.Context.getTypedefType(*I);
  }
  
  return VT; // should never get here (a typedef type should always be found).
}

static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
                                                IdentifierInfo *Member,
                                                const Selector &Sel,
                                                ASTContext &Context) {
  if (Member)
    if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(
            Member, ObjCPropertyQueryKind::OBJC_PR_query_instance))
      return PD;
  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
    return OMD;

  for (const auto *I : PDecl->protocols()) {
    if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
                                                           Context))
      return D;
  }
  return nullptr;
}

static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
                                      IdentifierInfo *Member,
                                      const Selector &Sel,
                                      ASTContext &Context) {
  // Check protocols on qualified interfaces.
  Decl *GDecl = nullptr;
  for (const auto *I : QIdTy->quals()) {
    if (Member)
      if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(
              Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
        GDecl = PD;
        break;
      }
    // Also must look for a getter or setter name which uses property syntax.
    if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
      GDecl = OMD;
      break;
    }
  }
  if (!GDecl) {
    for (const auto *I : QIdTy->quals()) {
      // Search in the protocol-qualifier list of current protocol.
      GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
      if (GDecl)
        return GDecl;
    }
  }
  return GDecl;
}

ExprResult
Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
                               bool IsArrow, SourceLocation OpLoc,
                               const CXXScopeSpec &SS,
                               SourceLocation TemplateKWLoc,
                               NamedDecl *FirstQualifierInScope,
                               const DeclarationNameInfo &NameInfo,
                               const TemplateArgumentListInfo *TemplateArgs) {
  // Even in dependent contexts, try to diagnose base expressions with
  // obviously wrong types, e.g.:
  //
  // T* t;
  // t.f;
  //
  // In Obj-C++, however, the above expression is valid, since it could be
  // accessing the 'f' property if T is an Obj-C interface. The extra check
  // allows this, while still reporting an error if T is a struct pointer.
  if (!IsArrow) {
    const PointerType *PT = BaseType->getAs<PointerType>();
    if (PT && (!getLangOpts().ObjC1 ||
               PT->getPointeeType()->isRecordType())) {
      assert(BaseExpr && "cannot happen with implicit member accesses");
      Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
        << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
      return ExprError();
    }
  }

  assert(BaseType->isDependentType() ||
         NameInfo.getName().isDependentName() ||
         isDependentScopeSpecifier(SS));

  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
  // must have pointer type, and the accessed type is the pointee.
  return CXXDependentScopeMemberExpr::Create(
      Context, BaseExpr, BaseType, IsArrow, OpLoc,
      SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
      NameInfo, TemplateArgs);
}

/// We know that the given qualified member reference points only to
/// declarations which do not belong to the static type of the base
/// expression.  Diagnose the problem.
static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
                                             Expr *BaseExpr,
                                             QualType BaseType,
                                             const CXXScopeSpec &SS,
                                             NamedDecl *rep,
                                       const DeclarationNameInfo &nameInfo) {
  // If this is an implicit member access, use a different set of
  // diagnostics.
  if (!BaseExpr)
    return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);

  SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
    << SS.getRange() << rep << BaseType;
}

// Check whether the declarations we found through a nested-name
// specifier in a member expression are actually members of the base
// type.  The restriction here is:
//
//   C++ [expr.ref]p2:
//     ... In these cases, the id-expression shall name a
//     member of the class or of one of its base classes.
//
// So it's perfectly legitimate for the nested-name specifier to name
// an unrelated class, and for us to find an overload set including
// decls from classes which are not superclasses, as long as the decl
// we actually pick through overload resolution is from a superclass.
bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
                                         QualType BaseType,
                                         const CXXScopeSpec &SS,
                                         const LookupResult &R) {
  CXXRecordDecl *BaseRecord =
    cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
  if (!BaseRecord) {
    // We can't check this yet because the base type is still
    // dependent.
    assert(BaseType->isDependentType());
    return false;
  }

  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
    // If this is an implicit member reference and we find a
    // non-instance member, it's not an error.
    if (!BaseExpr && !(*I)->isCXXInstanceMember())
      return false;

    // Note that we use the DC of the decl, not the underlying decl.
    DeclContext *DC = (*I)->getDeclContext();
    while (DC->isTransparentContext())
      DC = DC->getParent();

    if (!DC->isRecord())
      continue;

    CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
    if (BaseRecord->getCanonicalDecl() == MemberRecord ||
        !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
      return false;
  }

  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
                                   R.getRepresentativeDecl(),
                                   R.getLookupNameInfo());
  return true;
}

namespace {

// Callback to only accept typo corrections that are either a ValueDecl or a
// FunctionTemplateDecl and are declared in the current record or, for a C++
// classes, one of its base classes.
class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
public:
  explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
      : Record(RTy->getDecl()) {
    // Don't add bare keywords to the consumer since they will always fail
    // validation by virtue of not being associated with any decls.
    WantTypeSpecifiers = false;
    WantExpressionKeywords = false;
    WantCXXNamedCasts = false;
    WantFunctionLikeCasts = false;
    WantRemainingKeywords = false;
  }

  bool ValidateCandidate(const TypoCorrection &candidate) override {
    NamedDecl *ND = candidate.getCorrectionDecl();
    // Don't accept candidates that cannot be member functions, constants,
    // variables, or templates.
    if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
      return false;

    // Accept candidates that occur in the current record.
    if (Record->containsDecl(ND))
      return true;

    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) {
      // Accept candidates that occur in any of the current class' base classes.
      for (const auto &BS : RD->bases()) {
        if (const RecordType *BSTy =
                dyn_cast_or_null<RecordType>(BS.getType().getTypePtrOrNull())) {
          if (BSTy->getDecl()->containsDecl(ND))
            return true;
        }
      }
    }

    return false;
  }

private:
  const RecordDecl *const Record;
};

}

static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
                                     Expr *BaseExpr,
                                     const RecordType *RTy,
                                     SourceLocation OpLoc, bool IsArrow,
                                     CXXScopeSpec &SS, bool HasTemplateArgs,
                                     TypoExpr *&TE) {
  SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange();
  RecordDecl *RDecl = RTy->getDecl();
  if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
      SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
                                  diag::err_typecheck_incomplete_tag,
                                  BaseRange))
    return true;

  if (HasTemplateArgs) {
    // LookupTemplateName doesn't expect these both to exist simultaneously.
    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);

    bool MOUS;
    SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS);
    return false;
  }

  DeclContext *DC = RDecl;
  if (SS.isSet()) {
    // If the member name was a qualified-id, look into the
    // nested-name-specifier.
    DC = SemaRef.computeDeclContext(SS, false);

    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
          << SS.getRange() << DC;
      return true;
    }

    assert(DC && "Cannot handle non-computable dependent contexts in lookup");

    if (!isa<TypeDecl>(DC)) {
      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
          << DC << SS.getRange();
      return true;
    }
  }

  // The record definition is complete, now look up the member.
  SemaRef.LookupQualifiedName(R, DC, SS);

  if (!R.empty())
    return false;

  DeclarationName Typo = R.getLookupName();
  SourceLocation TypoLoc = R.getNameLoc();

  struct QueryState {
    Sema &SemaRef;
    DeclarationNameInfo NameInfo;
    Sema::LookupNameKind LookupKind;
    Sema::RedeclarationKind Redecl;
  };
  QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(),
                  R.redeclarationKind()};
  TE = SemaRef.CorrectTypoDelayed(
      R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS,
      llvm::make_unique<RecordMemberExprValidatorCCC>(RTy),
      [=, &SemaRef](const TypoCorrection &TC) {
        if (TC) {
          assert(!TC.isKeyword() &&
                 "Got a keyword as a correction for a member!");
          bool DroppedSpecifier =
              TC.WillReplaceSpecifier() &&
              Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts());
          SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
                                       << Typo << DC << DroppedSpecifier
                                       << SS.getRange());
        } else {
          SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange;
        }
      },
      [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable {
        LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl);
        R.clear(); // Ensure there's no decls lingering in the shared state.
        R.suppressDiagnostics();
        R.setLookupName(TC.getCorrection());
        for (NamedDecl *ND : TC)
          R.addDecl(ND);
        R.resolveKind();
        return SemaRef.BuildMemberReferenceExpr(
            BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(),
            nullptr, R, nullptr, nullptr);
      },
      Sema::CTK_ErrorRecovery, DC);

  return false;
}

static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
                                   ExprResult &BaseExpr, bool &IsArrow,
                                   SourceLocation OpLoc, CXXScopeSpec &SS,
                                   Decl *ObjCImpDecl, bool HasTemplateArgs);

ExprResult
Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
                               SourceLocation OpLoc, bool IsArrow,
                               CXXScopeSpec &SS,
                               SourceLocation TemplateKWLoc,
                               NamedDecl *FirstQualifierInScope,
                               const DeclarationNameInfo &NameInfo,
                               const TemplateArgumentListInfo *TemplateArgs,
                               const Scope *S,
                               ActOnMemberAccessExtraArgs *ExtraArgs) {
  if (BaseType->isDependentType() ||
      (SS.isSet() && isDependentScopeSpecifier(SS)))
    return ActOnDependentMemberExpr(Base, BaseType,
                                    IsArrow, OpLoc,
                                    SS, TemplateKWLoc, FirstQualifierInScope,
                                    NameInfo, TemplateArgs);

  LookupResult R(*this, NameInfo, LookupMemberName);

  // Implicit member accesses.
  if (!Base) {
    TypoExpr *TE = nullptr;
    QualType RecordTy = BaseType;
    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
    if (LookupMemberExprInRecord(*this, R, nullptr,
                                 RecordTy->getAs<RecordType>(), OpLoc, IsArrow,
                                 SS, TemplateArgs != nullptr, TE))
      return ExprError();
    if (TE)
      return TE;

  // Explicit member accesses.
  } else {
    ExprResult BaseResult = Base;
    ExprResult Result = LookupMemberExpr(
        *this, R, BaseResult, IsArrow, OpLoc, SS,
        ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
        TemplateArgs != nullptr);

    if (BaseResult.isInvalid())
      return ExprError();
    Base = BaseResult.get();

    if (Result.isInvalid())
      return ExprError();

    if (Result.get())
      return Result;

    // LookupMemberExpr can modify Base, and thus change BaseType
    BaseType = Base->getType();
  }

  return BuildMemberReferenceExpr(Base, BaseType,
                                  OpLoc, IsArrow, SS, TemplateKWLoc,
                                  FirstQualifierInScope, R, TemplateArgs, S,
                                  false, ExtraArgs);
}

ExprResult
Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
                                               SourceLocation loc,
                                               IndirectFieldDecl *indirectField,
                                               DeclAccessPair foundDecl,
                                               Expr *baseObjectExpr,
                                               SourceLocation opLoc) {
  // First, build the expression that refers to the base object.
  
  bool baseObjectIsPointer = false;
  Qualifiers baseQuals;
  
  // Case 1:  the base of the indirect field is not a field.
  VarDecl *baseVariable = indirectField->getVarDecl();
  CXXScopeSpec EmptySS;
  if (baseVariable) {
    assert(baseVariable->getType()->isRecordType());
    
    // In principle we could have a member access expression that
    // accesses an anonymous struct/union that's a static member of
    // the base object's class.  However, under the current standard,
    // static data members cannot be anonymous structs or unions.
    // Supporting this is as easy as building a MemberExpr here.
    assert(!baseObjectExpr && "anonymous struct/union is static data member?");
    
    DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
    
    ExprResult result 
      = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
    if (result.isInvalid()) return ExprError();
    
    baseObjectExpr = result.get();    
    baseObjectIsPointer = false;
    baseQuals = baseObjectExpr->getType().getQualifiers();
    
    // Case 2: the base of the indirect field is a field and the user
    // wrote a member expression.
  } else if (baseObjectExpr) {
    // The caller provided the base object expression. Determine
    // whether its a pointer and whether it adds any qualifiers to the
    // anonymous struct/union fields we're looking into.
    QualType objectType = baseObjectExpr->getType();
    
    if (const PointerType *ptr = objectType->getAs<PointerType>()) {
      baseObjectIsPointer = true;
      objectType = ptr->getPointeeType();
    } else {
      baseObjectIsPointer = false;
    }
    baseQuals = objectType.getQualifiers();
    
    // Case 3: the base of the indirect field is a field and we should
    // build an implicit member access.
  } else {
    // We've found a member of an anonymous struct/union that is
    // inside a non-anonymous struct/union, so in a well-formed
    // program our base object expression is "this".
    QualType ThisTy = getCurrentThisType();
    if (ThisTy.isNull()) {
      Diag(loc, diag::err_invalid_member_use_in_static_method)
        << indirectField->getDeclName();
      return ExprError();
    }
    
    // Our base object expression is "this".
    CheckCXXThisCapture(loc);
    baseObjectExpr 
      = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
    baseObjectIsPointer = true;
    baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
  }
  
  // Build the implicit member references to the field of the
  // anonymous struct/union.
  Expr *result = baseObjectExpr;
  IndirectFieldDecl::chain_iterator
  FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
  
  // Build the first member access in the chain with full information.
  if (!baseVariable) {
    FieldDecl *field = cast<FieldDecl>(*FI);
    
    // Make a nameInfo that properly uses the anonymous name.
    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);

    result = BuildFieldReferenceExpr(result, baseObjectIsPointer,
                                     SourceLocation(), EmptySS, field,
                                     foundDecl, memberNameInfo).get();
    if (!result)
      return ExprError();

    // FIXME: check qualified member access
  }
  
  // In all cases, we should now skip the first declaration in the chain.
  ++FI;
  
  while (FI != FEnd) {
    FieldDecl *field = cast<FieldDecl>(*FI++);

    // FIXME: these are somewhat meaningless
    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
    DeclAccessPair fakeFoundDecl =
        DeclAccessPair::make(field, field->getAccess());

    result =
        BuildFieldReferenceExpr(result, /*isarrow*/ false, SourceLocation(),
                                (FI == FEnd ? SS : EmptySS), field,
                                fakeFoundDecl, memberNameInfo)
            .get();
  }
  
  return result;
}

static ExprResult
BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
                       const CXXScopeSpec &SS,
                       MSPropertyDecl *PD,
                       const DeclarationNameInfo &NameInfo) {
  // Property names are always simple identifiers and therefore never
  // require any interesting additional storage.
  return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
                                           S.Context.PseudoObjectTy, VK_LValue,
                                           SS.getWithLocInContext(S.Context),
                                           NameInfo.getLoc());
}

/// \brief Build a MemberExpr AST node.
static MemberExpr *BuildMemberExpr(
    Sema &SemaRef, ASTContext &C, Expr *Base, bool isArrow,
    SourceLocation OpLoc, const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
    ValueDecl *Member, DeclAccessPair FoundDecl,
    const DeclarationNameInfo &MemberNameInfo, QualType Ty, ExprValueKind VK,
    ExprObjectKind OK, const TemplateArgumentListInfo *TemplateArgs = nullptr) {
  assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
  MemberExpr *E = MemberExpr::Create(
      C, Base, isArrow, OpLoc, SS.getWithLocInContext(C), TemplateKWLoc, Member,
      FoundDecl, MemberNameInfo, TemplateArgs, Ty, VK, OK);
  SemaRef.MarkMemberReferenced(E);
  return E;
}

/// \brief Determine if the given scope is within a function-try-block handler.
static bool IsInFnTryBlockHandler(const Scope *S) {
  // Walk the scope stack until finding a FnTryCatchScope, or leave the
  // function scope. If a FnTryCatchScope is found, check whether the TryScope
  // flag is set. If it is not, it's a function-try-block handler.
  for (; S != S->getFnParent(); S = S->getParent()) {
    if (S->getFlags() & Scope::FnTryCatchScope)
      return (S->getFlags() & Scope::TryScope) != Scope::TryScope;
  }
  return false;
}

static VarDecl *
getVarTemplateSpecialization(Sema &S, VarTemplateDecl *VarTempl,
                      const TemplateArgumentListInfo *TemplateArgs,
                      const DeclarationNameInfo &MemberNameInfo,
                      SourceLocation TemplateKWLoc) {

  if (!TemplateArgs) {
    S.Diag(MemberNameInfo.getBeginLoc(), diag::err_template_decl_ref)
        << /*Variable template*/ 1 << MemberNameInfo.getName()
        << MemberNameInfo.getSourceRange();

    S.Diag(VarTempl->getLocation(), diag::note_template_decl_here);

    return nullptr;
  }
  DeclResult VDecl = S.CheckVarTemplateId(
      VarTempl, TemplateKWLoc, MemberNameInfo.getLoc(), *TemplateArgs);
  if (VDecl.isInvalid())
    return nullptr;
  VarDecl *Var = cast<VarDecl>(VDecl.get());
  if (!Var->getTemplateSpecializationKind())
    Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
                                       MemberNameInfo.getLoc());
  return Var;
}

ExprResult
Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
                               SourceLocation OpLoc, bool IsArrow,
                               const CXXScopeSpec &SS,
                               SourceLocation TemplateKWLoc,
                               NamedDecl *FirstQualifierInScope,
                               LookupResult &R,
                               const TemplateArgumentListInfo *TemplateArgs,
                               const Scope *S,
                               bool SuppressQualifierCheck,
                               ActOnMemberAccessExtraArgs *ExtraArgs) {
  QualType BaseType = BaseExprType;
  if (IsArrow) {
    assert(BaseType->isPointerType());
    BaseType = BaseType->castAs<PointerType>()->getPointeeType();
  }
  R.setBaseObjectType(BaseType);

  // C++1z [expr.ref]p2:
  //   For the first option (dot) the first expression shall be a glvalue [...]
  if (!IsArrow && BaseExpr && BaseExpr->isRValue()) {
    ExprResult Converted = TemporaryMaterializationConversion(BaseExpr);
    if (Converted.isInvalid())
      return ExprError();
    BaseExpr = Converted.get();
  }
  
 
  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
  DeclarationName MemberName = MemberNameInfo.getName();
  SourceLocation MemberLoc = MemberNameInfo.getLoc();

  if (R.isAmbiguous())
    return ExprError();

  // [except.handle]p10: Referring to any non-static member or base class of an
  // object in the handler for a function-try-block of a constructor or
  // destructor for that object results in undefined behavior.
  const auto *FD = getCurFunctionDecl();
  if (S && BaseExpr && FD &&
      (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) &&
      isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) &&
      IsInFnTryBlockHandler(S))
    Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr)
        << isa<CXXDestructorDecl>(FD);

  if (R.empty()) {
    // Rederive where we looked up.
    DeclContext *DC = (SS.isSet()
                       ? computeDeclContext(SS, false)
                       : BaseType->getAs<RecordType>()->getDecl());

    if (ExtraArgs) {
      ExprResult RetryExpr;
      if (!IsArrow && BaseExpr) {
        SFINAETrap Trap(*this, true);
        ParsedType ObjectType;
        bool MayBePseudoDestructor = false;
        RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
                                                 OpLoc, tok::arrow, ObjectType,
                                                 MayBePseudoDestructor);
        if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
          CXXScopeSpec TempSS(SS);
          RetryExpr = ActOnMemberAccessExpr(
              ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
              TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl);
        }
        if (Trap.hasErrorOccurred())
          RetryExpr = ExprError();
      }
      if (RetryExpr.isUsable()) {
        Diag(OpLoc, diag::err_no_member_overloaded_arrow)
          << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
        return RetryExpr;
      }
    }

    Diag(R.getNameLoc(), diag::err_no_member)
      << MemberName << DC
      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
    return ExprError();
  }

  // Diagnose lookups that find only declarations from a non-base
  // type.  This is possible for either qualified lookups (which may
  // have been qualified with an unrelated type) or implicit member
  // expressions (which were found with unqualified lookup and thus
  // may have come from an enclosing scope).  Note that it's okay for
  // lookup to find declarations from a non-base type as long as those
  // aren't the ones picked by overload resolution.
  if ((SS.isSet() || !BaseExpr ||
       (isa<CXXThisExpr>(BaseExpr) &&
        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
      !SuppressQualifierCheck &&
      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
    return ExprError();
  
  // Construct an unresolved result if we in fact got an unresolved
  // result.
  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
    // Suppress any lookup-related diagnostics; we'll do these when we
    // pick a member.
    R.suppressDiagnostics();

    UnresolvedMemberExpr *MemExpr
      = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
                                     BaseExpr, BaseExprType,
                                     IsArrow, OpLoc,
                                     SS.getWithLocInContext(Context),
                                     TemplateKWLoc, MemberNameInfo,
                                     TemplateArgs, R.begin(), R.end());

    return MemExpr;
  }

  assert(R.isSingleResult());
  DeclAccessPair FoundDecl = R.begin().getPair();
  NamedDecl *MemberDecl = R.getFoundDecl();

  // FIXME: diagnose the presence of template arguments now.

  // If the decl being referenced had an error, return an error for this
  // sub-expr without emitting another error, in order to avoid cascading
  // error cases.
  if (MemberDecl->isInvalidDecl())
    return ExprError();

  // Handle the implicit-member-access case.
  if (!BaseExpr) {
    // If this is not an instance member, convert to a non-member access.
    if (!MemberDecl->isCXXInstanceMember()) {
      // If this is a variable template, get the instantiated variable
      // declaration corresponding to the supplied template arguments
      // (while emitting diagnostics as necessary) that will be referenced
      // by this expression.
      assert((!TemplateArgs || isa<VarTemplateDecl>(MemberDecl)) &&
             "How did we get template arguments here sans a variable template");
      if (isa<VarTemplateDecl>(MemberDecl)) {
        MemberDecl = getVarTemplateSpecialization(
            *this, cast<VarTemplateDecl>(MemberDecl), TemplateArgs,
            R.getLookupNameInfo(), TemplateKWLoc);
        if (!MemberDecl)
          return ExprError();
      }
      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl,
                                      FoundDecl, TemplateArgs);
    }
    SourceLocation Loc = R.getNameLoc();
    if (SS.getRange().isValid())
      Loc = SS.getRange().getBegin();
    CheckCXXThisCapture(Loc);
    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
  }

  // Check the use of this member.
  if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
    return ExprError();

  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
    return BuildFieldReferenceExpr(BaseExpr, IsArrow, OpLoc, SS, FD, FoundDecl,
                                   MemberNameInfo);

  if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
    return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
                                  MemberNameInfo);

  if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
    // We may have found a field within an anonymous union or struct
    // (C++ [class.union]).
    return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
                                                    FoundDecl, BaseExpr,
                                                    OpLoc);

  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
    return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS,
                           TemplateKWLoc, Var, FoundDecl, MemberNameInfo,
                           Var->getType().getNonReferenceType(), VK_LValue,
                           OK_Ordinary);
  }

  if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
    ExprValueKind valueKind;
    QualType type;
    if (MemberFn->isInstance()) {
      valueKind = VK_RValue;
      type = Context.BoundMemberTy;
    } else {
      valueKind = VK_LValue;
      type = MemberFn->getType();
    }

    return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS,
                           TemplateKWLoc, MemberFn, FoundDecl, MemberNameInfo,
                           type, valueKind, OK_Ordinary);
  }
  assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");

  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
    return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS,
                           TemplateKWLoc, Enum, FoundDecl, MemberNameInfo,
                           Enum->getType(), VK_RValue, OK_Ordinary);
  }
  if (VarTemplateDecl *VarTempl = dyn_cast<VarTemplateDecl>(MemberDecl)) {
    if (VarDecl *Var = getVarTemplateSpecialization(
            *this, VarTempl, TemplateArgs, MemberNameInfo, TemplateKWLoc))
      return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS,
                             TemplateKWLoc, Var, FoundDecl, MemberNameInfo,
                             Var->getType().getNonReferenceType(), VK_LValue,
                             OK_Ordinary);
    return ExprError();
  }

  // We found something that we didn't expect. Complain.
  if (isa<TypeDecl>(MemberDecl))
    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
      << MemberName << BaseType << int(IsArrow);
  else
    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
      << MemberName << BaseType << int(IsArrow);

  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
    << MemberName;
  R.suppressDiagnostics();
  return ExprError();
}

/// Given that normal member access failed on the given expression,
/// and given that the expression's type involves builtin-id or
/// builtin-Class, decide whether substituting in the redefinition
/// types would be profitable.  The redefinition type is whatever
/// this translation unit tried to typedef to id/Class;  we store
/// it to the side and then re-use it in places like this.
static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
  const ObjCObjectPointerType *opty
    = base.get()->getType()->getAs<ObjCObjectPointerType>();
  if (!opty) return false;

  const ObjCObjectType *ty = opty->getObjectType();

  QualType redef;
  if (ty->isObjCId()) {
    redef = S.Context.getObjCIdRedefinitionType();
  } else if (ty->isObjCClass()) {
    redef = S.Context.getObjCClassRedefinitionType();
  } else {
    return false;
  }

  // Do the substitution as long as the redefinition type isn't just a
  // possibly-qualified pointer to builtin-id or builtin-Class again.
  opty = redef->getAs<ObjCObjectPointerType>();
  if (opty && !opty->getObjectType()->getInterface())
    return false;

  base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
  return true;
}

static bool isRecordType(QualType T) {
  return T->isRecordType();
}
static bool isPointerToRecordType(QualType T) {
  if (const PointerType *PT = T->getAs<PointerType>())
    return PT->getPointeeType()->isRecordType();
  return false;
}

/// Perform conversions on the LHS of a member access expression.
ExprResult
Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
  if (IsArrow && !Base->getType()->isFunctionType())
    return DefaultFunctionArrayLvalueConversion(Base);

  return CheckPlaceholderExpr(Base);
}

/// Look up the given member of the given non-type-dependent
/// expression.  This can return in one of two ways:
///  * If it returns a sentinel null-but-valid result, the caller will
///    assume that lookup was performed and the results written into
///    the provided structure.  It will take over from there.
///  * Otherwise, the returned expression will be produced in place of
///    an ordinary member expression.
///
/// The ObjCImpDecl bit is a gross hack that will need to be properly
/// fixed for ObjC++.
static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
                                   ExprResult &BaseExpr, bool &IsArrow,
                                   SourceLocation OpLoc, CXXScopeSpec &SS,
                                   Decl *ObjCImpDecl, bool HasTemplateArgs) {
  assert(BaseExpr.get() && "no base expression");

  // Perform default conversions.
  BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
  if (BaseExpr.isInvalid())
    return ExprError();

  QualType BaseType = BaseExpr.get()->getType();
  assert(!BaseType->isDependentType());

  DeclarationName MemberName = R.getLookupName();
  SourceLocation MemberLoc = R.getNameLoc();

  // For later type-checking purposes, turn arrow accesses into dot
  // accesses.  The only access type we support that doesn't follow
  // the C equivalence "a->b === (*a).b" is ObjC property accesses,
  // and those never use arrows, so this is unaffected.
  if (IsArrow) {
    if (const PointerType *Ptr = BaseType->getAs<PointerType>())
      BaseType = Ptr->getPointeeType();
    else if (const ObjCObjectPointerType *Ptr
               = BaseType->getAs<ObjCObjectPointerType>())
      BaseType = Ptr->getPointeeType();
    else if (BaseType->isRecordType()) {
      // Recover from arrow accesses to records, e.g.:
      //   struct MyRecord foo;
      //   foo->bar
      // This is actually well-formed in C++ if MyRecord has an
      // overloaded operator->, but that should have been dealt with
      // by now--or a diagnostic message already issued if a problem
      // was encountered while looking for the overloaded operator->.
      if (!S.getLangOpts().CPlusPlus) {
        S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
          << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
          << FixItHint::CreateReplacement(OpLoc, ".");
      }
      IsArrow = false;
    } else if (BaseType->isFunctionType()) {
      goto fail;
    } else {
      S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
        << BaseType << BaseExpr.get()->getSourceRange();
      return ExprError();
    }
  }

  // Handle field access to simple records.
  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
    TypoExpr *TE = nullptr;
    if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy,
                                 OpLoc, IsArrow, SS, HasTemplateArgs, TE))
      return ExprError();

    // Returning valid-but-null is how we indicate to the caller that
    // the lookup result was filled in. If typo correction was attempted and
    // failed, the lookup result will have been cleared--that combined with the
    // valid-but-null ExprResult will trigger the appropriate diagnostics.
    return ExprResult(TE);
  }

  // Handle ivar access to Objective-C objects.
  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
    if (!SS.isEmpty() && !SS.isInvalid()) {
      S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
        << 1 << SS.getScopeRep()
        << FixItHint::CreateRemoval(SS.getRange());
      SS.clear();
    }

    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();

    // There are three cases for the base type:
    //   - builtin id (qualified or unqualified)
    //   - builtin Class (qualified or unqualified)
    //   - an interface
    ObjCInterfaceDecl *IDecl = OTy->getInterface();
    if (!IDecl) {
      if (S.getLangOpts().ObjCAutoRefCount &&
          (OTy->isObjCId() || OTy->isObjCClass()))
        goto fail;
      // There's an implicit 'isa' ivar on all objects.
      // But we only actually find it this way on objects of type 'id',
      // apparently.
      if (OTy->isObjCId() && Member->isStr("isa"))
        return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
                                           OpLoc, S.Context.getObjCClassType());
      if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
                                ObjCImpDecl, HasTemplateArgs);
      goto fail;
    }

    if (S.RequireCompleteType(OpLoc, BaseType,
                              diag::err_typecheck_incomplete_tag,
                              BaseExpr.get()))
      return ExprError();

    ObjCInterfaceDecl *ClassDeclared = nullptr;
    ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);

    if (!IV) {
      // Attempt to correct for typos in ivar names.
      auto Validator = llvm::make_unique<DeclFilterCCC<ObjCIvarDecl>>();
      Validator->IsObjCIvarLookup = IsArrow;
      if (TypoCorrection Corrected = S.CorrectTypo(
              R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
              std::move(Validator), Sema::CTK_ErrorRecovery, IDecl)) {
        IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
        S.diagnoseTypo(
            Corrected,
            S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
                << IDecl->getDeclName() << MemberName);

        // Figure out the class that declares the ivar.
        assert(!ClassDeclared);

        Decl *D = cast<Decl>(IV->getDeclContext());
        if (auto *Category = dyn_cast<ObjCCategoryDecl>(D))
          D = Category->getClassInterface();

        if (auto *Implementation = dyn_cast<ObjCImplementationDecl>(D))
          ClassDeclared = Implementation->getClassInterface();
        else if (auto *Interface = dyn_cast<ObjCInterfaceDecl>(D))
          ClassDeclared = Interface;

        assert(ClassDeclared && "cannot query interface");
      } else {
        if (IsArrow &&
            IDecl->FindPropertyDeclaration(
                Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
          S.Diag(MemberLoc, diag::err_property_found_suggest)
              << Member << BaseExpr.get()->getType()
              << FixItHint::CreateReplacement(OpLoc, ".");
          return ExprError();
        }

        S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
            << IDecl->getDeclName() << MemberName
            << BaseExpr.get()->getSourceRange();
        return ExprError();
      }
    }

    assert(ClassDeclared);

    // If the decl being referenced had an error, return an error for this
    // sub-expr without emitting another error, in order to avoid cascading
    // error cases.
    if (IV->isInvalidDecl())
      return ExprError();

    // Check whether we can reference this field.
    if (S.DiagnoseUseOfDecl(IV, MemberLoc))
      return ExprError();
    if (IV->getAccessControl() != ObjCIvarDecl::Public &&
        IV->getAccessControl() != ObjCIvarDecl::Package) {
      ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
      if (ObjCMethodDecl *MD = S.getCurMethodDecl())
        ClassOfMethodDecl =  MD->getClassInterface();
      else if (ObjCImpDecl && S.getCurFunctionDecl()) {
        // Case of a c-function declared inside an objc implementation.
        // FIXME: For a c-style function nested inside an objc implementation
        // class, there is no implementation context available, so we pass
        // down the context as argument to this routine. Ideally, this context
        // need be passed down in the AST node and somehow calculated from the
        // AST for a function decl.
        if (ObjCImplementationDecl *IMPD =
              dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
          ClassOfMethodDecl = IMPD->getClassInterface();
        else if (ObjCCategoryImplDecl* CatImplClass =
                   dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
          ClassOfMethodDecl = CatImplClass->getClassInterface();
      }
      if (!S.getLangOpts().DebuggerSupport) {
        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
          if (!declaresSameEntity(ClassDeclared, IDecl) ||
              !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
            S.Diag(MemberLoc, diag::err_private_ivar_access)
              << IV->getDeclName();
        } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
          // @protected
          S.Diag(MemberLoc, diag::err_protected_ivar_access)
              << IV->getDeclName();
      }
    }
    bool warn = true;
    if (S.getLangOpts().ObjCWeak) {
      Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
      if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
        if (UO->getOpcode() == UO_Deref)
          BaseExp = UO->getSubExpr()->IgnoreParenCasts();
      
      if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
        if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
          S.Diag(DE->getLocation(), diag::err_arc_weak_ivar_access);
          warn = false;
        }
    }
    if (warn) {
      if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
        ObjCMethodFamily MF = MD->getMethodFamily();
        warn = (MF != OMF_init && MF != OMF_dealloc && 
                MF != OMF_finalize &&
                !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
      }
      if (warn)
        S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
    }

    ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
        IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(),
        IsArrow);

    if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
      if (!S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
        S.recordUseOfEvaluatedWeak(Result);
    }

    return Result;
  }

  // Objective-C property access.
  const ObjCObjectPointerType *OPT;
  if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
    if (!SS.isEmpty() && !SS.isInvalid()) {
      S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
          << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
      SS.clear();
    }

    // This actually uses the base as an r-value.
    BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
    if (BaseExpr.isInvalid())
      return ExprError();

    assert(S.Context.hasSameUnqualifiedType(BaseType,
                                            BaseExpr.get()->getType()));

    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();

    const ObjCObjectType *OT = OPT->getObjectType();

    // id, with and without qualifiers.
    if (OT->isObjCId()) {
      // Check protocols on qualified interfaces.
      Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
      if (Decl *PMDecl =
              FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
        if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
          // Check the use of this declaration
          if (S.DiagnoseUseOfDecl(PD, MemberLoc))
            return ExprError();

          return new (S.Context)
              ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
                                  OK_ObjCProperty, MemberLoc, BaseExpr.get());
        }

        if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
          // Check the use of this method.
          if (S.DiagnoseUseOfDecl(OMD, MemberLoc))
            return ExprError();
          Selector SetterSel =
            SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
                                                   S.PP.getSelectorTable(),
                                                   Member);
          ObjCMethodDecl *SMD = nullptr;
          if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
                                                     /*Property id*/ nullptr,
                                                     SetterSel, S.Context))
            SMD = dyn_cast<ObjCMethodDecl>(SDecl);

          return new (S.Context)
              ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
                                  OK_ObjCProperty, MemberLoc, BaseExpr.get());
        }
      }
      // Use of id.member can only be for a property reference. Do not
      // use the 'id' redefinition in this case.
      if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
                                ObjCImpDecl, HasTemplateArgs);

      return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
                         << MemberName << BaseType);
    }

    // 'Class', unqualified only.
    if (OT->isObjCClass()) {
      // Only works in a method declaration (??!).
      ObjCMethodDecl *MD = S.getCurMethodDecl();
      if (!MD) {
        if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
          return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
                                  ObjCImpDecl, HasTemplateArgs);

        goto fail;
      }

      // Also must look for a getter name which uses property syntax.
      Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
      ObjCInterfaceDecl *IFace = MD->getClassInterface();
      ObjCMethodDecl *Getter;
      if ((Getter = IFace->lookupClassMethod(Sel))) {
        // Check the use of this method.
        if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
          return ExprError();
      } else
        Getter = IFace->lookupPrivateMethod(Sel, false);
      // If we found a getter then this may be a valid dot-reference, we
      // will look for the matching setter, in case it is needed.
      Selector SetterSel =
        SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
                                               S.PP.getSelectorTable(),
                                               Member);
      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
      if (!Setter) {
        // If this reference is in an @implementation, also check for 'private'
        // methods.
        Setter = IFace->lookupPrivateMethod(SetterSel, false);
      }

      if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
        return ExprError();

      if (Getter || Setter) {
        return new (S.Context) ObjCPropertyRefExpr(
            Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
            OK_ObjCProperty, MemberLoc, BaseExpr.get());
      }

      if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
                                ObjCImpDecl, HasTemplateArgs);

      return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
                         << MemberName << BaseType);
    }

    // Normal property access.
    return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
                                       MemberLoc, SourceLocation(), QualType(),
                                       false);
  }

  // Handle 'field access' to vectors, such as 'V.xx'.
  if (BaseType->isExtVectorType()) {
    // FIXME: this expr should store IsArrow.
    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
    ExprValueKind VK;
    if (IsArrow)
      VK = VK_LValue;
    else {
      if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(BaseExpr.get()))
        VK = POE->getSyntacticForm()->getValueKind();
      else
        VK = BaseExpr.get()->getValueKind();
    }
    QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
                                           Member, MemberLoc);
    if (ret.isNull())
      return ExprError();

    return new (S.Context)
        ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
  }

  // Adjust builtin-sel to the appropriate redefinition type if that's
  // not just a pointer to builtin-sel again.
  if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
      !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
    BaseExpr = S.ImpCastExprToType(
        BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
    return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
                            ObjCImpDecl, HasTemplateArgs);
  }

  // Failure cases.
 fail:

  // Recover from dot accesses to pointers, e.g.:
  //   type *foo;
  //   foo.bar
  // This is actually well-formed in two cases:
  //   - 'type' is an Objective C type
  //   - 'bar' is a pseudo-destructor name which happens to refer to
  //     the appropriate pointer type
  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
    if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
        MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
          << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
          << FixItHint::CreateReplacement(OpLoc, "->");

      // Recurse as an -> access.
      IsArrow = true;
      return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
                              ObjCImpDecl, HasTemplateArgs);
    }
  }

  // If the user is trying to apply -> or . to a function name, it's probably
  // because they forgot parentheses to call that function.
  if (S.tryToRecoverWithCall(
          BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
          /*complain*/ false,
          IsArrow ? &isPointerToRecordType : &isRecordType)) {
    if (BaseExpr.isInvalid())
      return ExprError();
    BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
    return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
                            ObjCImpDecl, HasTemplateArgs);
  }

  S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
    << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;

  return ExprError();
}

/// The main callback when the parser finds something like
///   expression . [nested-name-specifier] identifier
///   expression -> [nested-name-specifier] identifier
/// where 'identifier' encompasses a fairly broad spectrum of
/// possibilities, including destructor and operator references.
///
/// \param OpKind either tok::arrow or tok::period
/// \param ObjCImpDecl the current Objective-C \@implementation
///   decl; this is an ugly hack around the fact that Objective-C
///   \@implementations aren't properly put in the context chain
ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
                                       SourceLocation OpLoc,
                                       tok::TokenKind OpKind,
                                       CXXScopeSpec &SS,
                                       SourceLocation TemplateKWLoc,
                                       UnqualifiedId &Id,
                                       Decl *ObjCImpDecl) {
  if (SS.isSet() && SS.isInvalid())
    return ExprError();

  // Warn about the explicit constructor calls Microsoft extension.
  if (getLangOpts().MicrosoftExt &&
      Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
    Diag(Id.getSourceRange().getBegin(),
         diag::ext_ms_explicit_constructor_call);

  TemplateArgumentListInfo TemplateArgsBuffer;

  // Decompose the name into its component parts.
  DeclarationNameInfo NameInfo;
  const TemplateArgumentListInfo *TemplateArgs;
  DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
                         NameInfo, TemplateArgs);

  DeclarationName Name = NameInfo.getName();
  bool IsArrow = (OpKind == tok::arrow);

  NamedDecl *FirstQualifierInScope
    = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));

  // This is a postfix expression, so get rid of ParenListExprs.
  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
  if (Result.isInvalid()) return ExprError();
  Base = Result.get();

  if (Base->getType()->isDependentType() || Name.isDependentName() ||
      isDependentScopeSpecifier(SS)) {
    return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
                                    TemplateKWLoc, FirstQualifierInScope,
                                    NameInfo, TemplateArgs);
  }

  ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl};
  return BuildMemberReferenceExpr(Base, Base->getType(), OpLoc, IsArrow, SS,
                                  TemplateKWLoc, FirstQualifierInScope,
                                  NameInfo, TemplateArgs, S, &ExtraArgs);
}

ExprResult
Sema::BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
                              SourceLocation OpLoc, const CXXScopeSpec &SS,
                              FieldDecl *Field, DeclAccessPair FoundDecl,
                              const DeclarationNameInfo &MemberNameInfo) {
  // x.a is an l-value if 'a' has a reference type. Otherwise:
  // x.a is an l-value/x-value/pr-value if the base is (and note
  //   that *x is always an l-value), except that if the base isn't
  //   an ordinary object then we must have an rvalue.
  ExprValueKind VK = VK_LValue;
  ExprObjectKind OK = OK_Ordinary;
  if (!IsArrow) {
    if (BaseExpr->getObjectKind() == OK_Ordinary)
      VK = BaseExpr->getValueKind();
    else
      VK = VK_RValue;
  }
  if (VK != VK_RValue && Field->isBitField())
    OK = OK_BitField;
  
  // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
  QualType MemberType = Field->getType();
  if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
    MemberType = Ref->getPointeeType();
    VK = VK_LValue;
  } else {
    QualType BaseType = BaseExpr->getType();
    if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();

    Qualifiers BaseQuals = BaseType.getQualifiers();

    // GC attributes are never picked up by members.
    BaseQuals.removeObjCGCAttr();

    // CVR attributes from the base are picked up by members,
    // except that 'mutable' members don't pick up 'const'.
    if (Field->isMutable()) BaseQuals.removeConst();

    Qualifiers MemberQuals =
        Context.getCanonicalType(MemberType).getQualifiers();

    assert(!MemberQuals.hasAddressSpace());

    Qualifiers Combined = BaseQuals + MemberQuals;
    if (Combined != MemberQuals)
      MemberType = Context.getQualifiedType(MemberType, Combined);
  }

  auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
  if (!(CurMethod && CurMethod->isDefaulted()))
    UnusedPrivateFields.remove(Field);

  ExprResult Base = PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
                                                  FoundDecl, Field);
  if (Base.isInvalid())
    return ExprError();

  // Build a reference to a private copy for non-static data members in
  // non-static member functions, privatized by OpenMP constructs.
  if (getLangOpts().OpenMP && IsArrow &&
      !CurContext->isDependentContext() &&
      isa<CXXThisExpr>(Base.get()->IgnoreParenImpCasts())) {
    if (auto *PrivateCopy = IsOpenMPCapturedDecl(Field)) {
      return getOpenMPCapturedExpr(PrivateCopy, VK, OK,
                                   MemberNameInfo.getLoc());
    }
  }

  return BuildMemberExpr(*this, Context, Base.get(), IsArrow, OpLoc, SS,
                         /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
                         MemberNameInfo, MemberType, VK, OK);
}

/// Builds an implicit member access expression.  The current context
/// is known to be an instance method, and the given unqualified lookup
/// set is known to contain only instance members, at least one of which
/// is from an appropriate type.
ExprResult
Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
                              SourceLocation TemplateKWLoc,
                              LookupResult &R,
                              const TemplateArgumentListInfo *TemplateArgs,
                              bool IsKnownInstance, const Scope *S) {
  assert(!R.empty() && !R.isAmbiguous());
  
  SourceLocation loc = R.getNameLoc();

  // If this is known to be an instance access, go ahead and build an
  // implicit 'this' expression now.
  // 'this' expression now.
  QualType ThisTy = getCurrentThisType();
  assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");

  Expr *baseExpr = nullptr; // null signifies implicit access
  if (IsKnownInstance) {
    SourceLocation Loc = R.getNameLoc();
    if (SS.getRange().isValid())
      Loc = SS.getRange().getBegin();
    CheckCXXThisCapture(Loc);
    baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
  }

  return BuildMemberReferenceExpr(baseExpr, ThisTy,
                                  /*OpLoc*/ SourceLocation(),
                                  /*IsArrow*/ true,
                                  SS, TemplateKWLoc,
                                  /*FirstQualifierInScope*/ nullptr,
                                  R, TemplateArgs, S);
}